Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

22 pages, 5956 KiB  
Article
Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater
by Faris H. Al-Ani, Qusay F. Alsalhy, Rawia Subhi Raheem, Khalid T. Rashid and Alberto Figoli
Membranes 2020, 10(4), 77; https://doi.org/10.3390/membranes10040077 - 21 Apr 2020
Cited by 52 | Viewed by 3594
Abstract
This study investigated the impact of implanting TiO2-NPs within a membrane to minimize the influence of long-term operation on the membrane characteristics. Four poly vinyle chloride-titanium oxide (PVC-TiO2-NPs) membranes were prepared to create an ultrafiltration membrane (UF) that would [...] Read more.
This study investigated the impact of implanting TiO2-NPs within a membrane to minimize the influence of long-term operation on the membrane characteristics. Four poly vinyle chloride-titanium oxide (PVC-TiO2-NPs) membranes were prepared to create an ultrafiltration membrane (UF) that would effectively treat actual refinery wastewater. The hypothesis of this work was that TiO2-NPs would function as a hydrophilic modification of the PVC membrane and excellent self-cleaning material, which in turn would greatly extend the membrane’s lifetime. The membranes were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscope (AFM), and scanning electron microscope (SEM). The removal efficiency of turbidity, total suspended solid (TSS), oil and grease, heavy metals and chemical oxygen demand (COD) were investigated. Contact angle (CA) reduced by 12.7% and 27.5% on the top and bottom surfaces, respectively. The PVC membrane with TiO2-NPs had larger mean pore size on its surface and more holes with larger size inside the membrane structure. The addition of TiO2-NPs could remarkably enhance the antifouling property of the PVC membrane. The pure water permeability (PWP) of the membrane was enhanced by 95.3% with an increase of TiO2 to 1.5 gm/100gm. The PWP after backwashing was reduced from 22.3% for PVC to 10.1% with 1.5 gm TiO2-NPs. The long-term performance was improved from five days for PVC to 23 d with an increase in TiO2-NPs to 1.5 gm. The improvements of PVC-TiO2-NPs long-term were related to the enhancement of the hydrophilic character of the membrane and increase tensile strength due to the reinforcement effect of TiO2-NPs. These results clearly identify the impact of the TiO2-NPs content on the long-term PVC/TiO2-NPs performance and confirm our hypothesis that it is possible to use TiO2-NPs to effectively enhance the lifetime of membranes during their long-term operation. Full article
Show Figures

Graphical abstract

13 pages, 2118 KiB  
Article
Enhanced O2/N2 Separation of Mixed-Matrix Membrane Filled with Pluronic-Compatibilized Cobalt Phthalocyanine Particles
by S. A. S. C. Samarasinghe, Chong Yang Chuah, H. Enis Karahan, G. S. M. D. P. Sethunga and Tae-Hyun Bae
Membranes 2020, 10(4), 75; https://doi.org/10.3390/membranes10040075 - 18 Apr 2020
Cited by 23 | Viewed by 5172
Abstract
Membrane-based air separation (O2/N2) is of great importance owing to its energy efficiency as compared to conventional processes. Currently, dense polymeric membranes serve as the main pillar of industrial processes used for the generation of O2- and [...] Read more.
Membrane-based air separation (O2/N2) is of great importance owing to its energy efficiency as compared to conventional processes. Currently, dense polymeric membranes serve as the main pillar of industrial processes used for the generation of O2- and N2-enriched gas. However, conventional polymeric membranes often fail to meet the selectivity needs owing to the similarity in the effective diameters of O2 and N2 gases. Meanwhile, mixed-matrix membranes (MMMs) are convenient to produce high-performance membranes while keeping the advantages of polymeric materials. Here, we propose a novel MMM for O2/N2 separation, which is composed of Matrimid® 5218 (Matrimid) as the matrix, cobalt(II) phthalocyanine microparticles (CoPCMPs) as the filler, and Pluronic® F-127 (Pluronic) as the compatibilizer. By the incorporation of CoPCMPs to Matrimid, without Pluronic, interfacial defects were formed. Pluronic-treated CoPCMPs, on the other hand, enhanced O2 permeability and O2/N2 selectivity by 64% and 34%, respectively. We explain the enhancement achieved with the increase of both O2 diffusivity and O2/N2 solubility selectivity. Full article
(This article belongs to the Special Issue Membranes for Gas Separation)
Show Figures

Graphical abstract

17 pages, 4494 KiB  
Article
Leveraging Nanocrystal HKUST-1 in Mixed-Matrix Membranes for Ethylene/Ethane Separation
by Chong Yang Chuah, S.A.S.C. Samarasinghe, Wen Li, Kunli Goh and Tae-Hyun Bae
Membranes 2020, 10(4), 74; https://doi.org/10.3390/membranes10040074 - 16 Apr 2020
Cited by 36 | Viewed by 5714
Abstract
The energy-intensive ethylene/ethane separation process is a key challenge to the petrochemical industry. HKUST-1, a metal–organic framework (MOF) which possesses high accessible surface area and porosity, is utilized in mixed-matrix membrane fabrication to investigate its potential for improving the performance for C2 [...] Read more.
The energy-intensive ethylene/ethane separation process is a key challenge to the petrochemical industry. HKUST-1, a metal–organic framework (MOF) which possesses high accessible surface area and porosity, is utilized in mixed-matrix membrane fabrication to investigate its potential for improving the performance for C2H4/C2H6 separation. Prior to membrane fabrication and gas permeation analysis, nanocrystal HKUST-1 was first synthesized. This step is critical in order to ensure that defect-free mixed-matrix membranes can be formed. Then, polyimide-based polymers, ODPA-TMPDA and 6FDA-TMPDA, were chosen as the matrices. Our findings revealed that 20 wt% loading of HKUST-1 was capable of improving C2H4 permeability (155% for ODPA-TMPDA and 69% for 6FDA-TMPDA) without excessively sacrificing the C2H4/C2H6 selectivity. The C2H4 and C2H6 diffusivity, as well as solubility, were also improved substantially as compared to the pure polymeric membranes. Overall, our results edge near the upper bound, confirming the effectiveness of leveraging nanocrystal HKUST-1 filler for performance enhancements in mixed-matrix membranes for C2H4/C2H6 separation. Full article
(This article belongs to the Special Issue Membranes for Gas Separation)
Show Figures

Graphical abstract

25 pages, 7729 KiB  
Article
Structural, Morphological, Electrical and Electrochemical Properties of PVA: CS-Based Proton-Conducting Polymer Blend Electrolytes
by Ayub Shahab Marf, Ranjdar M. Abdullah and Shujahadeen B. Aziz
Membranes 2020, 10(4), 71; https://doi.org/10.3390/membranes10040071 - 15 Apr 2020
Cited by 67 | Viewed by 3748
Abstract
Polymer blend electrolytes based on poly(vinyl alcohol):chitosan (PVA:CS) incorporated with various quantities of ammonium iodide were prepared and characterized using a range of electrochemical, structural and microscopic techniques. In the structural analysis, X-ray diffraction (XRD) was used to confirm the buildup of the [...] Read more.
Polymer blend electrolytes based on poly(vinyl alcohol):chitosan (PVA:CS) incorporated with various quantities of ammonium iodide were prepared and characterized using a range of electrochemical, structural and microscopic techniques. In the structural analysis, X-ray diffraction (XRD) was used to confirm the buildup of the amorphous phase. To reveal the effect of dopant addition on structural changes, field-emission scanning electron microscope (FESEM) was used. The protrusions of salt aggregates with large quantity were seen at the surface of the formed films at 50 wt.% of the added salt. The nature of the relationship between conductivity and dielectric properties was shown using electrochemical impedance spectroscopy (EIS). The EIS spectra were fitted with electrical equivalent circuits (EECs). It was observed that both dielectric constant and dielectric loss were high in the low-frequency region. For all samples, loss tangent and electric modulus plots were analyzed to become familiar with the relaxation behavior. Linear sweep voltammetry (LSV) and transference number measurement (TNM) were recorded. A relatively high cut-off potential for the polymer electrolyte was obtained at 1.33 V and both values of the transference number for ion (tion) and electronic (telec) showed the ion dominant as charge carrier species. The TNM and LSV measurements indicate the suitability of the samples for energy storage application if their conductivity can be more enhanced. Full article
(This article belongs to the Special Issue Ionic Conductive Membranes for Fuel Cells)
Show Figures

Graphical abstract

21 pages, 4808 KiB  
Article
Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations
by Kayo Santana Barros, Tatiana Scarazzato, Valentín Pérez-Herranz and Denise Crocce Romano Espinosa
Membranes 2020, 10(4), 69; https://doi.org/10.3390/membranes10040069 - 11 Apr 2020
Cited by 23 | Viewed by 4018
Abstract
Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as [...] Read more.
Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion-exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection. Full article
Show Figures

Graphical abstract

15 pages, 2009 KiB  
Article
Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes
by Kathryn E. O’Harra, Irshad Kammakakam, Danielle M. Noll, Erika M. Turflinger, Grayson P. Dennis, Enrique M. Jackson and Jason E. Bara
Membranes 2020, 10(3), 51; https://doi.org/10.3390/membranes10030051 - 22 Mar 2020
Cited by 16 | Viewed by 4344
Abstract
Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust [...] Read more.
Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages. Full article
(This article belongs to the Special Issue Ionic Liquid-based Materials for Membrane Processes)
Show Figures

Graphical abstract

19 pages, 7016 KiB  
Article
Potentiodynamic and Galvanodynamic Regimes of Mass Transfer in Flow-Through Electrodialysis Membrane Systems: Numerical Simulation of Electroconvection and Current-Voltage Curve
by Aminat Uzdenova and Makhamet Urtenov
Membranes 2020, 10(3), 49; https://doi.org/10.3390/membranes10030049 - 20 Mar 2020
Cited by 12 | Viewed by 3173
Abstract
Electromembrane devices are usually operated in two electrical regimes: potentiodynamic (PD), when a potential drop in the system is set, and galvanodynamic (GD), when the current density is set. This article theoretically investigates the current-voltage curves (CVCs) of flow-through electrodialysis membrane systems calculated [...] Read more.
Electromembrane devices are usually operated in two electrical regimes: potentiodynamic (PD), when a potential drop in the system is set, and galvanodynamic (GD), when the current density is set. This article theoretically investigates the current-voltage curves (CVCs) of flow-through electrodialysis membrane systems calculated in the PD and GD regimes and compares the parameters of the electroconvective vortex layer for these regimes. The study is based on numerical modelling using a basic model of overlimiting transfer enhanced by electroconvection with a modification of the boundary conditions. The Dankwerts’ boundary condition is used for the ion concentration at the inlet boundary of the membrane channel. The Dankwerts’ condition allows one to increase the accuracy of the numerical implementation of the boundary condition at the channel inlet. On the CVCs calculated for PD and DG regimes, four main current modes can be distinguished: underlimiting, limiting, overlimiting, and chaotic overlimiting. The effect of the electric field regime is manifested in overlimiting current modes, when a significant electroconvection vortex layer develops in the channel. Full article
(This article belongs to the Special Issue Electromembrane Processes: Experiments and Modelling)
Show Figures

Graphical abstract

17 pages, 3156 KiB  
Article
Removal of Dye from a Leather Tanning Factory by Flat-Sheet Blend Ultrafiltration (UF) Membrane
by Maryam Y. Ghadhban, Hasan Shaker Majdi, Khalid T. Rashid, Qusay F. Alsalhy, D. Shanthana Lakshmi, Issam K. Salih and Alberto Figoli
Membranes 2020, 10(3), 47; https://doi.org/10.3390/membranes10030047 - 18 Mar 2020
Cited by 38 | Viewed by 4936
Abstract
In this work, a flat-sheet blend membrane was fabricated by a traditional phase inversion method, using the polymer blends poly phenyl sulfone (PPSU) and polyether sulfone (PES) for the ultrafiltration (UF) application. It was hypothesized that adding PES to the PPSU polymer blend [...] Read more.
In this work, a flat-sheet blend membrane was fabricated by a traditional phase inversion method, using the polymer blends poly phenyl sulfone (PPSU) and polyether sulfone (PES) for the ultrafiltration (UF) application. It was hypothesized that adding PES to the PPSU polymer blend would improve the properties of the PPSU membrane. The effect of the PES concentration on the blend membrane properties was investigated extensively. The characteristics of PPSU-PES blend membranes were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle measure, and contaminant (dye) elimination efficiency. This study showed that PES clearly affected the structural formation of the blended membranes. A considerable increase in the average roughness (about 93%) was observed with the addition of 4% PES, with a higher mean pore size accompanied by a rise in the pores’ density on the surface of the membrane. The addition of up to 4% PES had a significant influence on the hydrophilic character of the PPSU-PES membrane, by lowering the value of the contact angle (CA) (i.e., to 56.9°). The performance of the PPSU-PES composite membranes’ UF performance was systematically investigated, and the membrane pure water permeability (PWP) was enhanced by 25% with the addition of 4% PES. The best separation removal factor achieved in the current investigation for dye (Drupel Black NT) was 96.62% for a PPSU-PES (16:4 wt./wt.%) membrane with a 50% feed dye concentration. Full article
Show Figures

Graphical abstract

17 pages, 3999 KiB  
Article
Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using DMSO as a Low Toxicity Solvent
by Francesca Russo, Claudia Ursino, Elisa Avruscio, Giovanni Desiderio, Andrea Perrone, Sergio Santoro, Francesco Galiano and Alberto Figoli
Membranes 2020, 10(3), 36; https://doi.org/10.3390/membranes10030036 - 26 Feb 2020
Cited by 55 | Viewed by 7680
Abstract
Electrospinning is an emerging technique for the preparation of electrospun fiber membranes (ENMs), and a very promising one on the basis of the high-yield and the scalability of the process according to a process intensification strategy. Most of the research reported in the [...] Read more.
Electrospinning is an emerging technique for the preparation of electrospun fiber membranes (ENMs), and a very promising one on the basis of the high-yield and the scalability of the process according to a process intensification strategy. Most of the research reported in the literature has been focused on the preparation of poly (vinylidene fluoride) (PVDF) ENMs by using N,N- dimethylformamide (DMF) as a solvent, which is considered a mutagenic and cancerogenic substance. Hence, the possibility of using alternative solvents represents an interesting approach to investigate. In this work, we explored the use of dimethyl sulfoxide (DMSO) as a low toxicity solvent in a mixture with acetone for the preparation of PVDF-ENMs. As a first step, a solubility study of the polymer, PVDF 6012 Solef®, in several DMSO/acetone mixtures was carried out, and then, different operating conditions (e.g., applied voltage and needle to collector plate distance) for the successful electrospinning of the ENMs were evaluated. The study provided evidence of the crucial role of solution conductivity in the electrospinning phase and the thermal post-treatment. The prepared ENMs were characterized by evaluating the morphology (by SEM), pore-size, porosity, surface properties, and performance in terms of water permeability. The obtained results showed the possibility of producing ENMs in a more sustainable way, with a pore size in the range of 0.2–0.8 µm, high porosity (above 80%), and water flux in the range of 11.000–38.000 L/m2·h·bar. Full article
(This article belongs to the Special Issue Membrane Processes and Materials for a Sustainable Bioeconomy)
Show Figures

Figure 1

14 pages, 2796 KiB  
Article
Chemically Crosslinked Sulfonated Polyphenylsulfone (CSPPSU) Membranes for PEM Fuel Cells
by Je-Deok Kim, Akihiro Ohira and Hidenobu Nakao
Membranes 2020, 10(2), 31; https://doi.org/10.3390/membranes10020031 - 18 Feb 2020
Cited by 20 | Viewed by 4295
Abstract
Sulfonated polyphenylsulfone (SPPSU) with a high ion exchange capacity (IEC) was synthesized using commercially available polyphenylsulfone (PPSU), and a large-area (16 × 18 cm2) crosslinked sulfonated polyphenylsulfone (CSPPSU) membrane was prepared. In addition, we developed an activation process in which the [...] Read more.
Sulfonated polyphenylsulfone (SPPSU) with a high ion exchange capacity (IEC) was synthesized using commercially available polyphenylsulfone (PPSU), and a large-area (16 × 18 cm2) crosslinked sulfonated polyphenylsulfone (CSPPSU) membrane was prepared. In addition, we developed an activation process in which the membrane was treated with alkaline and acidic solutions to remove sulfur dioxide (SO2), which forms as a byproduct during heat treatment. CSPPSU membranes obtained using this activation method had high thermal, mechanical and chemical stabilities. In I-ViR free studies for fuel cell evaluation, high performances similar to those using Nafion were obtained. In addition, from the hydrogen (H2) gas crossover characteristics, the durability is much better than that of a Nafion212 membrane. In the studies evaluating the long-term stabilities by using a constant current method, a stability of 4000 h was obtained for the first time. These results indicate that the CSPPSU membrane obtained by using our activation method is promising as a polymer electrolyte membrane. Full article
(This article belongs to the Special Issue Ionic Conductive Membranes for Fuel Cells)
Show Figures

Figure 1

23 pages, 4052 KiB  
Article
Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane
by Victor Nikonenko, Mahamet Urtenov, Semyon Mareev and Gérald Pourcelly
Membranes 2020, 10(2), 22; https://doi.org/10.3390/membranes10020022 - 31 Jan 2020
Cited by 30 | Viewed by 3875
Abstract
Water splitting (WS) and electroconvection (EC) are the main phenomena affecting ion transfer through ion-exchange membranes in intensive current regimes of electrodialysis. While EC enhances ion transport, WS, in most cases, is an undesirable effect reducing current efficiency and causing precipitation of sparingly [...] Read more.
Water splitting (WS) and electroconvection (EC) are the main phenomena affecting ion transfer through ion-exchange membranes in intensive current regimes of electrodialysis. While EC enhances ion transport, WS, in most cases, is an undesirable effect reducing current efficiency and causing precipitation of sparingly soluble compounds. A mathematical description of the transfer of salt ions and H+ (OH) ions generated in WS is presented. The model is based on the Nernst–Planck and Poisson equations; it takes into account deviation from local electroneutrality in the depleted diffusion boundary layer (DBL). The current transported by water ions is given as a parameter. Numerical and semi-analytical solutions are developed. The analytical solution is found by dividing the depleted DBL into three zones: the electroneutral region, the extended space charge region (SCR), and the quasi-equilibrium zone near the membrane surface. There is an excellent agreement between two solutions when calculating the concentration of all four ions, electric field, and potential drop across the depleted DBL. The treatment of experimental partial current–voltage curves shows that under the same current density, the surface space charge density at the anion-exchange membrane is lower than that at the cation-exchange membrane. This explains the negative effect of WS, which partially suppresses EC and reduces salt ion transfer. The restrictions of the analytical solution, namely, the local chemical equilibrium assumption, are discussed. Full article
(This article belongs to the Special Issue Membrane-Assisted (Bio)Chemical Process and Technology)
Show Figures

Graphical abstract

28 pages, 4063 KiB  
Article
Characterization of MK-40 Membrane Modified by Layers of Cation Exchange and Anion Exchange Polyelectrolytes
by Valentina Titorova, Konstantin Sabbatovskiy, Veronika Sarapulova, Evgeniy Kirichenko, Vladimir Sobolev and Ksenia Kirichenko
Membranes 2020, 10(2), 20; https://doi.org/10.3390/membranes10020020 - 27 Jan 2020
Cited by 18 | Viewed by 3980
Abstract
Coating of ion exchange membranes used in electrodialysis with layers of polyelectrolytes is a proven approach that allows for the increasing of the limiting current, the suppressing of sedimentation, the controlling of the intensity of generation of H+ and OH ions, [...] Read more.
Coating of ion exchange membranes used in electrodialysis with layers of polyelectrolytes is a proven approach that allows for the increasing of the limiting current, the suppressing of sedimentation, the controlling of the intensity of generation of H+ and OH ions, and also the improving of monovalent selectivity. However, in the case when two materials with the opposite sign of the charge of fixed groups come in contact, a bipolar boundary is created that can cause undesirable changes in the membrane properties. In this work, we used a MK-40 heterogeneous membrane on the surface of which a layer of polyethyleneimine was applied by adsorption from a solution as a model of heterogeneous membranes modified with oppositely charged polyelectrolyte. It was found that, on one hand, the properties of modified membrane were beneficial for electrodialysis, its limiting current did not decrease and the membrane even acquired a barrier to non-selective electrolyte transport. At the same time, the generation of H+ and OH ions of low intensity arose, even in underlimiting current modes. It was also shown that despite the presence of a layer of polyethyleneimine, the surface charge of the modified membrane remained negative, which we associate with low protonation of polyethyleneimine at neutral pH. Full article
(This article belongs to the Section Membrane Analysis and Characterization)
Show Figures

Graphical abstract

13 pages, 3983 KiB  
Article
Separation and Recycling of Concentrated Heavy Metal Wastewater by Tube Membrane Distillation Integrated with Crystallization
by Xiang-Yang Lou, Zheng Xu, An-Ping Bai, Montserrat Resina-Gallego and Zhong-Guang Ji
Membranes 2020, 10(1), 19; https://doi.org/10.3390/membranes10010019 - 20 Jan 2020
Cited by 18 | Viewed by 4126
Abstract
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in [...] Read more.
Tube membrane distillation (MD) integrated with a crystallization method is used in this study for the concurrent productions of pure water and salt crystals from concentrated single and mixed system solutions. The effects of concentrated Zn2+ and Ni2+ on performance in terms of membrane flux, permeate conductivity, crystal recovery rates, and crystal grades are investigated. Preferred crystallization and co-crystallization determinations were performed for mixed solutions. The results revealed that membrane fluxes remained at 2.61 kg·m−2·h−1 and showed a sharp decline until the saturation increased to 1.38. Water yield conductivity was below 10 μs·cm−1. High concentrated zinc and nickel did not have a particular effect on the rejection of the membrane process. For the mixed solutions, membrane flux showed a sharp decrease due to the high saturation, while the conductivity of permeate remained below 10 μs·cm−1 during the whole process. Co-crystallization has been proven to be a better method due to the existence of the SO42− common-ion effect. Membrane fouling studies have suggested that the membrane has excellent resistance to fouling from highly concentrated solutions. The MD integrated with crystallization proves to be a promising technology for treating highly concentrated heavy metal solutions. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Graphical abstract

19 pages, 7234 KiB  
Article
Triple-Layer Nanocomposite Membrane Prepared by Electrospinning Based on Modified PES with Carbon Nanotubes for Membrane Distillation Applications
by Mohamed R. Elmarghany, Ahmed H. El-Shazly, Saeid Rajabzadeh, Mohamed S. Salem, Mahmoud A. Shouman, Mohamed Nabil Sabry, Hideto Matsuyama and Norhan Nady
Membranes 2020, 10(1), 15; https://doi.org/10.3390/membranes10010015 - 16 Jan 2020
Cited by 49 | Viewed by 4968
Abstract
In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with [...] Read more.
In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Graphical abstract

20 pages, 9228 KiB  
Article
Systematic Study of the Impact of Pulsed Electric Field Parameters (Pulse/Pause Duration and Frequency) on ED Performances during Acid Whey Treatment
by Guillaume Dufton, Sergey Mikhaylin, Sami Gaaloul and Laurent Bazinet
Membranes 2020, 10(1), 14; https://doi.org/10.3390/membranes10010014 - 11 Jan 2020
Cited by 20 | Viewed by 3242
Abstract
Processing acid whey is still a challenge for the dairy industry due to its high lactic acid and mineral contents. Their removal processes represent a high investment and running cost in addition to significant production of polluting effluents. A previous study showed that [...] Read more.
Processing acid whey is still a challenge for the dairy industry due to its high lactic acid and mineral contents. Their removal processes represent a high investment and running cost in addition to significant production of polluting effluents. A previous study showed that the use of electrodialysis with the application of pulsed electric fields (PEFs) was sufficiently efficient to produce dryable acid whey with reduced scaling issues during the process. In the present work, eight PEF conditions using different pulse/pause durations and frequencies were tested for 1) process optimization and 2) understanding of the underlying mechanisms involved in PEF process improvements. Best results were obtained for PEF conditions (5 s/5 s) and (15 s/15 s) with almost complete scaling mitigation and minimal energy consumption (5.3 ± 0.4 Wh/g of lactic acid vs. 9.33 ± 1.38 Wh/g for continuous current). Longer pause times also led to better divalent ion demineralization at the expense of sodium elimination induced by stronger affinity with the membrane and longer retention times. For the first time, PEF parameters of relatively low frequencies (<1) were studied in sub-limiting current conditions on a complex solution such as acid whey. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

17 pages, 2878 KiB  
Article
A Novel Cellulose-Based Polymer for Efficient Removal of Methylene Blue
by Diana Gago, Ricardo Chagas, Luísa M. Ferreira, Svetlozar Velizarov and Isabel Coelhoso
Membranes 2020, 10(1), 13; https://doi.org/10.3390/membranes10010013 - 10 Jan 2020
Cited by 32 | Viewed by 5229
Abstract
A novel cellulose-based cross-linked polymer, dicarboxymethyl cellulose (DCMC), has been synthesized and used for methylene blue (MB) removal. Inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier-transform infrared spectroscopy (FTIR), nitrogen porosimetry, and optical microscopy were employed to characterize the structure of the cellulose-based [...] Read more.
A novel cellulose-based cross-linked polymer, dicarboxymethyl cellulose (DCMC), has been synthesized and used for methylene blue (MB) removal. Inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier-transform infrared spectroscopy (FTIR), nitrogen porosimetry, and optical microscopy were employed to characterize the structure of the cellulose-based adsorbent. The number of carboxylate groups per gram of polymer (CG) was calculated with sodium content determined by ICP-AES. Systematic equilibrium and kinetic adsorption studies were performed to assess the polymer suitability for dye removal. The effect of pH on its adsorption capacity was also studied and the equilibrium adsorption data was analyzed using Langmuir, Freundlich, and Sips isotherms. At pH = 3, the adsorption isotherms followed the Langmuir model with a maximum adsorption capacity of 887.6 mg/g. At pH = 6.4, the adsorption isotherms produced S-shape curves and were best fitted with the Sips model. The maximum MB uptake increased to 1354.6 mg/g. Pseudo first-order and second-order models were used to fit the kinetic data. A pseudo second-order kinetic model provided the best correlation for the adsorption of MB onto DCMC. Adsorption coupled with membrane filtration achieved 95% methylene blue removal and DCMC can be successfully regenerated and reused in consecutive experiments. Full article
(This article belongs to the Special Issue Membrane Processes and Materials for a Sustainable Bioeconomy)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies
by Giovanni Franchi, Mauro Capocelli, Marcello De Falco, Vincenzo Piemonte and Diego Barba
Membranes 2020, 10(1), 10; https://doi.org/10.3390/membranes10010010 - 3 Jan 2020
Cited by 75 | Viewed by 6934
Abstract
‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as [...] Read more.
‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system. Full article
Show Figures

Figure 1

27 pages, 17685 KiB  
Article
Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties
by Nagla Kamal, Viktor Kochkodan, Atef Zekri and Said Ahzi
Membranes 2020, 10(1), 2; https://doi.org/10.3390/membranes10010002 - 25 Dec 2019
Cited by 34 | Viewed by 6103
Abstract
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron [...] Read more.
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis. It was shown that the incorporation of HNTs enhanced hydrophilicity and mechanical properties of the prepared PSF membranes. Compared to the pristine PSF membrane, results show that the total porosity and pore size of PSF/HNTs composite membranes increased when HNTs loadings were more than 0.5 wt % and 1.0 wt %, respectively. These findings correlate well with changes in water flux of the prepared membranes. It was observed that HNTs were homogenously dispersed within the PSF membrane matrix at HNTs content of 0.1 to 0.5 wt % and the PSF/HNTs membranes prepared by incorporating 0.2 wt % HNTs loading possess the optimal mechanical properties in terms of elastic modulus and yield stress. In the case of the PSF/PVP matrix, the optimal mechanical properties were obtained with 0.3 wt % of HNTs because PVP enhances the HNTs distribution. Results of bovine serum albumin (BSA) filtration tests indicated that PSF/0.2 wt % HNTs membrane exhibited high BSA rejection and notable anti-fouling properties. Full article
(This article belongs to the Section Membrane Analysis and Characterization)
Show Figures

Graphical abstract

10 pages, 1451 KiB  
Article
Effects of a Novel Adsorbent on Membrane Fouling by Natural Organic Matter in Drinking Water Treatment
by Lelum D. Manamperuma, Eilen A. Vik, Mark Benjamin, Zhenxiao Cai and Jostein Skjefstad
Membranes 2019, 9(11), 151; https://doi.org/10.3390/membranes9110151 - 12 Nov 2019
Cited by 7 | Viewed by 2983
Abstract
Irreversible fouling of water filtration membranes reduces filter longevity and results in higher costs associated with membrane maintenance and premature replacement. The search for effective pretreatment methods to remove foulants that tend to irreversibly foul membranes is ongoing. In this study, a novel [...] Read more.
Irreversible fouling of water filtration membranes reduces filter longevity and results in higher costs associated with membrane maintenance and premature replacement. The search for effective pretreatment methods to remove foulants that tend to irreversibly foul membranes is ongoing. In this study, a novel adsorbent (Heated Aluminum Oxide Particles (HAOPs)) was deployed in a fully automated pilot system to remove natural organic matter (NOM) from the surface water source used at the UniVann water treatment plant (WTP) in Ullensaker County, Norway. The pilot plant treatment process consists of passing the water through a thin layer of HAOPs that has been deposited on a mesh support. The HAOPs layer acts as an active packed bed which removes NOM from the water. Fluxes around 120 L/m2/h (LMH) at transmembrane pressure (TMP) below 10.7 psi (0.7 bar) were achieved over production cycles excessing 12 h. Treatment achieved always >85% colour removal and effluent colour <5 mg Pt/L (the target of treatment), and always <0.01 NTU turbidity and non-detectable suspended solids in the permeate. The HAOPs mixture after saturated with NOM is easy to remove by disruption of the HAOPs by rinsing the mesh surface, and the sludge is easily dewatered to higher of dry solids content. Full article
(This article belongs to the Special Issue EWM 2019: Membranes for a Sustainable Future)
Show Figures

Figure 1

13 pages, 2641 KiB  
Article
Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes
by Sophia Schmitt, Sergey Shishatskiy, Peter Krolla, Qi An, Salma Begum, Alexander Welle, Tawheed Hashem, Sylvain Grosjean, Volker Abetz, Stefan Bräse, Christof Wöll and Manuel Tsotsalas
Membranes 2019, 9(10), 124; https://doi.org/10.3390/membranes9100124 - 20 Sep 2019
Cited by 11 | Viewed by 5686
Abstract
This paper discusses the potential of polymer networks, templated by crystalline metal–organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable [...] Read more.
This paper discusses the potential of polymer networks, templated by crystalline metal–organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable in membrane technology. Here, we describe a novel polymeric membrane, which is synthesized via the conversion of a surface anchored metal–organic framework (SURMOF) into a surface anchored gel (SURGEL). The SURGEL membranes combine the high variability in the building blocks and the possibility to control the network topology and membrane thickness of the SURMOF synthesis with high mechanical and chemical stability of polymers. Next to the material design, the transfer of membranes to suitable supports is also usually a challenging task, due to the fragile nature of the ultra-thin films. To overcome this issue, we utilized a porous support on top of the membrane, which is mechanically stable enough to allow for the easy membrane transfer from the synthesis substrate to the final membrane support. To demonstrate the potential for gas separation of the synthesized SURGEL membranes, as well as the suitability of the transfer method, we determined the permeance for eight gases with different kinetic diameters. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

14 pages, 3024 KiB  
Article
A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer as Novel Polymer Membranes for CO2 Separation
by Iqubal Hossain, Abu Zafar Al Munsur and Tae-Hyun Kim
Membranes 2019, 9(9), 113; https://doi.org/10.3390/membranes9090113 - 31 Aug 2019
Cited by 22 | Viewed by 5827
Abstract
Random copolymers made of both (PIM-polyimide) and (6FDA-durene-PI) were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and high thermomechanical properties of PI (polyimide), the membranes [...] Read more.
Random copolymers made of both (PIM-polyimide) and (6FDA-durene-PI) were prepared for the first time by a facile one-step polycondensation reaction. By combining the highly porous and contorted structure of PIM (polymers with intrinsic microporosity) and high thermomechanical properties of PI (polyimide), the membranes obtained from these random copolymers [(PIM-PI)-(6FDA-durene-PI)] showed high CO2 permeability (>1047 Barrer) with moderate CO2/N2 (> 16.5) and CO2/CH4 (> 18) selectivity, together with excellent thermal and mechanical properties. The membranes prepared from three different compositions of two comonomers (1:4, 1:6 and 1:10 of x:y), all showed similar morphological and physical properties, and gas separating performance, indicating ease of synthesis and practicability for production in large scale. The gas separation performance of these membranes at various pressure ranges (100–1500 torr) was also investigated. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Graphical abstract

17 pages, 2941 KiB  
Article
Synthesis and Performance of 6FDA-Based Polyimide-Ionenes and Composites with Ionic Liquids as Gas Separation Membranes
by Kathryn E. O’Harra, Irshad Kammakakam, Emily M. Devriese, Danielle M. Noll, Jason E. Bara and Enrique M. Jackson
Membranes 2019, 9(7), 79; https://doi.org/10.3390/membranes9070079 - 3 Jul 2019
Cited by 34 | Viewed by 6154
Abstract
Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed [...] Read more.
Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs. Full article
Show Figures

Graphical abstract

13 pages, 1356 KiB  
Article
Hybrid Forward Osmosis–Nanofiltration for Wastewater Reuse: System Design
by Mattia Giagnorio, Francesco Ricceri, Marco Tagliabue, Luciano Zaninetta and Alberto Tiraferri
Membranes 2019, 9(5), 61; https://doi.org/10.3390/membranes9050061 - 6 May 2019
Cited by 33 | Viewed by 5530
Abstract
The design of a hybrid forward osmosis–nanofiltration (FO–NF) system for the extraction of high-quality water from wastewater is presented here. Simulations were performed based on experimental results obtained in a previous study using real wastewater as the feed solution. A sensitivity analysis, conducted [...] Read more.
The design of a hybrid forward osmosis–nanofiltration (FO–NF) system for the extraction of high-quality water from wastewater is presented here. Simulations were performed based on experimental results obtained in a previous study using real wastewater as the feed solution. A sensitivity analysis, conducted to evaluate the influence of different process parameters, showed that an optimum configuration can be designed with (i) an influent draw solution osmotic pressure equal to 15 bar and (ii) a ratio of influent draw solution to feed solution flow rate equal to 1.5:1. With this configuration, the simulations suggested that the overall FO–NF system can achieve up to 85% water recovery using Na2SO4 or MgCl2 as the draw solute. The modular configuration and the size of the NF stage, accommodating approximately 7000 m2 of active membrane area, was a function of the properties of the membranes selected to separate the draw solutes and water, while detailed simulations indicated that the size of the FO unit might be reduced by adopting a counter-current configuration. Experimental tests with samples of the relevant wastewater showed that Cl- and Mg2+-based draw solutes would be associated with larger membrane fouling, possibly due to their interaction with the other substances present in the feed solution. However, the results suggest that fouling would not significantly decrease the performance of the designed system. This study contributes to the further evaluation and potential implementation of FO in water reuse systems. Full article
(This article belongs to the Special Issue Forward Osmosis: Modelling and Applications)
Show Figures

Graphical abstract

14 pages, 2389 KiB  
Article
Concentrating of Sugar Syrup in Bioethanol Production Using Sweeping Gas Membrane Distillation
by Mohammad Mahdi A. Shirazi and Ali Kargari
Membranes 2019, 9(5), 59; https://doi.org/10.3390/membranes9050059 - 1 May 2019
Cited by 12 | Viewed by 4094
Abstract
Membrane distillation (MD) is a relatively new and underdeveloped separation process which can be classified as a green technology. However, in order to investigate its dark points, sensitivity analysis and optimization studies are critical. In this work, a number of MD experiments were [...] Read more.
Membrane distillation (MD) is a relatively new and underdeveloped separation process which can be classified as a green technology. However, in order to investigate its dark points, sensitivity analysis and optimization studies are critical. In this work, a number of MD experiments were performed for concentrating glucose syrup using a sweeping gas membrane distillation (SGMD) process as a critical step in bioethanol production. The experimental design method was the Taguchi orthogonal array (an L9 orthogonal one) methodology. The experimental results showed the effects of various operating variables, including temperature (45, 55, and 65 °C), flow rate (200, 400, and 600 ml/min) and glucose concentration (10, 30, and 50 g/l) of the feed stream, as well as sweeping gas flow rate (4, 10, and 16 standard cubic feet per hour (SCFH)) on the permeate flux. The main effects of the operating variables were reported. An ANOVA analysis showed that the most and the least influenced variables were feed temperature and feed flow rate, each one with 62.1% and 6.1% contributions, respectively. The glucose rejection was measured at 99% for all experiments. Results indicated that the SGMD process could be considered as a versatile and clean process in the sugar concentration step of the bioethanol production. Full article
(This article belongs to the Special Issue Membrane Distillation Process)
Show Figures

Figure 1

11 pages, 1612 KiB  
Article
Performance Evaluation of a Thermophilic Anaerobic Membrane Bioreactor for Palm Oil Wastewater Treatment
by Thet Lei Yee, Thusitha Rathnayake and Chettiyappan Visvanathan
Membranes 2019, 9(4), 55; https://doi.org/10.3390/membranes9040055 - 18 Apr 2019
Cited by 21 | Viewed by 4548
Abstract
Anaerobic treatment processes have achieved popularity in treating palm oil mill effluent due to its high treatability and biogas generation. The use of externally submerged membranes with anaerobic reactors promotes the retention of the biomass in the reactor. This study was conducted in [...] Read more.
Anaerobic treatment processes have achieved popularity in treating palm oil mill effluent due to its high treatability and biogas generation. The use of externally submerged membranes with anaerobic reactors promotes the retention of the biomass in the reactor. This study was conducted in thermophilic conditions with the Polytetrafluoroethylene hollow fiber (PTFE-HF) membrane which was operated at 55 °C. The reactor was operated at Organic Loading Rates (OLR) of 2, 3, 4, 6, 8, and 10 kg Chemical Oxygen Demand (COD)/m3·d to investigate the treatment performance and the membrane operation. The efficiency of the COD removal achieved by the system was between 93–98%. The highest methane yield achieved was 0.56 m3 CH4/kg CODr. The reactor mixed liquor volatile suspended solids (MLVSS) was maintained between 11.1 g/L to 20.9 g/L. A dead-end mode PTFE hollow fiber microfiltration was operated with the constant flux of 3 LMH (L/m2·h) in permeate recirculation mode to separate the clear final effluent and retain the biomass in the reactor. Membrane fouling was one of the limiting factors in the membrane bioreactor application. In this study, organic fouling was observed to be 93% of the total membrane fouling. Full article
(This article belongs to the Special Issue CESE-2018: Membrane Technologies for Water Sustainability)
Show Figures

Figure 1

14 pages, 2798 KiB  
Article
Performances of Anion-Exchange Blend Membranes on Vanadium Redox Flow Batteries
by Hyeongrae Cho, Henning M. Krieg and Jochen A. Kerres
Membranes 2019, 9(2), 31; https://doi.org/10.3390/membranes9020031 - 17 Feb 2019
Cited by 30 | Viewed by 5583
Abstract
Anion exchange blend membranes (AEBMs) were prepared for use in Vanadium Redox Flow Batteries (VRFBs). These AEBMs consisted of 3 polymer components. Firstly, PBI-OO (nonfluorinated PBI) or F6-PBI (partially fluorinated PBI) were used as a matrix polymer. The second polymer, a bromomethylated PPO, [...] Read more.
Anion exchange blend membranes (AEBMs) were prepared for use in Vanadium Redox Flow Batteries (VRFBs). These AEBMs consisted of 3 polymer components. Firstly, PBI-OO (nonfluorinated PBI) or F6-PBI (partially fluorinated PBI) were used as a matrix polymer. The second polymer, a bromomethylated PPO, was quaternized with 1,2,4,5-tetramethylimidazole (TMIm) which provided the anion exchange sites. Thirdly, a partially fluorinated polyether or a non-fluorinated poly (ether sulfone) was used as an ionical cross-linker. While the AEBMs were prepared with different combinations of the blend polymers, the same weight ratios of the three components were used. The AEBMs showed similar membrane properties such as ion exchange capacity, dimensional stability and thermal stability. For the VRFB application, comparable or better energy efficiencies were obtained when using the AEBMs compared to the commercial membranes included in this study, that is, Nafion (cation exchange membrane) and FAP 450 (anion exchange membrane). One of the blend membranes showed no capacity decay during a charge-discharge cycles test for 550 cycles run at 40 mA/cm2 indicating superior performance compared to the commercial membranes tested. Full article
(This article belongs to the Special Issue Membranes for Electrolysis, Fuel Cells and Batteries)
Show Figures

Figure 1

14 pages, 2504 KiB  
Article
Experimental Mixed-Gas Permeability, Sorption and Diffusion of CO2-CH4 Mixtures in 6FDA-mPDA Polyimide Membrane: Unveiling the Effect of Competitive Sorption on Permeability Selectivity
by Giuseppe Genduso, Bader S. Ghanem and Ingo Pinnau
Membranes 2019, 9(1), 10; https://doi.org/10.3390/membranes9010010 - 8 Jan 2019
Cited by 53 | Viewed by 7065
Abstract
The nonideal behavior of polymeric membranes during separation of gas mixtures can be quantified via the solution-diffusion theory from experimental mixed-gas solubility and permeability coefficients. In this study, CO2-CH4 mixtures were sorbed at 35 °C in 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA)-m-phenylenediamine (mPDA)—a [...] Read more.
The nonideal behavior of polymeric membranes during separation of gas mixtures can be quantified via the solution-diffusion theory from experimental mixed-gas solubility and permeability coefficients. In this study, CO2-CH4 mixtures were sorbed at 35 °C in 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA)-m-phenylenediamine (mPDA)—a polyimide of remarkable performance. The existence of a linear trend for all data of mixed-gas CO2 versus CH4 solubility coefficients—regardless of mixture concentration—was observed for 6FDA-mPDA and other polymeric films; the slope of this trend was identified as the ratio of gas solubilities at infinite dilution. The CO2/CH4 mixed-gas solubility selectivity of 6FDA-mPDA and previously reported polymers was higher than the equimolar pure-gas value and increased with pressure from the infinite dilution value. The analysis of CO2-CH4 mixed-gas concentration-averaged effective diffusion coefficients of equimolar feeds showed that CO2 diffusivity was not affected by CH4. Our data indicate that the decrease of CO2/CH4 mixed-gas diffusion, and permeability selectivity from the pure-gas values, resulted from an increase in the methane diffusion coefficient in mixtures. This effect was the result of an alteration of the size sieving properties of 6FDA-mPDA as a consequence of CO2 presence in the 6FDA-mPDA film matrix. Full article
(This article belongs to the Special Issue Gas Transport in Glassy Polymers)
Show Figures

Graphical abstract

14 pages, 2585 KiB  
Article
Acidic Gases Separation from Gas Mixtures on the Supported Ionic Liquid Membranes Providing the Facilitated and Solution-Diffusion Transport Mechanisms
by Alsu I. Akhmetshina, Nail R. Yanbikov, Artem A. Atlaskin, Maxim M. Trubyanov, Amal Mechergui, Ksenia V. Otvagina, Evgeny N. Razov, Alla E. Mochalova and Ilya V. Vorotyntsev
Membranes 2019, 9(1), 9; https://doi.org/10.3390/membranes9010009 - 5 Jan 2019
Cited by 44 | Viewed by 5448
Abstract
Nowadays, the imidazolium-based ionic liquids containing acetate counter-ions are attracting much attention as both highly selective absorbents of the acidic gases and CO2 carriers in the supported ionic liquid membranes. In this regard, the investigation of the gas transport properties of such [...] Read more.
Nowadays, the imidazolium-based ionic liquids containing acetate counter-ions are attracting much attention as both highly selective absorbents of the acidic gases and CO2 carriers in the supported ionic liquid membranes. In this regard, the investigation of the gas transport properties of such membranes may be appropriate for better understanding of various factors affecting the separation performance and the selection of the optimal operating conditions. In this work, we have tested CH4, CO2 and H2S permeability across the supported ionic liquid membranes impregnated by 1-butyl-3-methylimidazolium acetate (bmim[OAc]) with the following determination of the ideal selectivity in order to compare the facilitated transport membrane performance with the supported ionic liquid membrane (SILM) that provides solution-diffusion mechanism, namely, containing 1-butyl-3-methylimidazolium tetrafluoroborate (bmim[BF4]). Both SILMs have showed modest individual gases permeability and ideal selectivity of CO2/CH4 and H2S/CH4 separation that achieves values up to 15 and 32, respectively. The effect of the feed gas mixture composition on the permeability of acidic gases and permeselectivity of the gas pair was investigated. It turned out that the permeation behavior for the bmim[OAc]-based SILM toward the binary CO2/CH4, H2S/CH4 and ternary CO2/H2S/CH4 mixtures was featured with high acidic gases selectivity due to the relatively low methane penetration through the liquid phase saturated by acidic gases. Full article
Show Figures

Figure 1

26 pages, 3967 KiB  
Article
Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model
by Eleonora Ricci and Maria Grazia De Angelis
Membranes 2019, 9(1), 8; https://doi.org/10.3390/membranes9010008 - 4 Jan 2019
Cited by 43 | Viewed by 5951
Abstract
In an effort to reduce the experimental tests required to characterize the mixed-gas solubility and solubility-selectivity of materials for membrane separation processes, there is a need for reliable models which involve a minimum number of adjustable parameters. In this work, the ability of [...] Read more.
In an effort to reduce the experimental tests required to characterize the mixed-gas solubility and solubility-selectivity of materials for membrane separation processes, there is a need for reliable models which involve a minimum number of adjustable parameters. In this work, the ability of the Dual Mode Sorption (DMS) model to represent the sorption of CO2/CH4 mixtures in three high free volume glassy polymers, poly(trimethylsilyl propyne) (PTMSP), the first reported polymer of intrinsic microporosity (PIM-1) and tetrazole-modified PIM-1 (TZ-PIM), was tested. The sorption of gas mixtures in these materials suitable for CO2 separation has been characterized experimentally in previous works, which showed that these systems exhibit rather marked deviations from the ideal pure-gas behavior, especially due to competitive effects. The accuracy of the DMS model in representing the non-idealities that arise during mixed-gas sorption was assessed in a wide range of temperatures, pressures and compositions, by comparing with the experimental results available. Using the parameters obtained from the best fit of pure-gas sorption isotherms, the agreement between the mixed-gas calculations and the experimental data varied greatly in the different cases inspected, especially in the case of CH4 absorbed in mixed-gas conditions. A sensitivity analysis revealed that pure-gas data can be represented with the same accuracy by several different parameter sets, which, however, yield markedly different mixed-gas predictions, that, in some cases, agree with the experimental data only qualitatively. However, the multicomponent calculations with the DMS model yield more reliable results than the use of pure-gas data in the estimation of the solubility-selectivity of the material. Full article
(This article belongs to the Special Issue Gas Transport in Glassy Polymers)
Show Figures

Graphical abstract

Review

27 pages, 5353 KiB  
Review
Membrane-Based Technologies for Post-Combustion CO2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials
by Petros Gkotsis, Efrosini Peleka and Anastasios Zouboulis
Membranes 2023, 13(12), 898; https://doi.org/10.3390/membranes13120898 - 2 Dec 2023
Cited by 5 | Viewed by 5195
Abstract
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last [...] Read more.
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last decade. Chemical absorption, adsorption, cryogenic separation and membrane separation are the most widely used post-combustion CO2 capture technologies. This study reviews post-combustion CO2 capture technologies and the latest progress in membrane processes for CO2 separation. More specifically, the objective of the present work is to present the state of the art of membrane-based technologies for CO2 capture from flue gases and focuses mainly on recent advancements in commonly employed membrane materials. These materials are utilized for the fabrication and application of novel composite membranes or mixed-matrix membranes (MMMs), which present improved intrinsic and surface characteristics and, thus, can achieve high selectivity and permeability. Recent progress is described regarding the utilization of metal–organic frameworks (MOFs), carbon molecular sieves (CMSs), nanocomposite membranes, ionic liquid (IL)-based membranes and facilitated transport membranes (FTMs), which comprise MMMs. The most significant challenges and future prospects of implementing membrane technologies for CO2 capture are also presented. Full article
Show Figures

Figure 1

22 pages, 1869 KiB  
Review
Adsorptive Membranes Incorporating Ionic Liquids (ILs), Deep Eutectic Solvents (DESs) or Graphene Oxide (GO) for Metal Salts Extraction from Aqueous Feed
by Liyan Qalyoubi, Ioannis Zuburtikudis, Hadil Abu Khalifeh and Enas Nashef
Membranes 2023, 13(11), 874; https://doi.org/10.3390/membranes13110874 - 3 Nov 2023
Cited by 2 | Viewed by 1588
Abstract
Water scarcity is a significant concern, particularly in arid regions, due to the rapid growth in population, industrialization, and climate change. Seawater desalination has emerged as a conventional and reliable solution for obtaining potable water. However, conventional membrane-based seawater desalination has drawbacks, such [...] Read more.
Water scarcity is a significant concern, particularly in arid regions, due to the rapid growth in population, industrialization, and climate change. Seawater desalination has emerged as a conventional and reliable solution for obtaining potable water. However, conventional membrane-based seawater desalination has drawbacks, such as high energy consumption resulting from a high-pressure requirement, as well as operational challenges like membrane fouling and high costs. To overcome these limitations, it is crucial to enhance the performance of membranes by increasing their efficiency, selectivity, and reducing energy consumption and footprint. Adsorptive membranes, which integrate adsorption and membrane technologies, offer a promising approach to address the drawbacks of standalone membranes. By incorporating specific materials into the membrane matrix, composite membranes have demonstrated improved permeability, selectivity, and reduced pressure requirements, all while maintaining effective pollutant rejection. Researchers have explored different adsorbents, including emerging materials such as ionic liquids (ILs), deep eutectic solvents (DESs), and graphene oxide (GO), for embedding into membranes and utilizing them in various applications. This paper aims to discuss the existing challenges in the desalination process and focus on how these materials can help overcome these challenges. It will also provide a comprehensive review of studies that have reported the successful incorporation of ILs, DESs, and GO into membranes to fabricate adsorptive membranes for desalination. Additionally, the paper will highlight both the current and anticipated challenges in this field, as well as present prospects, and provide recommendations for further advancements. Full article
Show Figures

Figure 1

18 pages, 1327 KiB  
Review
The Latest Achievements of Liquid Membranes for Rare Earth Elements Recovery from Aqueous Solutions—A Mini Review
by Małgorzata A. Kaczorowska
Membranes 2023, 13(10), 839; https://doi.org/10.3390/membranes13100839 - 21 Oct 2023
Cited by 2 | Viewed by 1752
Abstract
The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE [...] Read more.
The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE ores resulted in an intensive search for effective and environmentally safe methods for recovering these elements. Among these methods, techniques based on the application of various types of liquid membranes (LMs) play an important role, primarily due to their high efficiency, the simplicity of membrane formation and use, the utilization of only small amounts of environmentally hazardous reagents, and the possibility of simultaneous extraction and back-extraction and reusing the membranes after regeneration. However, because both primary and secondary sources (e.g., waste) of REEs are usually complex and contain a wide variety of components, and the selectivity and efficiency of LMs depend on many factors (e.g., the composition and form of the membrane, nature of the recovered ions, composition of the feed and stripping phases, etc.), new membranes are being developed that are “tailored” to the properties of the recovered rare earth elements and to the character of the solution in which they occur. This review describes the latest achievements (since 2019) related to the recovery of a range of REEs with the use of various liquid membranes (supported liquid membranes (SLMs), emulsion liquid membranes (ELMs), and polymer inclusion membranes (PIMs)), with particular emphasis on methods that fall within the trend of eco-friendly solutions. Full article
(This article belongs to the Special Issue Membrane Systems for Metal Ion Extraction)
Show Figures

Figure 1

15 pages, 2596 KiB  
Review
A Comprehensive Analysis of the Impact of Inorganic Matter on Membrane Organic Fouling: A Mini Review
by Qiusheng Gao, Liang Duan, Yanyan Jia, Hengliang Zhang, Jianing Liu and Wei Yang
Membranes 2023, 13(10), 837; https://doi.org/10.3390/membranes13100837 - 20 Oct 2023
Cited by 2 | Viewed by 1594
Abstract
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role [...] Read more.
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies. Full article
(This article belongs to the Special Issue Membrane Separation Systems: Design and Applications)
Show Figures

Figure 1

25 pages, 5593 KiB  
Review
A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications
by Al Mamun, Mohamed Kiari and Lilia Sabantina
Membranes 2023, 13(10), 830; https://doi.org/10.3390/membranes13100830 - 13 Oct 2023
Cited by 4 | Viewed by 2329
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in [...] Read more.
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature. Full article
Show Figures

Figure 1

41 pages, 4959 KiB  
Review
Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities
by Harsh Vardhan, Grace Rummer, Angela Deng and Shengqian Ma
Membranes 2023, 13(8), 696; https://doi.org/10.3390/membranes13080696 - 27 Jul 2023
Cited by 8 | Viewed by 3163
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the [...] Read more.
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined. Full article
(This article belongs to the Special Issue Porous MOF/COF for Membrane Applications)
Show Figures

Graphical abstract

16 pages, 3052 KiB  
Review
Current and Potential Applications of Green Membranes with Nanocellulose
by Stefanos (Steve) Nitodas, Meredith Skehan, Henry Liu and Raj Shah
Membranes 2023, 13(8), 694; https://doi.org/10.3390/membranes13080694 - 25 Jul 2023
Cited by 2 | Viewed by 1426
Abstract
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose [...] Read more.
Large-scale applications of nanotechnology have been extensively studied within the last decade. By exploiting certain advantageous properties of nanomaterials, multifunctional products can be manufactured that can contribute to the improvement of everyday life. In recent years, one such material has been nanocellulose. Nanocellulose (NC) is a naturally occurring nanomaterial and a high-performance additive extracted from plant fibers. This sustainable material is characterized by a unique combination of exceptional properties, including high tensile strength, biocompatibility, and electrical conductivity. In recent studies, these unique properties of nanocellulose have been analyzed and applied to processes related to membrane technology. This article provides a review of recent synthesis methods and characterization of nanocellulose-based membranes, followed by a study of their applications on a larger scale. The article reviews successful case studies of the incorporation of nanocellulose in different types of membrane materials, as well as their utilization in water purification, desalination, gas separations/gas barriers, and antimicrobial applications, in an effort to provide an enhanced comprehension of their capabilities in commercial products. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Figure 1

29 pages, 2156 KiB  
Review
A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)
by Waad H. Abuwatfa, Nour AlSawaftah, Naif Darwish, William G. Pitt and Ghaleb A. Husseini
Membranes 2023, 13(7), 685; https://doi.org/10.3390/membranes13070685 - 24 Jul 2023
Cited by 7 | Viewed by 3053
Abstract
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal [...] Read more.
Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane’s external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction. Full article
Show Figures

Figure 1

25 pages, 2438 KiB  
Review
Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review
by Mónica Salamanca, Mar Peña, Antonio Hernandez, Pedro Prádanos and Laura Palacio
Membranes 2023, 13(7), 655; https://doi.org/10.3390/membranes13070655 - 10 Jul 2023
Cited by 2 | Viewed by 2120
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional [...] Read more.
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy. Full article
(This article belongs to the Collection Feature Papers in Membrane Engineering and Applications)
Show Figures

Graphical abstract

18 pages, 3338 KiB  
Review
Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review
by Cristina Ileana Covaliu-Mierlă, Oana Păunescu and Horia Iovu
Membranes 2023, 13(7), 643; https://doi.org/10.3390/membranes13070643 - 4 Jul 2023
Cited by 5 | Viewed by 3213
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater [...] Read more.
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane’s properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime. Full article
(This article belongs to the Special Issue Preparation and Application of Novel Polymer Membranes)
Show Figures

Figure 1

24 pages, 1200 KiB  
Review
Challenges and Solutions for Global Water Scarcity
by Hilla Shemer, Shlomo Wald and Raphael Semiat
Membranes 2023, 13(6), 612; https://doi.org/10.3390/membranes13060612 - 20 Jun 2023
Cited by 15 | Viewed by 7296
Abstract
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. [...] Read more.
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. However, the demand for freshwater resources exceeds the available supply, making it essential to utilize all alternative water resources such as the desalination of brackish water, seawater, and wastewater. Reverse osmosis desalination is a highly efficient method to increase water supplies and make clean, affordable water accessible to millions of people. However, to ensure universal access to water, various measures need to be implemented, including centralized governance, educational campaigns, improvements in water catchment and harvesting technologies, infrastructure development, irrigation and agricultural practices, pollution control, investments in novel water technologies, and transboundary water cooperation. This paper provides a comprehensive overview of measures for utilizing alternative water sources, with particular emphasis on seawater desalination and wastewater reclamation techniques. In particular, membrane-based technologies are critically reviewed, with a focus on their energy consumption, costs, and environmental impacts. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

37 pages, 6260 KiB  
Review
Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review
by Önder Tekinalp, Pauline Zimmermann, Steven Holdcroft, Odne Stokke Burheim and Liyuan Deng
Membranes 2023, 13(6), 566; https://doi.org/10.3390/membranes13060566 - 30 May 2023
Cited by 16 | Viewed by 4292
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of [...] Read more.
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure–property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed. Full article
(This article belongs to the Special Issue Membrane Systems for Metal Ion Extraction)
Show Figures

Figure 1

37 pages, 4819 KiB  
Review
Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations
by Yue Yuan, Jialong Shen and Sonja Salmon
Membranes 2023, 13(5), 532; https://doi.org/10.3390/membranes13050532 - 20 May 2023
Cited by 5 | Viewed by 2573
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and [...] Read more.
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes. Full article
Show Figures

Figure 1

29 pages, 2652 KiB  
Review
Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment
by Hridoy Roy, Tanzim Ur Rahman, Nishat Tasnim, Jannatul Arju, Md. Mustafa Rafid, Md. Reazul Islam, Md. Nahid Pervez, Yingjie Cai, Vincenzo Naddeo and Md. Shahinoor Islam
Membranes 2023, 13(5), 490; https://doi.org/10.3390/membranes13050490 - 30 Apr 2023
Cited by 28 | Viewed by 9414
Abstract
A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms’ metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in [...] Read more.
A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms’ metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in the anode electrode oxidize the organic matter, breaking down pollutants and generating electrons that flow through an electrical circuit to the cathode compartment. This process also generates clean water as a byproduct, which can be reused or released back into the environment. MFCs offer a more energy-efficient alternative to traditional wastewater treatment plants, as they can generate electricity from the organic matter in wastewater, offsetting the energy needs of the treatment plants. The energy requirements of conventional wastewater treatment plants can add to the overall cost of the treatment process and contribute to greenhouse gas emissions. MFCs in wastewater treatment plants can increase sustainability in wastewater treatment processes by increasing energy efficiency and reducing operational cost and greenhouse gas emissions. However, the build-up to the commercial-scale still needs a lot of study, as MFC research is still in its early stages. This study thoroughly describes the principles underlying MFCs, including their fundamental structure and types, construction materials and membrane, working mechanism, and significant process elements influencing their effectiveness in the workplace. The application of this technology in sustainable wastewater treatment, as well as the challenges involved in its widespread adoption, are discussed in this study. Full article
(This article belongs to the Special Issue Separation Principles and Applications of Membrane Technology)
Show Figures

Figure 1

31 pages, 5141 KiB  
Review
Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation
by Yutian Duan, Lei Li, Zhiqiang Shen, Jian Cheng and Kewu He
Membranes 2023, 13(5), 480; https://doi.org/10.3390/membranes13050480 - 29 Apr 2023
Cited by 8 | Viewed by 5481
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane [...] Read more.
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the “next generation” MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation). Full article
(This article belongs to the Special Issue Research Progress of Metal-Organic-Framework (MOF) Membranes)
Show Figures

Figure 1

16 pages, 1260 KiB  
Review
Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques
by Noman Sohail, Ramona Riedel, Bogdan Dorneanu and Harvey Arellano-Garcia
Membranes 2023, 13(2), 217; https://doi.org/10.3390/membranes13020217 - 9 Feb 2023
Cited by 3 | Viewed by 2305
Abstract
The membrane bioreactor (MBR) is an efficient technology for the treatment of municipal and industrial wastewater for the last two decades. It is a single stage process with smaller footprints and a higher removal efficiency of organic compounds compared with the conventional activated [...] Read more.
The membrane bioreactor (MBR) is an efficient technology for the treatment of municipal and industrial wastewater for the last two decades. It is a single stage process with smaller footprints and a higher removal efficiency of organic compounds compared with the conventional activated sludge process. However, the major drawback of the MBR is membrane biofouling which decreases the life span of the membrane and automatically increases the operational cost. This review is exploring different anti-biofouling techniques of the state-of-the-art, i.e., quorum quenching (QQ) and model-based approaches. The former is a relatively recent strategy used to mitigate biofouling. It disrupts the cell-to-cell communication of bacteria responsible for biofouling in the sludge. For example, the two strains of bacteria Rhodococcus sp. BH4 and Pseudomonas putida are very effective in the disruption of quorum sensing (QS). Thus, they are recognized as useful QQ bacteria. Furthermore, the model-based anti-fouling strategies are also very promising in preventing biofouling at very early stages of initialization. Nevertheless, biofouling is an extremely complex phenomenon and the influence of various parameters whether physical or biological on its development is not completely understood. Advancing digital technologies, combined with novel Big Data analytics and optimization techniques offer great opportunities for creating intelligent systems that can effectively address the challenges of MBR biofouling. Full article
Show Figures

Graphical abstract

71 pages, 22439 KiB  
Review
Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review
by Eleonora Ricci, Matteo Minelli and Maria Grazia De Angelis
Membranes 2022, 12(9), 857; https://doi.org/10.3390/membranes12090857 - 31 Aug 2022
Cited by 16 | Viewed by 4483
Abstract
Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories [...] Read more.
Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality. Full article
Show Figures

Graphical abstract

19 pages, 764 KiB  
Review
Applications of Ionic Liquids in Carboxylic Acids Separation
by Alexandra Cristina Blaga, Alexandra Tucaliuc and Lenuta Kloetzer
Membranes 2022, 12(8), 771; https://doi.org/10.3390/membranes12080771 - 9 Aug 2022
Cited by 8 | Viewed by 2675
Abstract
Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass—solid/liquid extraction, or obtained through fermentation—liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic [...] Read more.
Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass—solid/liquid extraction, or obtained through fermentation—liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation. Full article
(This article belongs to the Special Issue Advanced Research in Ionic Liquid Membranes)
Show Figures

Graphical abstract

69 pages, 14301 KiB  
Review
State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond
by Hui Shen Lau, Siew Kei Lau, Leong Sing Soh, Seang Uyin Hong, Xie Yuen Gok, Shouliang Yi and Wai Fen Yong
Membranes 2022, 12(5), 539; https://doi.org/10.3390/membranes12050539 - 22 May 2022
Cited by 28 | Viewed by 8922
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air [...] Read more.
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes. Full article
(This article belongs to the Section Membrane Chemistry)
Show Figures

Graphical abstract

20 pages, 5033 KiB  
Review
Complementary Powerful Techniques for Investigating the Interactions of Proteins with Porous TiO2 and Its Hybrid Materials: A Tutorial Review
by Yihui Dong, Weifeng Lin, Aatto Laaksonen and Xiaoyan Ji
Membranes 2022, 12(4), 415; https://doi.org/10.3390/membranes12040415 - 11 Apr 2022
Viewed by 3188
Abstract
Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. [...] Read more.
Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and complementary techniques to study protein-TiO2-based porous materials interactions at different scales is summarized, including high-performance liquid chromatography (HPLC), atomic force microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD) simulations. We expect that this review could be helpful in optimizing the commonly used techniques to characterize the interfacial behavior of protein on porous TiO2 materials in different applications. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes)
Show Figures

Figure 1

16 pages, 1540 KiB  
Review
Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy
by Matthew J. Laurence, Timothy S. Carpenter, Ted A. Laurence, Matthew A. Coleman, Megan Shelby and Chao Liu
Membranes 2022, 12(4), 392; https://doi.org/10.3390/membranes12040392 - 31 Mar 2022
Cited by 1 | Viewed by 4272
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet [...] Read more.
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs). Full article
Show Figures

Figure 1

Back to TopTop