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Abstract: Electromembrane devices are usually operated in two electrical regimes: potentiodynamic
(PD), when a potential drop in the system is set, and galvanodynamic (GD), when the current density
is set. This article theoretically investigates the current-voltage curves (CVCs) of flow-through
electrodialysis membrane systems calculated in the PD and GD regimes and compares the parameters
of the electroconvective vortex layer for these regimes. The study is based on numerical modelling
using a basic model of overlimiting transfer enhanced by electroconvection with a modification of the
boundary conditions. The Dankwerts’ boundary condition is used for the ion concentration at the inlet
boundary of the membrane channel. The Dankwerts’ condition allows one to increase the accuracy
of the numerical implementation of the boundary condition at the channel inlet. On the CVCs
calculated for PD and DG regimes, four main current modes can be distinguished: underlimiting,
limiting, overlimiting, and chaotic overlimiting. The effect of the electric field regime is manifested in
overlimiting current modes, when a significant electroconvection vortex layer develops in the channel.

Keywords: ion-exchange membrane; electrodialysis; current-voltage curve; electroconvection;
potentiodynamic regime; galvanodynamic regime; numerical simulation

1. Introduction

Flow-through electrodialysis (ED) membrane cells are widely used in water purification and the
processing of agricultural products (milk, wine, etc.) [1–4]. Electromembrane systems are described
by a nonlinear current-voltage curve (CVC), owing largely to the phenomena of concentration
polarization, current-induced convection, and water dissociation [5,6]. For dilute electrolyte solutions
considered in this article, the main mechanism of overlimiting transfer is electroconvection, as shown
by experimental [7–13] and theoretical studies [14–19]. It is customary to distinguish three modes on
the CVC of membrane system (Figure 3):

(1) The underlimiting current (ohmic behavior) is the initial linear region of the CVC, which is
characterized by a rather high concentration of ions in the region near the membrane. When an
electric current flows through the ion-exchange membrane, the ion concentration decreases on
one side of the membrane and increases on the other due to the selective transfer of counterions
in the membrane (ion concentration polarization). With the increase in the potential drop,
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almost complete depletion of ions in the region at the membrane surface in the channel of
desalination and the transition of the system to the limiting state are observed [20,21].

(2) The limiting current is a section of the CVC with a small slope (plateau), which describes the
saturation of the current corresponding to the almost complete depletion of ions at the membrane
surface [22,23].

(3) The overlimiting current is the region of secondary current growth: with a further increase in
the applied potential drop, the current takes on values greater than the limiting. The increase in
the electric current essentially indicates an increase in the conductivity of the depleted region.
For dilute electrolyte solutions, electroconvection is the main process that partially destroys the
depleted region [7–19]. Electroconvection is the entrainment of liquid molecules by ions that
form a space charge at the ion-selective surface under the influence of the electric force [24].
The intensity of electroconvection increases significantly with the passage of the overlimiting
current when an extended macroscopic space charge region (SCR) is formed at the interface due
to the polarization of the electric double layer (EDL) (Figures 1 and 2).
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Figure 1. Schematic concentration profiles of cations (c1, the solid line) and anions (c2, the dashed line)
in the diffusion layer adjacent to the surface of a cation-exchange membrane (CEM) [25]. The current
density i is flowing across the system; the electrolyte concentration in the bulk solution, c0; the
cation concentration at the solution/CEM boundary, c1m; different diffusion layer regions are shown:
the electroneutral region (1), the extended SCR (2) and the quasi-equilibrium electric double layer
(3), respectively.Membranes 2020, 10, x FOR PEER REVIEW 3 of 18 
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Figure 2. Scheme of the flow of an electrolyte solution in the channel between the anion-exchange
and cation-exchange membranes, with taking into account the forced flow (shown by arrows) and the
development of an electroconvective vortex layer (at the CEM surface). Ion depletion zones are shown
in blue. Based on [19].
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Figure 3. Sketch of a typical current-voltage curve (CVC) of an ion-exchange membrane. The dashed
lines Vcr0, Vcr1, Vcr2 indicate changes in the CVC regions: underlimiting current, plateau of the limiting
current (ilim), overlimiting, overlimiting with chaotic oscillations.

The existence of the extended SCR at the electrolyte solution/membrane interface, which is much
larger than the region of the equilibrium EDL when a sufficiently high voltage is applied, was first
shown by I. Rubinstein and L. Shtilman on the basis of a numerical solution of the Nernst-Planck and
Poisson equations for the potential of the electric field [25].

Later, I. Rubinstein and B. Zaltzman [14] developed a model for describing mass transfer in a
diffusion layer at a homogeneous ion-exchange membrane. They found a numerical solution for the
Nernst-Planck-Poisson and Navier-Stokes equations under the assumption of local electroneutrality
in the solution outside the SCR and using a special condition of electroosmotic slip at the interface
of the electroneutral region with the SCR. It was shown that the heterogeneity of the surface is not a
necessary condition for the emergence of electroconvection. A characteristic feature of this system is
its hydrodynamic instability at sufficiently high potential drop. Several threshold potential drops were
established, which separate different phases in the development of electrokinetic instability.

Approaches to electroconvection modelling using the slip condition at the boundary with the SCR
were applied by V. Dydek et al. [26], R. Abu-Rjal et al. [27]. Models based on the Nernst-Planck-Poisson
and Navier-Stokes equations that directly take into account the formation of the extended SCR
were considered in the works of E.A. Demekhin et al. [15,28,29], S.V. Pham et al. [16,30], and K.
Druzgalski, E. Karatay et al. [18,31], P. Magnico [32,33]. Numerical studies of electroconvection flows
generated at an electrically heterogeneous membrane surface were carried out by S. Davidson et al. [34],
M. Andersen et al. [35], V.A. Kirii et al. [36].

The difference in the CVCs of the ion-exchange membrane without a forced flow during the
transition between the limiting and overlimiting current regimes at the increasing and decreasing
potential drop was theoretically described in [11,16,28,32]. S.V. Pham et al. examined a wavy membrane
and explained hysteretic behavior by the fact that in the decreasing regime the existing depletion
zone creates a lateral gradient, which creates a high lateral electric field. Thus, an additional lateral
volumetric force is created to maintain the vortex flow. E.A. Demekhin et al. [28] investigated the
hysteresis behavior of ideal smooth ion-exchange membranes and showed the dependence of the
hysteresis amplitude on the coupling coefficient between the hydrodynamics and the electrostatics.
Hysteretic amplitude calculations observed by Demekhin et al. has been confirmed by P. Magnico [32].

Two electroconvection kinds can be distinguished in overlimiting current modes in membrane
systems. In the case of a curved or electrically heterogeneous surface, the tangential electric field causes
a stable electroosmotic transfer, described in the works of S.S. Dukhin and N.A. Mishchuk [37–39].
In the case of homogeneous membranes in the absence of forced fluid flow, such a kind is not realized:
electroconvection appears as a result of hydrodynamic instability, as shown by I. Rubinstein and B.
Zaltzman [14]. These two kinds are sometimes termed as electrokinetic modes, respectively, of Dukhin
and Rubinstein [40].
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Electroconvection in ED channels with forced fluid flow was investigated by M.Kh.
Urtenov et al. [19,41] and R. Kwak et al. [17,42], R. Abu-Rjal et al. [27], P. Magnico [33]. In such channels,
the concentration is distributed unevenly along the length of the channel: as the solution moves
between the membranes, the electrolyte concentration decreases and the thickness of the diffusion
layer increases. In this case, a tangential bulk electric force is formed, that acts on the SCR at the
depleted surface of the membrane, even if the membrane is homogeneous. This force causes stationary
electroconvection even at underlimiting current densities. According to the terminology of S.S. Dukhin
and N.A. Mishchuk [37–39], this type of electroconvection can be considered as an electroosmosis of the
first kind. The bulk force is localized at a relatively small distance from the membrane, where viscous
forces play an important role due to the adhesion condition. The contribution of electroconvection to the
increase of current becomes significant only at the potential drop corresponding to overlimiting currents.
In this case, the SCR thickness increases sharply in comparison with the thickness of the equilibrium
double layer. At such distances, the role of viscous forces decreases. Therefore, the main contribution to
the development of overlimiting transport belongs to the electroosmosis of the second kind. This mode
is similar to the Dukhin-Mishchuk mode described above. Nevertheless, it differs in that in the presence
of the forced flow, the tangential force necessary for the occurrence of electroconvection arises due
to the inhomogeneity of the longitudinal distribution of concentration, and not due to the electrical
inhomogeneity of the surface.

For systems with forced flow at the threshold potential drop, Vcr1 (Figure 3), single electroconvective
vortices rotating in the same direction are formed in the region near the membrane surface
(Figure 2) [17,19]. Vortices mix the electrolyte solution in the area near the membrane, which partially
destroys the depletion layer and provides the regime of overlimiting current. Due to the forced flow,
the vortices move along the solution/membrane interface towards the channel outlet. This movement
of the vortices causes current density fluctuations on the CVC [19]. As the potential drop increases,
the size of the vortices increases; at a certain potential drop (Vcr2 on Figure 3) single vortices transform
into large vortex complexes consisting of several vortices rotating in opposite directions [19,33]. As a
result, the amplitude of the current density oscillations (or potential drop) increases and oscillations
become chaotic [19]. P. Magnico investigated the role of electroconvective vortices in the fluid motion
using the Lagrangian approach [33]. In this way, trajectories were constructed that reflect the ejection
from the mixing layer, trapping by a growing vortex or merging vortices.

The electrical regime in membrane devices as a rule is determined in two ways: potentiodynamic
(PD), when a potential drop in the system is set (constant, linearly increasing, periodically changing in
time, etc.), and galvanodynamic (GD) when the current density is set (constant, linearly increasing,
periodically changing in time, etc.).

Theoretical studies of transport processes taking into account the formation of the extended
SCR and the development of electroconvection in membrane systems were mainly carried out for
the PD regime using the equations of Navier-Stokes, Nernst-Planck and Poisson for the electric field
potential [14–19,28,32,33]. The description of the GD regime caused difficulties associated with the
absence of a differential equation for the current density. One approach to describing the ion transport
in the membrane system in the GD regime is the decomposition of the system of Nernst-Planck and
Poisson equations based on the assumption of local electroneutrality of the electrolyte solution [43,44].
In this approach, the distribution of a current density in the system is obtained using the electric
current stream function. However, approaches based on the local electroneutrality assumption do not
allow taking explicitly into account the effect of the SCR, which is formed at the solution/membrane
boundary. Recently, these difficulties have been overcome using an approach involving the solution
of the Poisson equation with a boundary condition determining the potential gradient through the
current density [45,46].

This article presents numerical calculations of the CVCs and the hydrodynamic response of the
electrolyte solution in flow-through membrane systems in the PD and GD regimes of the electric field.
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The structure of the electroconvective vortex layer is compared for these modes. For the first time,
the hysteresis amplitude is calculated for flow-through systems in the PD and GD regimes.

2. Mathematical Models

CVCs were calculated:
(1) for the PD regime, when the potential drop, ∆ϕ, is set to increase from 0 to a certain value,

then to decrease from this value to 0:

∆ϕ =

{
αt, t ≤ t1,
2αt1 − αt, t > t1,

(1)

where α > 0 is the potential sweep speed, t1 is the point in time at which the regime of the increasing
potential drop is replaced by decreasing regime.

(2) for the GD regime, when the average current density, iav, is set to increases from 0 to a certain
value, then to decrease from this value to 0:

iav =

{
βt, t ≤ t2,
2βt2 − βt, t > t2,

(2)

where β > 0 is the sweep speed of the current density, t2 is the point in time at which the regime of
increasing current density is replaced by decreasing.

The calculations are based on the 2D mathematical models of the overlimiting transfer enhanced
by electroconvection in a flow-through ED cell for the PD [19,47] and GD [46] regimes. To simplify
the numerical solution, we consider the processes in half of the ED channel at the surface of the
cation-exchange membrane (CEM), Figure 4. Let x and y be the transverse and longitudinal coordinates,
respectively; x = 0 relates to the middle of the ED channel, x = h is the electrolyte solution/CEM
interface; y = 0 corresponds to the inlet and y = l to the outlet of the channel.
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2.1. Formulation for the PD Regime

The non-stationary process of transfer of binary electrolyte ions in membrane systems in the
absence of chemical reactions, with taking into account electroconvection, is written as follows [14–19]:

∂
→

V
∂t

+ (
→

V∇)
→

V = −∇p +
1

Re
∆
→

V + Kel∆ϕ∇ϕ, div
→

V = 0 (3)

→

j i = −ziDici∇ϕ−Di∇ci + Peci
→

V, i = 1, 2 (4)

∂ci
∂t

= −
1

Pe
div

→

j i, i = 1, 2 (5)

− ε∆ϕ = z1c1 + z2c2, (6)
→

i = z1
→

j 1 + z2
→

j 2 − ε Pe
∂
∂t
(∇φ) (7)

Equations (3)–(7) are given in dimensionless form. We scale time, t, by the value h/V0; spatial
coordinates, x and y, by the thickness of the considered region h (half of the ED channel thickness);

velocity,
→

V, by the average velocity of the forced flow V0; pressure, p, by the value ρV2
0 ; concentration

of the i-th ion, ci, by the electrolyte concentration in the bulk solution c0; electric potential,ϕ,
by the value RT/F; individual ion diffusion coefficients, D1 and D2, by the electrolyte diffusion

coefficient D = D1D2(z1 − z2)/(D1z1 −D2z2); current density,
→

i , by the value Dc0F/h; ion flux
→

j i
by the value Dc0/h. Here Re = V0h/ν is the Reynolds number, Pe = V0h/D is the Peclet number,
ε = RTε0εr/(c0F2h2) = 2(LD/h)2 and Kel = ε0εrR2T2/(ρ0V2

0F2h2) are the dimensionless parameters;
zi is the charge number of the i-th ion; F is the Faraday constant; R is the gas constant; T is the absolute
temperature; ε0 is the dielectric permittivity of vacuum; εr is the solution relative permittivity (assumed
constant); ρ0 is the solution density (assumed constant), ν is the kinematic viscosity.

→

V, p,
→

j 1,
→

j 2, c1, c2, ϕ, ix, iy are unknown function of t, x and y. The Navier-Stokes equations,
Equations (3), describe the velocity field under the action of the forced flow and the electric body
force. The equations of Nernst-Planck, Equations (4), material balance, Equations (5), and Poisson,
Equation (6), describe the ion concentration and potential fields. Equation (7) is a formula for the

total current density, including the conduction current,
→

i c = z1
→

j 1 + z2
→

j 2, and displacement current,
→

i d = −ε Pe ∂
∂t (∇ϕ). For the calculations of this article, the displacement current, id, is negligible

(less than 10−7).
The system of Equations (3)–(7) is supplemented by the boundary conditions [19,47]. At the channel

inlet (x ∈ [0, h], y = 0), the velocity profile is parabolic and satisfies Poiseuille’s law (expressions for half
of the ED channel):

Vx(x, 0, t) = 0, Vy(x, 0, t) = 1.5(1− x2). (8)

In model from [19], the condition of uniform distribution along x for ion concentration at the
channel inlet is accepted:

ci(x, 0, t) = 1, i = 1, 2. (9)

In this paper, instead of condition (9), the Danckwerts’ boundary condition is used,
which determines that arrival rate of ions into the channel is equal to the rate with which they
cross the plane y = 0 by the combination of flow, electromigration, and diffusion [48]:(

−ziDici∇ϕ−Di∇ci + Pe ci
→

V
)
(x, 0, t) = Pe c′

→

V,i = 1, 2, (10)

where c′ = 1 is the input electrolyte concentration. The advantage of this condition in comparison with
condition (9) is the absence of a special feature of the distribution of ion concentration near the point
(h, 0). At the numerical implementation with condition (10), the accuracy of fulfilling the condition that
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the tangential current density through the inlet vanishes, iy(x,0,t) = 0, is higher than with condition (9)
(Appendix A).

The condition for the electric potential is obtained from Equations (4) and (7) considering the zero
tangential current density through the inlet, iy(x,0,t) = 0, (the tangential component of the displacement
current, id y, is negligible):

∂ϕ
∂y

(x, 0, t) = −
1

z2
1D1 + z2

2D2

(
z1D1

∂c1

∂y
+ z2D2

∂c2

∂y

)
(11)

At the channel outlet (x ∈ [0, h], y = l) the velocity profile is again parabolic; the sum of diffusion
and migration tangential components of the cation (i = 1) and anion (i = 2) fluxes is zero; the tangential
derivative of the potential is set to be zero:

Vx(x, l, t) = 0, Vy(x, l, t) = 1.5(1− x2) (12)(
−
∂ci
∂y
− zici

∂ϕ
∂y

)
(x, l, t) = 0, i = 1, 2 (13)

∂ϕ
∂y

(x, l, t) = 0. (14)

At x = 0, y ∈ [0, l] (middle of the ED channel) the following conditions are applied:

Vx(0, y, t) = 0, Vy(0, y, t) = 1.5 (15)

ci(0, y, t) = 1, i = 1, 2 (16)

ϕ(0, y, t) = 0. (17)

At x = 1, y ∈ [0, l] (the solution/membrane interface), the no-slip condition (18) is applied; the
counterion concentration, c1, is set as a constant value Nc greater than the bulk solution concentration,
Equation (19), [25]; continuous flow of co-ions, Equation (20); the potential drop is set, Equation (21):

Vx(1, y, t) = 0, Vy(1, y, t) = 0 (18)

c1(1, y, t) = Nc (19)(
−D2

∂c2

∂x
− z2D2c2

∂ϕ
∂x

)
(1, y, t) =

(1− T1)

z2
ix(1, y, t) (20)

ϕ(1, y, t) = ∆ϕ (21)

The potential drop, ∆ϕ, is given by Equation (1).
Thus, the formulation of the model for the PD regime includes the system of Equations (3)–(7) and

boundary conditions (8), (10)–(21). The average over the channel length current density is calculated
as [46]:

iav =
1
l

∫ l

0

∫ 1

0
ixdxdy (22)
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2.2. Formulation for the GD Regime

To describe the GD regime, Equations (3)–(6) and boundary conditions (8), (10)–(20) are used
similarly to PD regime, but there are two differences. First, at the boundary x = 1, y ∈ [0, l]
(solution/membrane interface), instead of condition (21), normal to the membrane surface component
of the electric field strength is specified as function of the electric current density [46]:

∂ϕ
∂x

(1, y, t) = −


(
ix + ε Pe∂

2ϕ
∂x∂t + z1D1

∂c1
∂x + z2D2

∂c2
∂x

)
z2

1D1c1 + z2
2D2c2

(1, y, t) (23)

Condition (23) was obtained from Equations (4) and (7) [46,49].
Secondly, an additional equation is introduced to determine the distribution of current density,

which is required by the boundary condition (23). For this purpose, the method of electric current
flow function is used [43–46]. According to this method, the electric current stream function, η,
is determined:

ix =
∂η
∂y

, iy = −
∂η
∂x

(24)

Then the equation and boundary conditions for η are introduced to the mathematical formulation
of the model [45,46]:

∆η = −
((

z2
1D1

∂c1
∂y + z2

2D2
∂c2
∂y

)
∂ϕ
∂x −

(
z2

1D1
∂c1
∂x + z2

2D2
∂c2
∂x

)∂ϕ
∂y

)
+

+Pe
(
z1
∂c1
∂y + z2

∂c2
∂y

)
Vx − Pe

(
z1
∂c1
∂x + z2

∂c2
∂x

)
Vy + Pe(z1c1 + z2c2)

(
∂Vx
∂y −

∂Vy
∂x

)
,

(25)

∂η
∂x

(0, y, t) = 0,
∂η
∂x

(1, y, t) = 0, η(x, 0, t) = 0, η(x, l, t) = iavl (26)

The boundary conditions (26) were derived under the simplifying assumption that the current
through the channel outlet iy(x,l,t) ≈ 0 (due to its smallness, Figure A2). Therefore, average current
density, iav, can be used as a parameter determining the electrical regime in the system:

iav =
1
l

∫ l

0
ix(0, y, t)dy =

1
l

∫ l

0
ix(1, y, t)dy (27)

Thus, current density ix in boundary condition (23) is determined by Formula (24).
Thus, the formulation of the model for the GD regime includes the system of Equations (3)–(6),

(25) and boundary conditions (8), (10)–(20), (23) and (26).

2.3. Numerucal Implementation

Numerical solutions were found by the finite element method using Comsol Multiphysics 5.1
software package. The results presented below were obtained using a non-uniform unstructured
triangular computational grid consisting of about 55,000 elements. The density of the mesh elements
was increased near the solution/membrane boundary: 1000 elements were set using the “Distribution”
node. The influence of the quality of the computational mesh was tested by comparing solutions
for two meshes consisting of about 41,000 elements (when “Distribution” node set 700 elements
on the solution/membrane boundary) and 55,000 elements (with 1000 elements on the boundary).
The difference in the values of the threshold potential drop of the transition to the overlimiting current
mode (both in increasing and decreasing regimes) did not exceed 2%.
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The following modules are used to implement the model for the GD regime: “Laminar flow” for
the Navier-Stokes Equation (3); “Transport of Diluted Species” for the anions and cations concentrations
fields, Equations (4) and (5); “Poisson’s equation” for the electric potential fields, Equation (6); “General
form PDE” for the electric current stream function, Equation (25). For spatial discretization of the
concentration, potential, and the electric current stream function fields, the quadratic Lagrange
interpolation functions are used. The “Laminar flow” module has the “P2 + P1” discretization that
means second order elements for the velocity components and linear elements for the pressure field [50].

For time-depended calculations a segregated node with implicit time-stepping method BDF
(backward differentiation formulas) is used [50]. One segregated iteration consists of executing two
segregated step: in the first step, concentration, potential and electric current stream function are
calculated; on the second, speed and pressure are calculated. At each step, the multifrontal massively
parallel sparse direct solver (MUMPS) method [50] is used.

The time step is automatically determined by the solver so that the requirement for the relative
tolerance is met (its value was set equal to 10−8). With a decrease in the relative tolerance by a factor of 10,
the change in the threshold potential drop of the transition to the overlimiting mode did not exceed 1%.

The implementation of the PD regime is similar to the described for the GD regime with the
difference that the equation for the electric current stream function (25) is excluded from the calculation
process and the boundary condition for the potential (23) changes to (21).

3. Results

3.1. Parameters Used in Computations

The results of simulation presented here are obtained for a flow-through ED cell (Figure 4) in
the case of dilute NaCl solutions. The dimensionless parameters ε = 3.05 × 10−8, Pe = 589, Re =

1.07, Kel = 5.23 × 10−4, which correspond to the following system parameters: the thickness of the
considered region h = 0.5H, where H = 0.5 × 10−3 m is the intermembrane distance; the channel length
l = 10−3 m; the average velocity of forced flow V0 = 3.8 × 10−3 m/s; the electrolyte solution density ρ0 =

1002 kg/m3; the kinematic viscosity ν = 0.89 × 10−6 m2/s; the input concentration of the electrolyte
solution of NaCl c0 = 0.1 mol/m3; the temperature T = 298 K; the diffusion coefficients of cations D1

= 1.33 × 10−9 m2/s and anions D2 = 2.05 × 10−9 m2/s; the cation transport number in the membrane
T1 = 0.972 and that in the solution t1 = 0.395; the ion charge numbers z1 = 1, z2 = −1. To simplify
the numerical solution, the ratio of the counterion concentration at the solution/CEM boundary to its
value in the bulk solution Nc was taken as Nc = 1. This value is less than in real systems, however, as
Urtenov et al. [51] have shown, when Nc ≥ 1, the value Nc does not essentially affect the distribution of
concentrations and potential in the extended SCR.

The sweep speeds of the potential drop (α = 0.0064) and average current density (β = 0.0003) are
chosen sufficiently small and the solution can be considered quasi-stationary, that is, their values do
not affect the CVCs trend.

3.2. Current-Voltage Curves

Figure 5 shows the CVCs calculated for the GD and PD regimes. All CVCs have a linear
initial part (denoted by 1 in Figure 5a), a sloping plateau (2 in Figure 5a), and an overlimiting
current (3,4 in Figure 5a), which qualitatively corresponds to the existing experimental [5,7,9,13] and
theoretical [16,19,31] studies about the CVCs of membrane systems. Note that the limiting current
density of the calculated CVCs, determined by the point of intersection of the tangents drawn to the
initial part and to the sloping plateau of the curve is close to ilim, calculated using Leveque’s Equation
(28) (values differ by less than 2%) [47]:

ilim =
1

T1 − t1

1.47
(

4h2V0

lD

)1/3

− 0.2

 (28)
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At the underlimiting and limiting current modes (regions 1 and 2 on Figure 5a, respectively) of
the CVCs calculated for PD and GD regimes coincide with high accuracy (the difference is less than
0.01ilim). In these modes (at current densities iav/ilim ≤ 1 or potential drop ∆ϕ < Vcr1), electroconvective
vortices are not observed in the fluid flow (Figure 6a).Membranes 2020, 10, x FOR PEER REVIEW 10 of 18 
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Figure 5. (a) CVCs calculated for the potentiodynamic (PD) (increasing ∆ϕ—purple line, decreasing
∆ϕ—green line) and galvanodynamic (GD) (increasing iav—red line, decreasing iav—blue line) regimes.
The dotted line shows the limiting current density, ilim, calculated using Leveque’s Equation (28). The
dashed lines Vcr0, Vcr1, Vcr2 indicate changes in the CVC regions: underlimiting current 1, plateau of the
limiting current 2, overlimiting 3, overlimiting with chaotic oscillations 4. (b) enlarged fragment of (a).

At the overlimiting current modes of the CVCs calculated for the both regimes single
electroconvective vortices rotating in the same direction (for region 3 on Figure 5a; Figure 6b,c)
and large vortex complexes consisting of several vortices rotating in opposite directions (for region
4 on Figure 5a; Figure 6d, e) are formed in the region near the membrane surface. Movement of the
vortices causes current density fluctuations in the PD regime and potential drop fluctuations in the GD
regime (regions 3 and 4 on Figure 5a). At the same time, the trends of the overlimiting current regions
of the CVCs in both regimes approximately coincide (Figure 5b).



Membranes 2020, 10, 49 11 of 19

Membranes 2020, 10, x FOR PEER REVIEW 11 of 18 

 

 

Figure 6. Distribution of cation concentration (the magnitude is shown by different colors), solution 

streamlines (white lines) in the area at the membrane surface. Calculation for the increasing GD 

lec 

hec 

y 

x 

0.7 

0.8 

0.9 

1.0 
0 0.4

1 

0.8

1 

1.2 2.0 1.6 2.4 2.8 3.2 3.6 4.0 

(a) 

(b) 

(c) 

(d) 

(e) 

0 0.2 0.4 0.6 0.8 1 

Figure 6. Distribution of cation concentration (the magnitude is shown by different colors), solution
streamlines (white lines) in the area at the membrane surface. Calculation for the increasing GD regime
at iav/ilim = 1 (a), 1.1 (b), 1.25 (c), 1.3 (d), 1.35 (e). To improve the visibility of the electroconvective vortex
layer, the scale along the x axis is set larger than the y axis, thus the shape of the vortices is deformed.
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3.3. Electroconvective Vortex Layer

To quantitatively describe the electroconvection vortex layer, parameters such as the thickness,
hec, and length, lec, and density of vortices, dec, of this layer were determined. For systems with forced
flow, the vortex sizes are not stable and depend on its position in the channel [17,19,47]; therefore, at a
given point in time the thickness, hec, was determined as the distance from the membrane surface to
the farthest edge of the closed streamline forming the biggest vortex [47] (Figure 6b). At each moment
of time, the electroconvective vortex layer is a set of successive vortices and vortex structures. Wherein,
this layer appears in the region at the channel outlet. Therefore, length, lec, was defined as the distance
from the outlet to the farthest edge of the closed streamline forming the first (from the inlet) vortex
(Figure 6b). Thus, hec and lec characterize the dimensions of the electroconvective vortex layer, that is
the maximum transverse dimension of the biggest vortex and the length of the entire layer at a moment
in time. Another important parameter characterizing the electroconvective vortex layer is the density
of vortices, dec; that is, the number of vortices per unit of length.

The values of hec, lec, dec, were calculated for the PD regime for the potential drop ∆ϕ = 23.4,
23.6, . . . , 31 (the results are indicated by crosses and trend lines in Figure 7a,c,e). Figure 7b,d,f show
values of hec, lec, dec, calculated for the GD regime at the current density iav/ilim = 1, 1.01, . . . , 1.4. The
increase in the length of the electroconvective vortex layer, lec, is limited by the moment (∆ϕ ≈ 28 or
iav/ilim ≈ 1.24), when this layer occupies almost the entire length of the channel (l = 4), Figure 7a,b. The
thickness of the electroconvective vortex layer, hec, increases approximately linearly with increasing
potential drop (or current density) everywhere in the considered range of ∆ϕ (or iav) values, except for
the initial region of rapid growth at ∆ϕ ≈ Vcr1 (or iav/ilim ≈ 1), Figure 7c,d. Saturation of the thickness,
hec, is not observed.

Figure 7e,f show a decrease in the vortices density, dec, in the range of the potential drop (or
current density) corresponding to a rapid increase in the size of the electroconvective vortex layer; and
the increase density, dec, in the range of the development of the large vortex complexes consisting of
several vortices rotating in opposite directions (Figure 6d,e).

The described behavior of the system is characteristic of both the PD and GD regimes, both for
increasing and decreasing cases. To compare the parameters of the electroconvective vortex layer in
the GD and PD regimes, the average current densities, iav corresponding to ∆ϕ= 23.4, 23.6, . . . , 31 for
the PD regime and the average values of the potential drop, ∆ϕ, corresponding to iav/ilim = 1, 1.01, . . .
1.4 were calculated for GD regime. Figure 7 also show the dependences hec, lec, dec, on ∆ϕ, calculated
for the GD regime and on iav, calculated for the PD regime. Figure 7 shows that the dependences of the
parameters of the electroconvective vortex layer on the potential drop and current density in the PD
and GD regimes are approximately the same.
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Figure 7. Dependences of the length, lec, thickness, hec, and vortex density, dec, of the electroconvective
vortex layer on the potential drop, respectively (a), (c), (e), and current density (b), (d), (f). Calculations
for the PD regime are indicated by crosses and for the GD regime by rhombuses. The solid lines (Pol.
appr.) indicate polynomial approximation of the corresponding data.

3.4. Comparison of Increasing and Decreasing Regimes (Hysteretic Behavior)

The differences in the CVCs calculated with increasing and decreasing potential drop (or average
current density) are manifested in the overlimiting current mode both in the PD and GD cases.

The critical potential drop of the transition to the overlimiting current mode in the increasing
regime, Vcr1Inc, is larger than the corresponding value in the decreasing regime, Vcr1Dec (Figure 5b):
Vcr1Inc ≈ 24.52 and Vcr1Dec ≈ 23.92 (these values approximately coincide for the PD and DG regimes).
The hysteresis amplitude (∆Vcr1 = Vcr1Inc − Vcr1Dec ≈ 0.6) is less than the difference in the potential
drops correspond for the appearance and disappearance of vortices (determined by the values of hec,
lec), which is about 1.2. This is due to the fact that the transition between the limiting and overlimiting
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modes on CVC appears only when the thickness hec exceeds approximately 0.02. The electroconvective
vortex layer of the smaller thickness only causes fluctuations of small amplitude in the CVC.

The calculations in this article confirm the existence of the hysteretic behavior for flow-through
channels in both PD and GD regimes. In the transition region between the limiting and overlimiting
modes at the fixed potential drop in the decreasing regime, the length, lec, and thickness, hec, of the
electroconvective vortex layer are greater than in the increasing regime (Figure 7a,c). At the fixed
average current density, the length, lec, and thickness, hec, of the electroconvective vortex layer in the
decreasing and increasing regimes approximately coincide (Figure 7b,d). In this region (∆ϕ ≈ Vcr1,
iav/ilim ≈ 1), the density of vortices, dec, is higher in the increasing regime compared to the decreasing
(Figure 7e,f).

In addition, the critical potential drop of the transition to chaotic oscillations in the increasing
regime, Vcr2Inc, is also larger than the corresponding value in the decreasing regime, Vcr2Dec (Figure 5b):
Vcr2Inc ≈ 28.88 and Vcr2Dec ≈ 27.44 for GD case; Vcr2Inc ≈ 30.36 and Vcr2Dec ≈ 28.61 for PD case. In the
region of chaotic oscillations of the CVCs, the length and thickness of the electroconvective vortex layer
oscillate in the same range for the increasing and decreasing regimes, but the density of vortices in the
decreasing regime is higher. This is due to the fact that vortex complexes consisting of many vortices
are maintained at the lower potential drop in the decreasing regime compared to increasing one.

4. Conclusions

On the CVCs calculated for the PD and DG regimes, four main current modes can be distinguished:
underlimiting, limiting, overlimiting, and chaotic overlimiting. The influence of the electric field
regime is manifested in the overlimiting current modes when a significant electroconvection vortex
layer develops in the channel. The slipping of vortices along the membrane surface under the action of
the forced flow leads to fluctuations in the current density at the PD regime and oscillations in the
potential drop at the GD regime. The trend lines of the overlimiting sections of the CVCs for the PD and
GD regimes are approximately the same, since the values of the parameters of the electroconvective
vortex layer at the same values of the potential drop (or current density) in these modes are quite close.

At the fixed potential drop, the length and thickness of the electroconvective vortex layer in the
decreasing regime (PD or GD) is greater than in an increasing one. This leads to the formation of a
hysteresis loop in the transition region between the limiting and overlimiting regions of the CVCs.
There is also a difference in the critical potential drop of the transition to the chaotic oscillations mode
in the increasing and decreasing regimes.

Thus, the development of electroconvection determines the influence of the electric field regime
on the processes of ion transfer in membrane systems.
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agreed to the published version of the manuscript.
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Appendix A

Figure A1 shows the concentration profiles for the channel inlet, y = 0, and at a short distance from
it, y = 0.001, calculated with the condition of the uniform ion distribution (9) and with Danckwerts’
condition (10) at ∆ϕ = 19.5. In the first case, the concentration profiles vary significantly in the
longitudinal direction: for the section y = 0.001, they are lower than for y = 0; in the second case,
concentration profiles practically coincide (maximal difference less than 0.01). As a result, in the
calculation with condition (9), a stationary vortex is formed at the inlet at ∆ϕ < Vcr1, that is, earlier
than that for the rest of the channel (Figure A2). When condition (10) is used, vortices at the inlet
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appear at ∆ϕ > Vcr1 during the growth of the electroconvective vortex layer, the formation of which
begins at the outlet (Figure 6e).
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Figure A1. (a) Concentration profiles of cations (c1, solid lines) and anions (c2, dashed lines) in sections
y = 0 and y = 0.001. Calculation for the PD regime at ∆ϕ = 19.5 with condition (9) (red lines) and with
Danckwerts’ condition (10) (blue lines). (b) enlarged fragment of (a).Membranes 2020, 10, x FOR PEER REVIEW 15 of 18 
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Figure A2. Distribution of cation concentration (the magnitude is shown by different colors), solution
streamlines (white lines) in the area at the membrane surface. Calculation for the PD regime at ∆ϕ =

19.5 with condition (9) (a) and with Danckwerts’ condition (10) (b). To improve the visibility of the
electroconvective vortex layer, the scale along the x axis is set larger than the y axis, thus the shape of
the vortices is deformed.
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In the Figure A3a,b, the dependences of the average tangential current density through the inlet,
iy av(x,0,t), and outlet, iy av(x,l,t), boundaries on time are shown. In the considered range of the potential
drop, the current iy av(x,0,t), calculated with condition (10), does not exceed 5 × 10−5ilim; for condition
(9), this value reaches 0.09 ilim. As a result, at the calculations with condition (10), the plateau angle of
the limiting current decreases; the overlimiting region of the CVC lies lower (Figure A3a).
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