Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations
Abstract
:1. Near-Field Electrospinning (NFES)/Melt Electrowriting (MEW): Fiber Writing
2. Fiber Writing of Biomedical Polymers
2.1. Alginate
2.2. Poly(γ-benzyl-l-glutamate) (PBLG)
2.3. Poly(ε-caprolactone) (PCL)
2.4. Chitosan
2.5. Collagen
2.6. Copolymers
2.7. Polydioxanone (PDO)
2.8. Polyethylene Oxide (PEO)
2.9. Poly(2-ethyl-2-oxazine) (PEtOzi)
2.10. Poly(2-ethyl-2-oxazoline) (PEtOx)
2.11. Gelatin
2.12. Poly(l-Lactic Acid) (PLLA)
2.13. Polymethyl Methacrylate (PMMA)
2.14. Polystyrene (PS)
2.15. Poly(Vinyl Alcohol) (PVA) Blends
2.16. Polyvinylidene Fluoride (PVDF)
2.17. Polyvinylpyrrolidone (PVP)
3. Present Limitations
4. Conclusions and Future Direction
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008, 17 (Suppl. 4), 467–479. [Google Scholar] [CrossRef] [Green Version]
- Doshi, J.; Reneker, D.H. Electrospinning Process and Apllications of Electrospun Fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Hohman, M.M.; Shin, M.; Rutledge, G.; Brenner, M.P. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 2001, 13, 2201–2220. [Google Scholar] [CrossRef] [Green Version]
- Kameoka, J.; Orth, R.; Yang, Y.; Czaplewski, D.; Mathers, R.; Geoffrey, C.; Craighead, H.G. A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 2003, 14. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, J.; Li, J.; Li, D.; Xiao, C.; Xiao, H.; Yang, H.; Zhuang, X.; Chen, X. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019, 90, 1–34. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuh, Y.K.; Wu, Y.C.; He, Z.Y.; Huang, Z.M.; Hu, W.W. The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 879–887. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Floudas, G. Self-Assembly and Dynamics of Poly(γ-benzyl-L-glutamate) Peptides. Biomacromolecules 2004, 5, 81–91. [Google Scholar] [CrossRef]
- Pan, C.T.; Yen, C.K.; Lin, L.; Lu, Y.S.; Li, H.W.; Huang, J.; Kuo, S.W. Poly(γ-benzylα,l-glutamate) in Cylindrical Near-Field Electrospinning Fabrication and Analysis of Piezoelectric Fibers. Sens. Mater. 2014, 26, 63–73. [Google Scholar] [CrossRef]
- Pan, C.-T.; Yen, C.-K.; Lin, L.; Lu, Y.-S.; Li, H.-W.; Huang, J.C.-C.; Kuo, S.-W. Energy harvesting with piezoelectric poly(γ-benzyl-l-glutamate) fibers prepared through cylindrical near-field electrospinning. RSC Adv. 2014, 4. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Delalat, B.; Harding, F.; Gundsambuu, B.; De-Juan-Pardo, E.M.; Wunner, F.M.; Wille, M.L.; Jasieniak, M.; Malatesta, K.A.L.; Griesser, H.J.; Simula, A.; et al. 3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials 2017, 140, 58–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, N.; Ferreira, J.A.; Daghrery, A.; Aytac, Z.; Malda, J.; Bhaduri, S.B.; Bottino, M.C. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater 2020, 113, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Seo, S.J.; Moon, H.S.; Yoo, M.K.; Park, I.Y.; Kim, B.C.; Cho, C.S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008, 26, 1–21. [Google Scholar] [CrossRef]
- Fuh, Y.-K.; Chen, S.; Jang, J.S.C. Direct-write, Well-aligned Chitosan-Poly(ethylene oxide) Nanofibers Deposited via Near-field Electrospinning. J. Macromol. Sci. Part. A 2012, 49, 845–850. [Google Scholar] [CrossRef]
- Fuh, Y.K.; Chen, S.Z.; He, Z.Y. Direct-write, highly aligned chitosan-poly(ethylene oxide) nanofiber patterns for cell morphology and spreading control. Nanoscale Res. Lett. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm. 2001, 221. [Google Scholar] [CrossRef]
- Alexander, F.A., Jr.; Johnson, L.; Williams, K.; Packer, K. A Parameter Study for 3D-Printing Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning. Materials 2019, 12, 4131. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Hochleitner, G.; Woodfield, T.; Groll, J.; Dalton, P.D.; Amsden, B.G. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Biomacromolecules 2016, 17, 208–214. [Google Scholar] [CrossRef]
- Hochleitner, G.; Fursattel, E.; Giesa, R.; Groll, J.; Schmidt, H.W.; Dalton, P.D. Melt Electrowriting of Thermoplastic Elastomers. Macromol. Rapid Commun. 2018, 39, e1800055. [Google Scholar] [CrossRef]
- Ping Ooi, C.; Cameron, R.E. The hydrolytic degradation of polydioxanone (PDSII) sutures. Part I: Morphological aspects. J. Biomed. Mater. Res. 2002, 63, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Ping Ooi, C.; Cameron, R.E. The hydrolytic degradation of polydioxanone (PDSII) sutures. Part II: Micromechanisms of deformation. J. Biomed. Mater. Res. 2002, 63, 291–298. [Google Scholar] [CrossRef]
- King, W.E., III; Gillespie, Y.; Gilbert, K.; Bowlin, G.L. Characterization of Polydioxanone in Near-Field Electrospinning. Polymers 2019, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Chen, X.; Zhang, J.; Lin, Y.-J.; Li, K.; Zeng, J.; Wu, P.; He, Y.; Li, Y.; Wang, H. Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning. AIP Adv. 2018, 8. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H.; Wang, Z.; Zhang, J.; Chen, R.; Zhu, Z.; Chen, X.; Lin, Y.; Zhao, Y.; Li, J.; et al. Accurate fabrication of aligned nanofibers via a double-nozzle near-field electrospinning. Thermal. Sci. 2019, 23, 2143–2150. [Google Scholar] [CrossRef]
- Hrynevich, A.; Elci, B.S.; Haigh, J.N.; McMaster, R.; Youssef, A.; Blum, C.; Blunk, T.; Hochleitner, G.; Groll, J.; Dalton, P.D. Dimension-Based Design of Melt Electrowritten Scaffolds. Small 2018, 14, e1800232. [Google Scholar] [CrossRef]
- Taylor, G. Electrically driven jets. Proc. R. Soc. Lond. A 1969, 313, 453–475. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Z.; Liu, J.; Li, Q.; Hou, L.; Wang, L.; Guan, Z. Effect of electric field distribution uniformity on electrospinning. J. Appl. Phys. 2008, 103. [Google Scholar] [CrossRef]
- Hekmati, A.; Rashidi, A.; Ghazisaeidi, R.; Drean, J.Y. Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Text. Res. J. 2013, 83. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Sundaray, B.; Subramanian, V.; Natarajan, T.S.; Xiang, R.-Z.; Chang, C.-C.; Fann, W.-S. Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 2004, 84, 1222–1224. [Google Scholar] [CrossRef]
- Nahm, D.; Weigl, F.; Schaefer, N.; Sancho, A.; Frank, A.; Groll, J.; Villmann, C.; Schmidt, H.-W.; Dalton, P.D.; Luxenhofer, R. A versatile biomaterial ink platform for the melt electrowriting of chemically-crosslinked hydrogels. Mater. Horiz. 2020, 7, 928–933. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, V.R.; Bauwens, E.; Monnery, B.D.; De Geest, B.G.; Hoogenboom, R. Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym. Chem. 2014, 5, 4957–4964. [Google Scholar] [CrossRef]
- Hochleitner, G.; Hümmer, J.F.; Luxenhofer, R.; Groll, J. High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. Polymer 2014, 55, 5017–5023. [Google Scholar] [CrossRef] [Green Version]
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release 2005, 109, 256–274. [Google Scholar] [CrossRef]
- Davis, Z.G.; Hussain, A.F.; Fisher, M.B. Processing variables of direct-write, near-field electrospinning impact size and morphology of gelatin fibers. bioRxiv 2020. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Zhou, Q.; Li, B.; Bao, M.; Lou, X.; Zhang, Y. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth. Biofabrication 2015, 7, 045004. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.J.; Zhou, Y.Q.; Jing, Z.Y.; Liu, Y.Y.; Yin, D.C. Electrospun Heparin-Loaded Core-Shell Nanofiber Sutures for Achilles Tendon Regeneration In Vivo. Macromol. Biosci. 2018, 18, e1800041. [Google Scholar] [CrossRef]
- Jha, B.S.; Colello, R.J.; Bowman, J.R.; Sell, S.A.; Lee, K.D.; Bigbee, J.W.; Bowlin, G.L.; Chow, W.N.; Mathern, B.E.; Simpson, D.G. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 2011, 7, 203–215. [Google Scholar] [CrossRef]
- Tokarev, A.; Asheghali, D.; Griffiths, I.M.; Trotsenko, O.; Gruzd, A.; Lin, X.; Stone, H.A.; Minko, S. Touch- and Brush-Spinning of Nanofibers. Adv. Mater. 2015, 27, 6526–6532. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Fattahi, P.; Dover, J.T.; Brown, J.L. 3D Near-Field Electrospinning of Biomaterial Microfibers with Potential for Blended Microfiber-Cell-Loaded Gel Composite Structures. Adv. Healthc. Mater. 2017, 6. [Google Scholar] [CrossRef]
- Lerman, M.J.; Lembong, J.; Muramoto, S.; Gillen, G.; Fisher, J.P. The Evolution of Polystyrene as a Cell Culture Material. Tissue Eng. Part. B Rev. 2018, 24, 359–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.; Reneker, D.H. Hierarchical polystyrene patterns produced by electrospinning. Polymer 2012, 53, 4254–4261. [Google Scholar] [CrossRef]
- Sun, D.; Chang, C.; Li, S.; Lin, L. Near-Field Electrospinning. Nano Lett. 2006, 6, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Limkrailassiri, K.; Lin, L. Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 2008, 93. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Li, W.; Wang, X.; Wu, D.; Sun, D.; Lin, L. Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D Appl. Phys. 2010, 43. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1451–1457. [Google Scholar] [CrossRef]
- Yan, F.C.H.; Zheng, L.; Chen, W.; Liu, Y.; Hu, Q. The Controllable PVA-Chitosan Fiber Prepared by the Near-field Electro Spinning for Tissue Engineering. Adv. J. Food Sci. Technol. 2013, 5, 1073–1078. [Google Scholar] [CrossRef]
- Yan, F.; Liu, Y.; Chen, H.; Zhang, F.; Zheng, L.; Hu, Q. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology. AIP Adv. 2014, 4. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, Q.; Huang, Y.; Luo, W.; Hu, Q.; Xiao, C. Study on a novel PTFE membrane with regular geometric pore structures fabricated by near-field electrospinning, and its applications. J. Membr. Sci. 2020, 603. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, Q.; Huang, Y.; Yu, S.; Xiao, C.; Hu, Q. Pore structure design of NFES PTFE membrane for membrane emulsification. J. Membr. Sci. 2020, 611. [Google Scholar] [CrossRef]
- Laroche, G.; Marois, Y.; Guidoin, R.; King, M.W.; Martin, L.; How, T.; Douville, Y. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 1995, 29, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Fuh, Y.K.; Ye, J.C.; Chen, P.C.; Ho, H.C.; Huang, Z.M. Hybrid Energy Harvester Consisting of Piezoelectric Fibers with Largely Enhanced 20 V for Wearable and Muscle-Driven Applications. ACS Appl. Mater. Interfaces 2015, 7, 16923–16931. [Google Scholar] [CrossRef]
- Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone)–A Versatile Polymer for Biomedical and Beyond Medical Applications. Polymer-Plast. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, H.-D.; Ma, X.-S.; Zhu, J.-W.; Long, Y.-Z. Preparation of arrayed helical micro/nanofibers by near-field electrospinning. Mater. Res. Express 2018, 6. [Google Scholar] [CrossRef]
- Zhang, Z.; Jorgensen, M.L.; Wang, Z.; Amagat, J.; Wang, Y.; Li, Q.; Dong, M.; Chen, M. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials 2020, 253, 120108. [Google Scholar] [CrossRef] [PubMed]
- Jungst, T.; Pennings, I.; Schmitz, M.; Rosenberg, A.J.W.P.; Groll, J.; Gawlitta, D. Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts. Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, N.; Janzen, D.; Bakirci, E.; Hrynevich, A.; Dalton, P.D.; Villmann, C. 3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel. Adv. Healthc. Mater. 2019, 8, e1801226. [Google Scholar] [CrossRef]
- Hammerl, A.; Diaz Cano, C.E.; De-Juan-Pardo, E.M.; van Griensven, M.; Poh, P.S.P. A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds. Int. J. Mol. Sci. 2019, 20, 1068. [Google Scholar] [CrossRef] [Green Version]
- Hochleitner, G.; Jungst, T.; Brown, T.D.; Hahn, K.; Moseke, C.; Jakob, F.; Dalton, P.D.; Groll, J. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 2015, 7, 035002. [Google Scholar] [CrossRef]
- Abbasi, N.; Abdal-hay, A.; Hamlet, S.; Graham, E.; Ivanovski, S. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 3448–3461. [Google Scholar] [CrossRef] [PubMed]
- He, F.L.; Li, D.W.; He, J.; Liu, Y.Y.; Ahmad, F.; Liu, Y.L.; Deng, X.; Ye, Y.J.; Yin, D.C. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater Sci. Eng. C Mater Biol. Appl. 2018, 86, 18–27. [Google Scholar] [CrossRef]
- Farrugia, B.L.; Brown, T.D.; Upton, Z.; Hutmacher, D.W.; Dalton, P.D.; Dargaville, T.R. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 2013, 5. [Google Scholar] [CrossRef]
- Brown, T.D.; Slotosch, A.; Thibaudeau, L.; Taubenberger, A.; Loessner, D.; Vaquette, C.; Dalton, P.D.; Hutmacher, D.W. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 2012, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liashenko, I.; Hrynevich, A.; Dalton, P.D. Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting using Microscale Layer Shifting. Adv. Mater. 2020, 32, e2001874. [Google Scholar] [CrossRef] [PubMed]
- Eichholz, K.F.; Hoey, D.A. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater. 2018, 75, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Saidy, N.T.; Shabab, T.; Bas, O.; Rojas-Gonzalez, D.M.; Menne, M.; Henry, T.; Hutmacher, D.W.; Mela, P.; De-Juan-Pardo, E.M. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds. Front Bioeng. Biotechnol. 2020, 8, 793. [Google Scholar] [CrossRef]
- Castilho, M.; van Mil, A.; Maher, M.; Metz, C.H.G.; Hochleitner, G.; Groll, J.; Doevendans, P.A.; Ito, K.; Sluijter, J.P.G.; Malda, J. Melt Electrowriting Allows Tailored Microstructural and Mechanical Design of Scaffolds to Advance Functional Human Myocardial Tissue Formation. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef]
- Ahmad, Z.; Rasekh, M.; Edirisinghe, M. Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites. Macromol. Mater. Eng. 2010, 295, 315–319. [Google Scholar] [CrossRef]
- Hochleitner, G.; Kessler, M.; Schmitz, M.; Boccaccini, A.R.; Teßmar, J.; Groll, J. Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles. Mater. Lett. 2017, 205, 257–260. [Google Scholar] [CrossRef]
- Bisht, G.S.; Canton, G.; Mirsepassi, A.; Kulinsky, L.; Oh, S.; Dunn-Rankin, D.; Madou, M.J. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett. 2011, 11, 1831–1837. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Huang, S.; Zheng, J.; Chen, X.; Chen, X.; Zhu, Z. Deposition characteristics of the double nozzles near-field electrospinning. Appl. Phys. A 2014, 118, 621–628. [Google Scholar] [CrossRef]
- Shin, D.; Choi, S.; Kim, J.; Regmi, A.; Chang, J. Direct-Printing of Functional Nanofibers on 3D Surfaces Using Self-Aligning Nanojet in Near-Field Electrospinning. Adv. Mater. Technol. 2020, 5. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, G.; Li, W.; Wang, X.; Sun, D. Direct-writing organic three-dimensional nanofibrous structure. Appl. Phys. A 2011, 102, 457–461. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, K.; Jiang, J.; He, G.; Xu, L.; Liu, Y.; Liu, J.; Wu, D.; Zheng, G. Electrohydrodynamic direct-writing orderly pattern with sheath gas focusing. AIP Adv. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Y.; Terentjev, E.M.; Oppenheim, T.; Lacour, S.P.; Welland, M.E. Fabrication and electromechanical characterization of near-field electrospun composite fibers. Nanotechnology 2012, 23, 105305. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, X.; Huang, S.; Du, Z.; zeng, J.; Liao, W.; Fang, F.; Peng, D.; Wang, H. The process of wavy fiber deposition via auxiliary electrodes in near-field electrospinning. Appl. Phys. A 2015, 120, 1435–1442. [Google Scholar] [CrossRef]
- Wang, H.; Huang, S.; Liang, F.; Wu, P.; Li, M.; Lin, S.; Chen, X. Research on Multinozzle Near-Field Electrospinning Patterned Deposition. J. Nanomater. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.Y. Toward nanoscale three-dimensional printing: nanowalls built of electrospun nanofibers. Langmuir 2014, 30, 1210–1214. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Wang, L.; Ma, G.; Meng, F.; Pritchard, R.H.; Gill, E.L.; Liu, Y.; Huang, Y.Y. Low-Voltage Continuous Electrospinning Patterning. ACS Appl. Mater. Interfaces 2016, 8, 32120–32131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.-T.; Chang, C.-C.; Yang, Y.-S.; Yen, C.-K.; Kao, Y.-H.; Shiue, Y.-L. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuators A Phys. 2020, 301. [Google Scholar] [CrossRef]
- Luo, G.; Teh, K.S.; Liu, Y.; Zang, X.; Wen, Z.; Lin, L. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures. ACS Appl. Mater. Interfaces 2015, 7, 27765–27770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florczak, S.; Lorson, T.; Zheng, T.; Mrlik, M.; Hutmacher, D.W.; Higgins, M.J.; Luxenhofer, R.; Dalton, P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019, 68, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Hoe, Z.Y.; Chang, C.C.; Chen, J.J.; Yen, C.K.; Wang, S.Y.; Kao, Y.H.; Li, W.M.; Chen, W.F.; Pan, C.T. Enhancement of PVDF Sensing Characteristics by Retooling the Near-Field Direct-Write Electrospinning System. Sensors 2020, 20, 4873. [Google Scholar] [CrossRef]
- Fuh, Y.-K.; Chen, S.-Y.; Ye, J.-C. Massively parallel aligned microfibers-based harvester deposited via in situ, oriented poled near-field electrospinning. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- Duan, Y.; Huang, Y.; Yin, Z.; Bu, N.; Dong, W. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale 2014, 6, 3289–3295. [Google Scholar] [CrossRef]
- Kim, J.; Maeng, B.; Park, J. Characterization of 3D electrospinning on inkjet printed conductive pattern on paper. Micro Nano Syst. Lett. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef]
- Liu, Z.H.; Pan, C.T.; Lin, L.W.; Lai, H.W. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuators A Phys. 2013, 193, 13–24. [Google Scholar] [CrossRef]
- Weiss, B.; Storti, D.; Ganter, M. Low-cost closed-loop control of a 3D printer gantry. Rapid Prototyp. J. 2015, 21, 482–490. [Google Scholar] [CrossRef]
- Jin, Y.; Gao, Q.; Xie, C.; Li, G.; Du, J.; Fu, J.; He, Y. Fabrication of heterogeneous scaffolds using melt electrospinningwriting: Design and optimization. Mater. Des. 2020, 185. [Google Scholar] [CrossRef]
- Nezarati, R.M.; Eifert, M.B.; Cosgriff-Hernandez, E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods 2013, 19, 810–819. [Google Scholar] [CrossRef] [Green Version]
- Pelipenko, J.; Kristl, J.; Jankovic, B.; Baumgartner, S.; Kocbek, P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int. J. Pharm. 2013, 456. [Google Scholar] [CrossRef]
- Hochleitner, G.; Youssef, A.; Hrynevich, A.; Haigh, J.N.; Jungst, T.; Groll, J.; Dalton, P.D. Fibre pulsing during melt electrospinning writing. Bio. Nano Mater. 2016, 17. [Google Scholar] [CrossRef]
- D’Amato, A.R.; Ding, X.; Wang, Y. Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomater. Sci. Eng. 2021, 7, 400–407. [Google Scholar] [CrossRef]
- Paxton, N.C.; Lanaro, M.; Bo, A.; Crooks, N.; Ross, M.T.; Green, N.; Tetsworth, K.; Allenby, M.C.; Gu, Y.; Wong, C.S.; et al. Design tools for patient specific and highly controlled melt electrowritten scaffolds. J. Mech. Behav. Biomed. Mater 2020, 105, 103695. [Google Scholar] [CrossRef]
- Bisht, G.; Nesterenko, S.; Kulinsky, L.; Madou, M. A computer-controlled near-field electrospinning setup and its graphic user interface for precision patterning of functional nanofibers on 2D and 3D substrates. J. Lab. Autom. 2012, 17, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Wang, W.; Ding, Y.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 349, 92–98. [Google Scholar] [CrossRef]
- Huang, Y.; Duan, Y.; Ding, Y.; Bu, N.; Pan, Y.; Lu, N.; Yin, Z. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci. Rep. 2014, 5949. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Huang, Y.; Yin, Z. Competing buckling of micro/nanowires on compliant substrates. J. Phys. D Appl. Phys. 2015, 48. [Google Scholar] [CrossRef]
Polymer | Fiber Diameter (µm) | Stand-Alone Scaffolds | Solution/Melt | Relative Motion | Geometry | Reference |
---|---|---|---|---|---|---|
Alginate | 1.5–11.3 | N | Solution | X-Y Stage | Parallel Fibers | [7] |
PBLG | 2.5–44 | Y | Solution | X-Y, Cylindrical Mandrel | Parallel Fibers | [9,10] |
PCL | 0.8–150 | Y | Both | X-Y Stage, 3D Printer, Cylindrical Mandrel | Perfect Grids, Triangles, Spirals, Imperfect Grids, Words | [12,43,58,59,60,61,62,63,64,65,66,67,68,69,70] |
Chitosan | 0.3–1.2 | Y | Solution | X-Y Stage | Perfect Parallel Lines and Arcs, Grids | [15,16,50,51] |
Collagen | 1–2 | Y | Solution | X-Y Stage | Imperfect Parallel Fibers | [18] |
Poly(LLA-ε-CL-AC)) | 25 | Y | Melt | X-Y Stage | Imperfect Grids | [19] |
Poly(urea-siloxane) | 10.6–17.8 | Y | Melt | X-Y Stage | Perfect Grids | [20] |
Polyurethane | 3 | N | Solution | X-Y Stage | Parallel Lines, Grids | [71] |
Poly(methylsilsesquioxane) | 100 | N | Solution | X-Y Stage | Parallel Lines, Grids | [71] |
Poly(lactide-block-ethylene glycol-block-lactide) | 31 | Y | Melt | NA | Perfect and Imperfect Grids | [72] |
PDO | 3.2–25.3 | Y | Solution | 3D Printer | Perfect and Imperfect Grids | [23] |
PEO | 0.05–60 | N | Solution | X-Y Stage | Parallel Fibers, Perfect Grids, Words | [4,24,25,46,47,63,73,74,75,76,77,78,79,80,81,82] |
PEtOzi | 45 | Y | Melt | NA | Perfect Grids | [32] |
PEtOx | 8–138 | Y | Melt | X-Y Stage | Imperfect Grids | [34] |
Gelatin | 1.9–4.7 | N | Solution | 3D Printer | Perfect Grid | [36] |
PLLA | 0.7–11.3 | Y | Solution | X-Y Stage | Imperfect 45/90° Grids, Braided Fiber | [38,39] |
PMMA | 1.5–4.7 | N | Solution | 3D Printer | Perfect 90° Grid | [43] |
PS | 0.5–1.5 | N | Solution | X-Y Stage, Pneumatic 1D Rail | Helical and Straight Fibers | [45,82] |
PTFE | 100–400 | Y | Solution | X-Y Stage | Triangle, Diamond, Grid, and Hexagon Struts | [52,53] |
PVDF | 0.5–55 | Y | Both | X-Y Stage, Cylindrical Mandrel | Parallel Fibers, Perfect Grids, Words | [55,83,84,85,86,87,88,89,90,91] |
PVP | 0.9–3 | N | Solution | X-Y Stage | Imperfect Helical & Parallel Lines | [57,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, W.E.; Bowlin, G.L. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations. Polymers 2021, 13, 1097. https://doi.org/10.3390/polym13071097
King WE, Bowlin GL. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations. Polymers. 2021; 13(7):1097. https://doi.org/10.3390/polym13071097
Chicago/Turabian StyleKing, William E., and Gary L. Bowlin. 2021. "Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress and Limitations" Polymers 13, no. 7: 1097. https://doi.org/10.3390/polym13071097