Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping
Abstract
:1. Introduction
2. Conjugated Polymers Used for Separation
2.1. Polymer Backbone Structure Developed for Separation
2.2. Polymer Side Chain Design for Separation
2.3. Removable/Recyclable Polymers
2.3.1. Removable Polymers Containing Degradable Functional Groups
2.3.2. Removable/Recyclable Polymers with Conformation Change Mechanism
3. Parameters that Affect the Selectivity and Sorting Yield
3.1. Possible Mechanisms for Selecting s-SWNT
3.2. Polymer Weight
3.3. Polymer/SWNT Ratio
3.4. Solvent
3.5. Dispersion Temperature
3.6. Other Factors
4. Applications of Polymer-Sorted SWNTs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.F.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef] [Green Version]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chortos, A.; Zhu, C.X.; Oh, J.Y.; Yan, X.Z.; Pochorovski, I.; To, J.W.F.; Liu, N.; Kraft, U.; Murmann, B.; Bao, Z.N. Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano 2017, 11, 7925–7937. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Tersoff, J.; Farmer, D.B.; Zhu, Y.; Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372. [Google Scholar] [CrossRef] [Green Version]
- Brady, G.J.; Way, A.J.; Safron, N.S.; Evensen, H.T.; Gopalan, P.; Arnold, M.S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Pitner, G.; Giri, G.; Koo, J.H.; Park, J.; Kim, K.; Wang, H.; Sinclair, R.; Wong, H.S.P.; Bao, Z. Large-Area Assembly of Densely Aligned Single-Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field-Effect Transistors. Adv. Mater. 2015, 27, 2656–2662. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. Adv. Mater. 2019, 31, 1800750. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, A.; Luque, H.L.; Sun, H.; Ji, D.; Noh, Y.-Y. Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano 2019, 13, 3971–3981. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Ling, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiang, L.; Yang, Y.J.; Xiao, M.M.; Han, J.; Ding, L.; Zhang, Z.Y.; Hu, Y.F.; Peng, L.M. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano 2018, 12, 2773–2779. [Google Scholar] [CrossRef] [PubMed]
- Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar] [CrossRef]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; delaChapelle, M.L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758. [Google Scholar] [CrossRef]
- Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single-walled nanoyubes by laser vaporization. Chem. Phys. Lett. 1995, 243, 49–54. [Google Scholar] [CrossRef]
- Kim, K.S.; Cota-Sanchez, G.; Kingston, C.T.; Imris, M.; Simard, B.; Soucy, G. Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D Appl. Phys. 2007, 40, 2375–2387. [Google Scholar] [CrossRef]
- Nikolaev, P.; Bronikowski, M.J.; Bradley, R.K.; Rohmund, F.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97. [Google Scholar] [CrossRef]
- Kitiyanan, B.; Alvarez, W.E.; Harwell, J.H.; Resasco, D.E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503. [Google Scholar] [CrossRef]
- Lei, T.; Pochorovski, I.; Bao, Z. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Acc. Chem. Res. 2017, 50, 1096–1104. [Google Scholar] [CrossRef]
- Wang, J.; Jin, X.; Liu, Z.; Yu, G.; Ji, Q.; Wei, H.; Zhang, J.; Zhang, K.; Li, D.; Yuan, Z.; et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1, 326–331. [Google Scholar] [CrossRef]
- Tulevski, G.S.; Franklin, A.D.; Frank, D.; Lobez, J.M.; Cao, Q.; Park, H.; Afzali, A.; Han, S.J.; Hannon, J.B.; Haensch, W. Toward High-Performance Digital Logic Technology with Carbon Nanotubes. ACS Nano 2014, 8, 8730–8745. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S.Z.; Loi, M.A. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Acc. Chem. Res. 2014, 47, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Hersam, M.C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Janas, D. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled carbon nanotubes. Mater. Chem. Front. 2018, 2, 36–63. [Google Scholar] [CrossRef]
- Gerstel, P.; Klumpp, S.; Hennrich, F.; Altintas, O.; Eaton, T.R.; Mayor, M.; Barner-Kowollik, C.; Kappes, M.M. Selective dispersion of single-walled carbon nanotubes via easily accessible conjugated click polymers. Polym. Chem. 2012, 3, 1966–1970. [Google Scholar] [CrossRef]
- Liang, L.Y.; Xie, W.Y.; Fang, S.X.; He, F.; Yin, B.H.; Tlili, C.; Wang, D.Q.; Qiu, S.; Li, Q.W. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. J. Mater. Chem. C 2017, 5, 11339–11368. [Google Scholar] [CrossRef]
- Arnold, M.S.; Green, A.A.; Hulvat, J.F.; Stupp, S.I.; Hersam, M.C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65. [Google Scholar] [CrossRef]
- Fagan, J.A.; Zheng, M.; Rastogi, V.; Simpson, J.R.; Khripin, C.Y.; Batista, C.A.S.; Walker, A.R.H. Analyzing Surfactant Structures on Length and Chirality Resolved (6,5) Single-Wall Carbon Nanotubes by Analytical Ultracentrifugation. ACS Nano 2013, 7, 3373–3387. [Google Scholar] [CrossRef]
- Zheng, M.; Jagota, A.; Semke, E.D.; Diner, B.A.; McLean, R.S.; Lustig, S.R.; Richardson, R.E.; Tassi, N.G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342. [Google Scholar] [CrossRef]
- Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309. [Google Scholar] [CrossRef] [PubMed]
- Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M.M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khripin, C.Y.; Fagan, J.A.; Zheng, M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases. J. Am. Chem. Soc. 2013, 135, 6822–6825. [Google Scholar] [CrossRef] [PubMed]
- Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R.J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646. [Google Scholar] [CrossRef]
- Ozawa, H.; Fujigaya, T.; Song, S.; Suh, H.; Nakashima, N. Different Chiral Selective Recognition/Extraction of (n,m)Single-walled Carbon Nanotubes Using Copolymers Carrying a Carbazole or Fluorene Moiety. Chem. Lett. 2011, 40, 470–472. [Google Scholar] [CrossRef]
- Mistry, K.S.; Larsen, B.A.; Blackburn, J.L. High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions. ACS Nano 2013, 7, 2231–2239. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Z. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737–758. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, H.; Fujigaya, T.; Niidome, Y.; Hotta, N.; Fujiki, M.; Nakashima, N. Rational Concept to Recognize/Extract Single-Walled Carbon Nanotubes with a Specific Chirality. J. Am. Chem. Soc. 2011, 133, 2651–2657. [Google Scholar] [CrossRef]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G.P.; et al. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale 2014, 6, 2328–2339. [Google Scholar] [CrossRef] [Green Version]
- Telg, H.; Duque, J.G.; Staiger, M.; Tu, X.; Hennrich, F.; Kappes, M.M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S.K. Chiral Index Dependence of the G(+) and G(-) Raman Modes in Semiconducting Carbon Nanotubes. ACS Nano 2012, 6, 904–911. [Google Scholar] [CrossRef]
- Bachilo, S.M.; Strano, M.S.; Kittrell, C.; Hauge, R.H.; Smalley, R.E.; Weisman, R.B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, T.; Shao, L.-L.; Zheng, Y.-Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H.S.P.; Huang, T.-C.; et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.M.; Wang, B.; Chen, Y.; Li, L.J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Loi, M.A.; Figueiredo de Carvalho, E.J.; dos Santos, M.C. Selective Wrapping and Supramolecular Structures of Polyfluorene-Carbon Nanotube Hybrids. ACS Nano 2011, 5, 3993–3999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Park, J.Y.; Huang, S.M.; Liu, J.; McEuen, P.L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.H.; Appenzeller, J.; Knoch, J.; Lin, Y.M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502. [Google Scholar] [CrossRef] [Green Version]
- Stranks, S.D.; Habisreutinger, S.N.; Dirks, B.; Nicholas, R.J. Novel Carbon Nanotube-Conjugated Polymer Nanohybrids Produced By Multiple Polymer Processing. Adv. Mater. 2013, 25, 4365–4371. [Google Scholar] [CrossRef]
- Tange, M.; Okazaki, T.; Iijima, S. Selective Extraction of Large-Diameter Single-Wall Carbon Nanotubes with Specific Chiral Indices by Poly(9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911. [Google Scholar] [CrossRef]
- Stranks, S.D.; Baker, A.M.R.; Alexander-Webber, J.A.; Dirks, B.; Nicholas, R.J. Production of High-Purity Single-Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. Small 2013, 9, 2245–2249. [Google Scholar] [CrossRef]
- Zhang, P.; Yi, W.H.; Bai, L.; Tian, Y.L.; Hou, J.; Jin, W.Q.; Si, J.H.; Hou, X. Enrichment of large-diameter semiconducting single-walled carbon nanotubes by a mixed-extractor strategy. Chem. Asian J. 2019, 14, 3855–3862. [Google Scholar] [CrossRef]
- Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M.M.; Mayor, M. Selective Dispersion of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Pyridine-Containing Copolymers. Small 2014, 10, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Tange, M.; Okazaki, T.; Iijima, S. Selective Extraction of Semiconducting Single-Wall Carbon Nanotubes by Poly(9,9-dioctylfluorene-alt-pyridine) for 1.5 μm Emission. ACS Appl. Mater. Interfaces 2012, 4, 6458–6462. [Google Scholar] [CrossRef] [PubMed]
- Brady, G.J.; Joo, Y.; Roy, S.S.; Gopalan, P.; Arnold, M.S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107. [Google Scholar] [CrossRef]
- Brady, G.J.; Joo, Y.; Wu, M.-Y.; Shea, M.J.; Gopalan, P.; Arnold, M.S. Polyfluorene-Sorted, Carbon Nanotube Array Field-Effect Transistors with Increased Current Density and High On/Off Ratio. ACS Nano 2014, 8, 11614–11621. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.S.; Cao, Q.; Tulevski, G.; Jenkins, K.A.; Nela, L.; Farmer, D.B.; Han, S.J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196. [Google Scholar] [CrossRef]
- Berger, F.J.; Luttgens, J.; Nowack, T.; Kutsch, T.; Lindenthal, S.; Kistner, L.; Muller, C.C.; Bongartz, L.M.; Lumsargis, V.A.; Zakharko, Y.; et al. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp3 Functionalization in Organic Solvents. ACS Nano 2019, 13, 9259–9269. [Google Scholar] [CrossRef] [Green Version]
- Tange, M.; Okazaki, T.; Iijima, S. Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale 2014, 6, 248–254. [Google Scholar] [CrossRef]
- Ozawa, H.; Ide, N.; Fujigaya, T.; Niidome, Y.; Nakashima, N. One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer. Chem. Lett. 2011, 40, 239–241. [Google Scholar] [CrossRef]
- Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8, 7292–7305. [Google Scholar] [CrossRef] [Green Version]
- Lemasson, F.A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M.M.; Mayor, M. Selective Dispersion of Single-Walled Carbon Nanotubes with Specific Chiral Indices by Poly(N-decyl-2,7-carbazole). J. Am. Chem. Soc. 2011, 133, 652–655. [Google Scholar] [CrossRef]
- Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M.M.; Mayor, M. Polymer Library Comprising Fluorene and Carbazole Homo- and Copolymers for Selective Single-Walled Carbon Nanotubes Extraction. Macromolecules 2012, 45, 713–722. [Google Scholar] [CrossRef]
- Zou, J.; Liu, L.; Chen, H.; Khondaker, S.I.; McCullough, R.D.; Huo, Q.; Zhai, L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv. Mater. 2008, 20, 2055–2060. [Google Scholar] [CrossRef]
- Gu, H.; Swager, T.M. Fabrication of Free-standing, Conductive, and Transparent Carbon Nanotube Films. Adv. Mater. 2008, 20, 4433–4437. [Google Scholar] [CrossRef]
- Lee, H.W.; You, W.; Barman, S.; Hellstrom, S.; LeMieux, M.C.; Oh, J.H.; Liu, S.; Fujiwara, T.; Wang, W.M.; Chen, B.; et al. Lyotropic Liquid-Crystalline Solutions of High-Concentration Dispersions of Single-Walled Carbon Nanotubes with Conjugated Polymers. Small 2009, 5, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Yoon, Y.; Park, S.; Oh, J.H.; Hong, S.; Liyanage, L.S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y.J.; et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2011, 2, 541. [Google Scholar] [CrossRef]
- Wang, H.; Koleilat, G.I.; Liu, P.; Jimenez-Oses, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K.N.; Bao, Z. High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano 2014, 8, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, L.; Xu, W.; Nie, S.; Gu, W.; Zhang, J.; Zhao, J.; Lin, J.; Chen, Z.; Cui, Z. High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 2013, 5, 4156–4161. [Google Scholar] [CrossRef]
- Liu, D.; Li, P.; Yu, X.; Gu, J.; Han, J.; Zhang, S.; Li, H.; Jin, H.; Qiu, S.; Li, Q.; et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes. Adv. Mater. 2017, 29, 1603565. [Google Scholar] [CrossRef]
- Ozawa, H.; Ide, N.; Fujigaya, T.; Niidome, Y.; Nakashima, N. Supramolecular Hybrid of Metal Nanoparticles and Semiconducting Single-Walled Carbon Nanotubes Wrapped by a Fluorene-Carbazole Copolymer. Chem. Eur. J. 2011, 17, 13438–13444. [Google Scholar] [CrossRef]
- Qian, L.; Xu, W.; Fan, X.; Wang, C.; Zhang, J.; Zhao, J.; Cui, Z. Electrical and Photoresponse Properties of Printed Thin-Film Transistors Based on Poly(9,9-dioctylfluorene-co-bithiophene) Sorted Large-Diameter Semiconducting Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 18243–18250. [Google Scholar] [CrossRef]
- He, Y.; Luo, H.; Jin, H.; Qiu, S.; Li, Q. Thiophene-containing polymer on sorting semiconducting single-walled carbon nanotubes. Polymer 2018, 159, 59–63. [Google Scholar] [CrossRef]
- Derenskyi, V.; Gomulya, W.; Gao, J.; Bisri, S.Z.; Pasini, M.; Loo, Y.-L.; Loi, M.A. Semiconducting SWNTs sorted by polymer wrapping: How pure are they? Appl. Phys. Lett. 2018, 112, 072106. [Google Scholar] [CrossRef]
- Rice, N.A.; Bodnaryk, W.J.; Mirka, B.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polycarbazole-Sorted Semiconducting Single-Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors. Adv. Electron. Mater. 2019, 5, 1800539. [Google Scholar] [CrossRef] [Green Version]
- Berton, N.; Lemasson, F.; Tittmann, J.; Stuerzl, N.; Hennrich, F.; Kappes, M.M.; Mayor, M. Copolymer-Controlled Diameter-Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. Chem. Mater. 2011, 23, 2237–2249. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.; Qiu, S.; Lv, N.; Zhao, Z.; Li, Q.; Cui, Z. Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. Chem. Commun. 2013, 49, 10492–10494. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mei, J.; Liu, P.; Schmidt, K.; Jimenez-Oses, G.; Osuna, S.; Fang, L.; Tassone, C.J.; Zoombelt, A.P.; Sokolov, A.N.; et al. Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano 2013, 7, 2659–2668. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Tange, M.; Xu, W.; Xu, W.; Zhang, K.; Guo, W.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon 2015, 94, 903–910. [Google Scholar] [CrossRef]
- Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polym. Chem. 2019, 10, 6440–6446. [Google Scholar] [CrossRef]
- Si, R.; Wei, L.; Wang, H.; Su, D.; Mushrif, S.H.; Chen, Y. Extraction of (9,8) Single-Walled Carbon Nanotubes by Fluorene-Based Polymers. Chem. Asian J. 2014, 9, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.D.; Wudl, F. Strong acceptors in donor-acceptor polymers for high performance thin film transistors. Energy Environ. Sci. 2013, 6, 392–406. [Google Scholar] [CrossRef]
- Salazar-Rios, J.M.; Gomulya, W.; Derenskyi, V.; Yang, J.; Bisri, S.Z.; Chen, Z.; Facchetti, A.; Loi, M.A. Selecting Semiconducting Single-Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide-Based Polymers. Adv. Electron. Mater. 2015, 1, 1500074. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Jimenez-Oses, G.; Liu, P.; Fang, Y.; Zhang, J.; Lai, Y.-C.; Park, S.; Chen, L.; Houk, K.N.; et al. N-Type Conjugated Polymer-Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOS-Like Circuits. Adv. Funct. Mater. 2015, 25, 1837–1844. [Google Scholar] [CrossRef]
- Lei, T.; Lai, Y.-C.; Hong, G.; Wang, H.; Hayoz, P.; Weitz, R.T.; Chen, C.; Dai, H.; Bao, Z. Diketopyrrolopyrrole (DPP)-Based Donor-Acceptor Polymers for Selective Dispersion of Large-Diameter Semiconducting Carbon Nanotubes. Small 2015, 11, 2946–2954. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R.T.; Wong, H.-S.P.; Bao, Z. Dispersion of High-Purity Semiconducting Arc-Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)-Based Polymers. Adv. Electron. Mater. 2016, 2, 1500299. [Google Scholar] [CrossRef]
- Fong, D.; Adronov, A. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules 2017, 50, 8002–8009. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.W.; Chen, L.C.; Nicholas, R.J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 3543–3553. [Google Scholar] [CrossRef]
- Gerstel, P.; Klumpp, S.; Hennrich, F.; Poschlad, A.; Meded, V.; Blasco, E.; Wenzel, W.; Kappes, M.M.; Barner-Kowollik, C. Highly Selective Dispersion of Single-Walled Carbon Nanotubes via Polymer Wrapping: A Combinatorial Study via Modular Conjugation. ACS Macro Lett. 2014, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Kwak, M.; Wildeman, J.; Hermann, A.; Loi, M.A. Effectiveness of sorting single-walled carbon nanotubes by diameter using polyfluorene derivatives. Carbon 2011, 49, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Gomulya, W.; Diaz Costanzo, G.; Figueiredo de Carvalho, E.J.; Bisri, S.Z.; Derenskyi, V.; Fritsch, M.; Froehlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; et al. Semiconducting Single-Walled Carbon Nanotubes on Demand by Polymer Wrapping. Adv. Mater. 2013, 25, 2948–2956. [Google Scholar] [CrossRef]
- Fukumaru, T.; Toshimitsu, F.; Fujigaya, T.; Nakashima, N. Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes. Nanoscale 2014, 6, 5879–5886. [Google Scholar] [CrossRef]
- Li, K.; Kardelis, V.; Adronov, A. “Click” generation of a conjugated polymer library for SWNT dispersion. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2053–2058. [Google Scholar] [CrossRef]
- Berton, N.; Lemasson, F.; Hennrich, F.; Kappes, M.M.; Mayor, M. Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chem. Commun. 2012, 48, 2516–2518. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dunford, J.L.; Malenfant, P.R.L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, Z.; Lefebvre, J.; Du, X.; Malenfant, P.R.L. Mechanistic Consideration of pH Effect on the Enrichment of Semiconducting SWCNTs by Conjugated Polymer Extraction. J. Phys. Chem. C 2016, 120, 21946–21954. [Google Scholar] [CrossRef]
- Schiessl, S.P.; Froehlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, U.; Zaumseil, J. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors. ACS Appl. Mater. Interfaces 2015, 7, 682–689. [Google Scholar] [CrossRef]
- Rice, N.A.; Adronov, A. Selective Interactions of a High-Molecular-Weight Polycarbazole with Different Commercial Nanotube Samples. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2738–2747. [Google Scholar] [CrossRef]
- Blouin, N.; Leclerc, M. Poly(2,7-carbazole)s: Structure-property relationships. Acc. Chem. Res. 2008, 41, 1110–1119. [Google Scholar] [CrossRef]
- Boudreault, P.-L.T.; Beaupre, S.; Leclerc, M. Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127–136. [Google Scholar] [CrossRef]
- Rice, N.A.; Adronov, A. Supramolecular Interactions of High Molecular Weight Poly(2,7-carbazole)s with Single-Walled Carbon Nanotubes. Macromolecules 2013, 46, 3850–3860. [Google Scholar] [CrossRef]
- Gu, J.; Han, J.; Liu, D.; Yu, X.; Kang, L.; Qiu, S.; Jin, H.; Li, H.; Li, Q.; Zhang, J. Solution-Processable High-Purity Semiconducting SWCNTs for Large-Area Fabrication of High-Performance Thin-Film Transistors. Small 2016, 12, 4993–4999. [Google Scholar] [CrossRef]
- Kanimozhi, C.; Brady, G.J.; Shea, M.J.; Huang, P.S.; Joo, Y.; Arnold, M.S.; Gopalan, P. Structurally Analogous Degradable Version of Fluorene-Bipyridine Copolymer with Exceptional Selectivity for Large-Diameter Semiconducting Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 40734–40742. [Google Scholar] [CrossRef] [PubMed]
- Izard, N.; Kazaoui, S.; Hata, K.; Okazaki, T.; Saito, T.; Iijima, S.; Minami, N. Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. Appl. Phys. Lett. 2008, 92, 243112. [Google Scholar] [CrossRef] [Green Version]
- Bisri, S.Z.; Gao, J.; Derenskyi, V.; Gomulya, W.; Iezhokin, I.; Gordiichuk, P.; Herrmann, A.; Loi, M.A. High Performance Ambipolar Field-Effect Transistor of Random Network Carbon Nanotubes. Adv. Mater. 2012, 24, 6147–6152. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.Z.; Lei, T.; Molina-Lopez, F.; Bao, Z. Enhanced Process Integration and Device Performance of Carbon Nanotubes via Flocculation. Small Methods 2018, 2, 1800189. [Google Scholar] [CrossRef]
- Wang, W.Z.; Li, W.F.; Pan, X.Y.; Li, C.M.; Li, L.-J.; Mu, Y.G.; Rogers, J.A.; Chan-Park, M.B. Degradable Conjugated Polymers: Synthesis and Applications in Enrichment of Semiconducting Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2011, 21, 1643–1651. [Google Scholar] [CrossRef]
- Lemasson, F.; Tittmann, J.; Hennrich, F.; Stuerzl, N.; Malik, S.; Kappes, M.M.; Mayor, M. Debundling, selection and release of SWNTs using fluorene-based photocleavable polymers. Chem. Commun. 2011, 47, 7428–7430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jianfu, D.; Chang, G.; Lefebvre, J.; Malenfant, P.R.L. Decomposable s-Tetrazine Copolymer Enables Single-Walled Carbon Nanotube Thin Film Transistors and Sensors with Improved Sensitivity. Adv. Funct. Mater. 2018, 28, 1705568. [Google Scholar]
- Toshimitsu, F.; Nakashima, N. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry. Nat. Commun. 2014, 5, 5041. [Google Scholar] [CrossRef] [Green Version]
- Pochorovski, I.; Wang, H.; Feldblyum, J.I.; Zhang, X.; Antaris, A.L.; Bao, Z. H-Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2015, 137, 4328–4331. [Google Scholar] [CrossRef]
- Lei, T.; Chen, X.; Pitner, G.; Wong, H.S.P.; Bao, Z. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. J. Am. Chem. Soc. 2016, 138, 802–805. [Google Scholar] [CrossRef]
- Zhang, Z.; Che, Y.; Smaldone, R.A.; Xu, M.; Bunes, B.R.; Moore, J.S.; Zang, L. Reversible Dispersion and Release of Carbon Nanotubes Using Foldable Oligomers. J. Am. Chem. Soc. 2010, 132, 14113–14117. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.J.; Moore, J.S. Helicogenicity of solvents in the conformational equilibrium of oligo(m-phenylene ethynylene)s: Implications for foldamer research. Proc. Natl. Acad. Sci. USA 2002, 99, 5053–5057. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Chen, G.; Zhao, Y. Conformationally switchable TTFV-phenylacetylene polymers: Synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes. J. Mater. Chem. C 2013, 1, 5477–5490. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, Y.; Adronov, A. Selective and Reversible Noncovalent Functionalization of Single-Walled Carbon Nanotubes by a pH-Responsive Vinylogous Tetrathiafulvalene-Fluorene Copolymer. J. Am. Chem. Soc. 2014, 136, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.; Brady, G.J.; Shea, M.J.; Oviedo, M.B.; Kanimozhi, C.; Schmitt, S.K.; Wong, B.M.; Arnold, M.S.; Gopalan, P. Isolation of Pristine Electronics Grade Semiconducting Carbon Nano tubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand. ACS Nano 2015, 9, 10203–10213. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Hsieh, B.; Jimenez-Oses, G.; Liu, P.; Tassone, C.J.; Diao, Y.; Lei, T.; Houk, K.N.; Bao, Z.N. Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small 2015, 11, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Rice, N.A.; Subrahmanyam, A.V.; Laengert, S.E.; Adronov, A. The Effect of Molecular Weight on the Separation of Semiconducting Single-Walled Carbon Nanotubes Using Poly(2,7-carbazole)s. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2510–2516. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, S.M.; Yoon, S.M.; Benayad, A.; Kim, K.K.; Kim, S.J.; Park, H.K.; Choi, J.Y.; Lee, Y.H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066. [Google Scholar] [CrossRef]
- Varghese, N.; Ghosh, A.; Voggu, R.; Ghosh, S.; Rao, C.N.R. Selectivity in the Interaction of Electron Donor and Acceptor Molecules with Graphene and Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2009, 113, 16855–16859. [Google Scholar] [CrossRef]
- Liang, S.; Subrahmanyam, A.V.; Khadem, M.; Zhao, Y.M.; Adronov, A. Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Adv. 2016, 6, 25733–25740. [Google Scholar] [CrossRef]
- Wei, X.; Maimaitiyiming, X. Enrichment of highly pure large-diameter semiconducting SWCNTs by polyfluorene-containing pyrimidine ring. RSC Adv. 2019, 9, 32753–32758. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Imin, P.; Maunders, C.; Botton, G.; Adronov, A. Soluble, discrete supramolecular complexes of single-walled carbon nanotubes with fluorene-based conjugated polymers. Macromolecules 2008, 41, 2304–2308. [Google Scholar] [CrossRef]
- Rice, N.A.; Subrahmanyam, A.V.; Coleman, B.R.; Adronov, A. Effect of Induction on the Dispersion of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers. Macromolecules 2015, 48, 5155–5161. [Google Scholar] [CrossRef]
- Fong, D.; Bodnaryk, W.J.; Rice, N.A.; Saem, S.; Moran-Mirabal, J.M.; Adronov, A. Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. Chem. Eur. J. 2016, 22, 14560–14566. [Google Scholar] [CrossRef] [PubMed]
- Bodnaryk, W.J.; Fong, D.; Adronov, A. Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega 2018, 3, 16238–16245. [Google Scholar] [CrossRef]
- Imin, P.; Cheng, F.Y.; Adronov, A. The effect of molecular weight on the supramolecular interaction between a conjugated polymer and single-walled carbon nanotubes. Polym. Chem. 2011, 2, 1404–1408. [Google Scholar] [CrossRef]
- Jakubka, F.; Schiessl, S.P.; Martin, S.; Englert, J.M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Lett. 2012, 1, 815–819. [Google Scholar] [CrossRef]
- Stuerzl, N.; Hennrich, F.; Lebedkin, S.; Kappes, M.M. Near Monochiral Single-Walled Carbon Nanotube Dispersions in Organic Solvents. J. Phys. Chem. C 2009, 113, 14628–14632. [Google Scholar] [CrossRef]
- Ouyang, J.Y.; Ding, J.F.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A.J.; Malenfant, P.R.L. Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment. ACS Nano 2018, 12, 1910–1919. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Database. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 17 May 2020).
- Cheng, Q.H.; Debnath, S.; Gregan, E.; Byrne, H.J. Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties. J. Phys. Chem. C 2010, 114, 8821–8827. [Google Scholar] [CrossRef] [Green Version]
- Gomulya, W.; Rios, J.M.S.; Derenskyi, V.; Bisri, S.Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M.C.; Loi, M.A. Effect of temperature on the selection of semiconducting single walled carbon nanotubes using Poly(3-dodecylthiophene-2,5-diyl). Carbon 2015, 84, 66–73. [Google Scholar] [CrossRef]
- Han, J.; Ji, Q.Y.; Qiu, S.; Li, H.B.; Zhang, S.X.; Jin, H.H.; Li, Q.W. A versatile approach to obtain a high-purity semiconducting single-walled carbon nanotube dispersion with conjugated polymers. Chem. Commun. 2015, 51, 4712–4714. [Google Scholar] [CrossRef]
- Barman, S.N.; LeMieux, M.C.; Baek, J.; Rivera, R.; Bao, Z.N. Effects of Dispersion Conditions of Single-Walled Carbon Nanotubes on the Electrical Characteristics of Thin Film Network Transistors. ACS Appl. Mater. Interfaces 2010, 2, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.Y.; PhilipWong, H.S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276. [Google Scholar] [CrossRef]
- Franklin, A.D.; Luisier, M.; Han, S.J.; Tulevski, G.; Breslin, C.M.; Gignac, L.; Lundstrom, M.S.; Haensch, W. Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 2012, 12, 758–762. [Google Scholar] [CrossRef]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Fu, Y.; He, Y.; Zhou, C. Air-Stable Conversion of Separated Carbon Nanotube Thin-Film Transistors from p-Type to n-Type Using Atomic Layer Deposition of High-kappa Oxide and Its Application in CMOS Logic Circuits. ACS Nano 2011, 5, 3284–3292. [Google Scholar] [CrossRef]
- Han, S.J.; Tang, J.S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J.; et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865. [Google Scholar] [CrossRef]
- Wang, H.L.; Wei, P.; Li, Y.X.; Han, J.; Lee, H.R.; Naab, B.D.; Liu, N.; Wang, C.G.; Adijanto, E.; Tee, B.C.K.; et al. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc. Natl. Acad. Sci. USA 2014, 111, 4776–4781. [Google Scholar] [CrossRef] [Green Version]
- Geier, M.L.; McMorrow, J.J.; Xu, W.C.; Zhu, J.; Kim, C.H.; Marks, T.J.; Hersam, M.C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Brohmann, M.; Lorenz, R.; Hofstetter, Y.J.; Rother, M.; Sauter, E.; Zharnikov, M.; Vaynzof, Y.; Himmel, H.-J.; Zaumseil, J. Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis (tetramethylguanidino)benzene. ACS Nano 2018, 12, 5895–5902. [Google Scholar] [CrossRef]
- Yang, Y.J.; Ding, L.; Han, J.; Zhang, Z.Y.; Peng, L.M. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano 2017, 11, 4124–4132. [Google Scholar] [CrossRef]
- Chen, H.T.; Cao, Y.; Zhang, J.L.; Zhou, C.W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097. [Google Scholar] [CrossRef] [PubMed]
- Mirka, B.; Fong, D.; Rice, N.A.; Melville, O.A.; Adronov, A.; Lessard, B.H. Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors. Chem. Mater. 2019, 31, 2863–2872. [Google Scholar] [CrossRef]
- Rutherglen, C.; Kane, A.A.; Marsh, P.F.; Cain, T.A.; Hassan, B.I.; AlShareef, M.R.; Zhou, C.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539. [Google Scholar] [CrossRef]
- Joo, Y.; Brady, G.J.; Arnold, M.S.; Gopalan, P. Dose-Controlled, Floating Evaporative Self-assembly and Alignment of Semiconducting Carbon Nanotubes from Organic Solvents. Langmuir 2014, 30, 3460–3466. [Google Scholar] [CrossRef]
- Franklin, A.D. The road to carbon nanotube transistors. Nature 2013, 498, 443–444. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef]
- Chortos, A.; Koleilat, G.I.; Pfattner, R.; Kong, D.S.; Lin, P.; Nur, R.; Lei, T.; Wang, H.L.; Liu, N.; Lai, Y.C.; et al. Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Adv. Mater. 2016, 28, 4441–4448. [Google Scholar] [CrossRef]
- Cao, X.; Lau, C.; Liu, Y.H.; Wu, F.Q.; Gui, H.; Liu, Q.Z.; Ma, Y.Q.; Wan, H.C.; Amer, M.R.; Zhou, C.W. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano 2016, 10, 9816–9822. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Cao, Y.; Zhou, C.W. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes. ACS Nano 2016, 10, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin-Film Transistors. Adv. Funct. Mater. 2017, 27, 1604447. [Google Scholar] [CrossRef]
- Yu, I.; Ye, Y.; Moon, S.; Lee, S.K.; Joo, Y. A Bendable, Stretchable Transistor with Aligned Carbon Nanotube Films. Adv. Mater. Interfaces 2019, 6, 1900945. [Google Scholar] [CrossRef]
Solvent | Density (g/mL) | Viscosity (mPa.s) | Topological Polar Surface Area (Ų) | Dielectric Constant | Dipole Moment (Hexane 0 D) |
---|---|---|---|---|---|
Toluene | 0.87 | 0.56 | 0 | 2.376 | 0.36D |
p-xylene | 0.86 | 0.603 | 0 | 2.27 | 0.07D |
m-xylene | 0.86 | 0.581 | 0 | 2.367 | 0.32D |
o-xylene | 0.88 | 0.76 | 0 | 2.568 | 0.54D |
THF | 0.89 | 0.50 | 9.2 | 7.4 | 1.75D |
chloroform | 1.48 | 0.556 | 0 | 4.65 | 1.04D |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lei, T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers 2020, 12, 1548. https://doi.org/10.3390/polym12071548
Wang J, Lei T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers. 2020; 12(7):1548. https://doi.org/10.3390/polym12071548
Chicago/Turabian StyleWang, Jingyi, and Ting Lei. 2020. "Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping" Polymers 12, no. 7: 1548. https://doi.org/10.3390/polym12071548
APA StyleWang, J., & Lei, T. (2020). Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers, 12(7), 1548. https://doi.org/10.3390/polym12071548