Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques
Abstract
:1. Introduction
2. Formation of Biofouling in MBR
2.1. Brief Overview on the Mechanism of Membrane Fouling
2.2. Removable and Irremovable Fouling
2.3. Transmembrane Pressure Profile
2.4. Brief Overview on Important Types of Foulants
2.5. Factors Affecting Membrane Fouling in MBR
3. Anti-Biofouling Strategies
3.1. Physical Methods
3.2. Chemical Methods
3.3. Hybrid Methods
3.4. The Biological Methods
4. Model-Based Anti-Biofouling Strategies
- Understanding of the specific processes that govern biofilm formation,
- implementation of pre-treatment techniques that can successfully prevent biofilm formation,
- monitoring biofouling to enable proactive and effective membrane cleaning and maintenance.
4.1. Model-Based Experimental Analysis and Design
- Mechanistic (deterministic, white-box), which provide a mathematical representation of the process or system based on physical, chemical, and/or biological understandings.
- Empirical (black-box, data-based), developed based on experimental data, without assuming relationships between the inputs and the outputs of the process/system.
- Semi-empirical (gray-box), which consider both mechanistic and empirical characteristics, with the conservation equations based on deterministic understandings and the rate laws on data.
4.1.1. Mechanistic Tools
4.1.2. Machine Learning Approaches
4.2. Optimization-Based Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habiba, U.; Taj, L.; Farid, M.; Anwar-ul-haq, M.; Sharif, N.; Farheen, H.; Sharif, N. Quality Analysis of Ground Water Resources of Paharang Drain Faisalabad, Pakistan. Int. J. Sci. Environ. Technol. 2013, 2, 1175–1184. [Google Scholar]
- Abbas, T.; Majeed, A.D. Applicability of MBR Technology for Decentralized Municipal Wastewater Treatment in Iraq; Ministry of Science and Technology: Baghdad, Iraq, 2016; pp. 28–30.
- Maqbool, N. Water Crisis in Pakistan: Manifestation, Causes and the Way Forward; Pakistan Institute of Development Economics: Islamabad, Pakistan, 2022; p. 60. [Google Scholar]
- Hussain, A. Per Capita Water Availability in Pakistan Comes to Dangerously Low Level. Pakistan Today. 2018. Available online: https://archive.pakistantoday.com.pk/2018/03/22/per-capita-water-availability-in-pakistan-comes-to-dangerously-low-level/ (accessed on 2 November 2022).
- Leyva-Díaz, J.C.; Martín-Pascual, J.; González-López, J.; Hontoria, E.; Poyatos, J.M. Effects of scale-up on a hybrid moving bed biofilm reactor–membrane bioreactor for treating urban wastewater. Chem. Eng. Sci. 2013, 104, 808–816. [Google Scholar] [CrossRef]
- Leyva-Díaz, J.C.; Martín-Pascual, J.; Muñío, M.M.; González-López, J.; Hontoria, E.; Poyatos, J.M. Comparative kinetics of hybrid and pure moving bed reactor-membrane bioreactors. Ecol. Eng. 2014, 70, 227–234. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, H.; Yu, R.; Gao, L.; Zhan, M. Biological-based control strategies for MBR membrane biofouling: A review. Water Sci. Technol. 2021, 83, 2597–2614. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes 2020, 10, 24. [Google Scholar] [CrossRef]
- Sohail, N.; Ahmed, S.; Chung, S.; Nawaz, M.S. Performance comparison of three different reactors (MBBR, MBR and MBBMR) for municipal wastewater treatment. Desalin. Water Treat. 2020, 174, 71–78. [Google Scholar] [CrossRef]
- Karim, M.A.; Mark, J.L. A Preliminary Comparative Analysis of MBR and CAS Wastewater Treatment Systems. Int. Water Wastewater Treat. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Gao, M.; Zou, X.; Dang, X.; Mohammed, A.N.; Yang, S.; Zhou, Y.; Yao, Y.; Guo, H.; Liu, Y. Exploring interactions between quorum sensing communication and microbial development in anammox membrane bioreactor. J. Environ. Chem. Eng. 2023, 11, 109339. [Google Scholar] [CrossRef]
- Cui, Z.; Ngo, H.H.; Cheng, Z.; Guo, W.; Meng, X.; Jia, H.; Wang, J. Hysteresis effect on backwashing process in a submerged hollow fiber membrane bioreactor (MBR) applied to membrane fouling mitigation. Bioresour. Technol. 2020, 300, 122710. [Google Scholar] [CrossRef]
- Jiang, C.K.; Tang, X.; Tan, H.; Feng, F.; Xu, Z.M.; Mahmood, Q.; Zeng, W.; Min, X.B.; Tang, C.J. Effect of scrubbing by NaClO backwashing on membrane fouling in anammox MBR. Sci. Total Environ. 2019, 670, 149–157. [Google Scholar] [CrossRef]
- Fortuanto, L.; Ranieri, L.; Naddeo, V.; Leiknes, T. Fouling control in a gravity-driven membranes (GDM) bioreactor treating primary wastewater by using relaxation and/or air scouring. J. Membr. Sci. 2020, 610, 118261. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Boopathy, R.; Mehmood, M.A. Recent advances on bacterial quorum quenching as an effective strategy to control biofouling in membrane bioreactors. Bioresour. Technol. 2021, 15, 100745. [Google Scholar] [CrossRef]
- Ahmed, S.; Chung, S.; Sohail, N.; Qazi, I.A.; Justin, A. Application of cell entrapping beads for Quorum Quenching technique in submerged membrane bioreactor. Water Sci. Technol. 2020, 81, 744–752. [Google Scholar] [CrossRef]
- Singh, D.; Satpute, S.K.; Ranga, P.; Saharan, B.S.; Tripathi, N.M.; Aseri, G.K.; Sharma, D.; Joshi, S. Biofouling in membrane bioreactors: Mechanism, interactions and possible mitigation using biosurfactants. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Xiong, J.; Zuo, S.; Liao, W.; Chen, Z. Model-based evaluation of fouling mechanisms in powdered activated carbon/membrane bioreactor system. Water Sci. Technol. 2019, 79, 1844–1852. [Google Scholar] [CrossRef]
- Leyva-Díaz, J.C.; Munío, M.M.; Gonzalez-López, J.; Poyatos, M.J. Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecol. Eng. 2016, 91, 449–458. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling. Membranes 2016, 6, 33. [Google Scholar] [CrossRef]
- Huyskens, C.; Brauns, E.; Van Hoof, E.; De Wever, H. A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor. J. Membr. Sci. 2008, 323, 185–192. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef]
- Skinner, S.J.; Stickland, A.D.; Scales, P.J. Predicting transmembrane pressure rise from biofouling layer compressibility and permeability. Chem. Eng. Technol. 2018, 41, 51–60. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar]
- Wu, J.; Le-Clech, P.; Stuetz, R.M.; Fane, A.G.; Chen, V. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor. J. Membr. Sci. 2008, 324, 26–32. [Google Scholar] [CrossRef]
- Islam, Z.U.; Rose, J.; Ahmed, S.; Chung, S. Quorum Quenching Cell Entrapping Bead by Polyvinyl Alcohol Method for Biofouling Mitigation in Lab-scale MBR. J. Eng. Sci. 2020, 13, 28–36. [Google Scholar] [CrossRef]
- Chang, H.; Liang, H.; Qu, F.; Liu, B.; Yu, H.; Du, X.; Li, G.; Snyder, S.A. Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review. J. Membr. Sci. 2017, 540, 362–380. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef]
- Ayub, M.; Saeed, N.; Chung, S.; Nawaz, M.S.; Ghaffour, N. Physical and economical evaluation of laboratory-scale membrane bioreactor by long-term relative cost–benefit analysis. J. Water Reuse Desalin. 2020, 10, 239–250. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.; Zhu, X.; Zhang, X.; Liu, Y. Fate of dissolved organic matter and byproducts generated from on-line chemical cleaning with sodium hypochlorite in MBR. J. Chem. Eng. 2017, 323, 233–242. [Google Scholar] [CrossRef]
- Wang, S.; Chew, J.W.; Liu, Y. An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. J. Membr. Sci. 2020, 600, 117872. [Google Scholar] [CrossRef]
- Robescu, D.; Calin, A.; Robescu, D.; Nasaramba, B. Simulation of attached growth biological wastewater treatment process in the mobile bed biofilm reactor. In Proceedings of the 10th WSEAS International Conference on Mathematic and Computers in Biology and Chemistry, Prague, Czech Republic, 23–25 March 2009; pp. 157–161. [Google Scholar]
- Khan, S.J.; Ilyas, S.; Javid, S.; Visvanathan, C.; Jegatheesan, V. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresour. Technol. 2011, 102, 5331–5336. [Google Scholar] [CrossRef]
- Mannina, G.; Capodici, M.; Cosenza, A.; Cina, P.; Di Trapani, D.; Puglia, A.M.; Ekama, G.A. Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study. J. Environ. Manag. 2017, 198, 122–131. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.H.; Vigneswaran, S.; Xing, W.; Goteti, P. A Novel Sponge-Submerged Membrane Bioreactor (SSMBR) for Wastewater Treatment and Reuse. Sep. Sci. Technol. 2008, 43, 273–285. [Google Scholar] [CrossRef]
- Liu, J.; Sun, F.; Zhang, P.; Zhou, Y. Integrated powdered activated carbon and quorum quenching strategy for biofouling control in industrial wastewater membrane bioreactor. J. Clean. Prod. 2021, 279, 123551. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Rzechowicz, M.; Harvey, W.; Zularisam, A.W.; Anthony, G.F. Quorum sensing based membrane biofouling control for water treatment: A review. J. Water Process Eng. 2015, 7, 112–122. [Google Scholar] [CrossRef]
- Weerasekara, N.A.; Choo, K.H.; Lee, C.H. Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor. Water Res. 2014, 67, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xia, S.; Liang, J.; Zhang, Z.; Hermanowicz, S.W. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res. 2013, 47, 187–196. [Google Scholar] [CrossRef]
- Maqbool, T.; Khan, S.J.; Waheed, H.; Lee, C.H.; Hashmi, I.; Iqbal, H. Membrane biofouling retardation and improved sludge characteristics using quorum quenching bacteria in submerged membrane bioreactor. J. Membr. Sci. 2015, 483, 75–83. [Google Scholar] [CrossRef]
- Oh, H.S.; Lee, C.H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J. Membr. Sci. 2018, 554, 331–345. [Google Scholar] [CrossRef]
- Iqbal, T.; Lee, K.; Lee, C.H.; Choo, K.H. Effective quorum quenching bacteria dose for anti-fouling strategy in membrane bioreactors utilizing fixed-sheet media. J. Membr. Sci. 2018, 562, 18–25. [Google Scholar] [CrossRef]
- Huang, J.; Gu, Y.; Zeng, G.; Yang, Y.; Ouyang, Y.; Shi, L.; Shi, Y.; Yi, K. Control of indigenous quorum quenching bacteria on membrane biofouling in a short-period MBR. Bioresour. Technol. 2018, 283, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Hoek, E.M.V.; Weigand, T.W.; Edalat, A. Reverse osmosis membrane biofouling: Causes, consequences and countermeasures. npj Clean Water 2022, 5, 45. [Google Scholar] [CrossRef]
- Di Bella, G.; Di Trapani, D. A brief review on the resistance-in-series model in membrane bioreactors (MBRs). Membranes 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, L.; Pathak, N.; Rehman, Z.U.; Shon, H.; Leiknes, T. Real-time monitoring of membrane fouling development during early stages of activated sludge membrane bioreactor operation. Process Saf. Environ. Prot. 2018, 120, 313–320. [Google Scholar] [CrossRef]
- Santos, A.V.; Lin, A.R.A.; Amaral, M.C.S.; Oliveira, S.M.A.C. Improving control of membrane fouling on membrane bioreactors: A data-driven approach. J. Chem. Eng. 2021, 426, 131291. [Google Scholar] [CrossRef]
- Viet, N.D.; Jang, A. Comparative mathematical and data-driven models for simulating the performance of forward osmosis membrane under different draw solutions. Desalination 2023, 549, 116346. [Google Scholar] [CrossRef]
- Mitra, S.; Murthy, G.S. Bioreactor control systems in the biopharmaceutical industry: A critical perspective. Syst. Microbiol. Biomanuf. 2022, 2, 91–112. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G.A. A review on membrane biofouling: Prediction, characterization, and mitigation. Membranes 2022, 12, 1271. [Google Scholar] [CrossRef]
- Patsios, S.I.; Karabalas, A.J. A review of modelling bioprocesses in membrane bioreactors (MBR) with emphasis on membrane fouling predictions. Desalin. Water Treat. 2010, 21, 189–201. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Gizer, G.; Önal, U.; Ram, M.; Sahiner, N. Biofouling and mitigation methods: A review. Biointerface Res. Appl. Chem. 2023, 13, 185. [Google Scholar] [CrossRef]
- Fenu, A.; Guglielmi, G.; Jimenez, J.; Sperandio, M.; Saroj, J.; Lesjean, B.; Brepols, C.; Thoeye, C.; Nopens, I. Activated sludge model (ASM) based modeling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water Res. 2010, 44, 4272–4294. [Google Scholar] [CrossRef]
- Tenore, A.; Vieira, J.; Frunzo, L.; Luongo, V.; Fabbricino, M. Calibraton and validation of an activated sludge model for membrane bioreactor wastewater treatment plants. Environ. Technol. 2020, 41, 1923–1936. [Google Scholar] [CrossRef]
- Mannina, G.; Cosenza, A.; Rebouças, T.F. A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge. Bioresour. Technol. 2020, 297, 122401. [Google Scholar] [CrossRef] [PubMed]
- Hauduc, H.; Rieger, L.; Oehmen, A.; Van Loosdrecht, M.C.M.; Comeau, Y.; Heduit, A.; Vanrolleghem, P.A.; Gillot, S. Critical review of activated sludge modelling: State of processs knowledge, modelling concepts, and limitations. Biotechnol. Bioeng. 2012, 110, 24–46. [Google Scholar] [CrossRef]
- Hamedi, H.; Mohammadzadeh, O.; Rasouli, S.; Zendehboudi, S. A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems. J. Environ. Chem. Eng. 2021, 9, 106406. [Google Scholar] [CrossRef]
- Menniti, A.; Morgenroth, E. Mechanisms of SMP production in membrane bioreactors: Choosing an appropriate model structure. Water Res. 2010, 44, 5240–5251. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Hu, Y.; Tang, B.; Zhou, J.; Yang, Y.; Shi, L. Evaluation of soluble microbial products (SMP) on membrane fouling in membrane bioreactors (MBRs) at the fractional and overall level: A review. Rev. Environ. Sci. Biotechnol. 2018, 17, 71–85. [Google Scholar] [CrossRef]
- Zuthi, M.F.R.; Ngo, H.H.; Guo, W.S.; Zhang, J.; Liang, S. A review towards finding a simpliefied approach for modelling the kinetics of soluble microbial products (SMP) in an integrated mathematical model of membrane bioreactor (MBR). Int. Biodeter. Biodegr. 2013, 85, 466–473. [Google Scholar] [CrossRef]
- Benyahia, B.; Sari, T.; Cherki, B.; Harmand, J. Anaerobic membrane bioreactor modelling in the presence of soluble microbial products (SMP)—The Anaerobic model AM2b. J. Chem. Eng. 2013, 228, 1011–1022. [Google Scholar] [CrossRef]
- Singh, R.P.; Fu, D.; Yang, J.; Xiong, J. Operational performance and biofoulants in a dynamic membrane bioreactor. Bioresour. Technol. 2019, 282, 156–162. [Google Scholar] [CrossRef]
- Nadeem, K.; Alliet, M.; Plana, Q.; Bernier, J.; Azimi, S.; Rocher, V.; Albasi, C. Modelling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. Sci. Total Environ. 2022, 809, 151109. [Google Scholar] [CrossRef] [PubMed]
- Janus, T. Integrated mathematical model of a MBR reactor including biopolymer kinetics and membrane fouling. Procedia Eng. 2014, 70, 882–891. [Google Scholar] [CrossRef]
- Janus, T.; Ulanicki, B. Modelling SMP and EPS formation and degradation kinetics with an extended ASM3 model. Desalination 2010, 261, 117–125. [Google Scholar] [CrossRef]
- Lindamulla, L.M.L.K.B.; Jegatheesan, V.; Jinadasa, K.B.S.N.; Nanayakkara, K.G.N.; Othman, M.Z. Integrated mathematical model to simulate the performance of a membrane bioreactor. Chemosphere 2021, 284, 131319. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Zhang, M.; Leung, K.T.; Chen, J.; Hong, H.; Lin, H.; Liao, B.Q. A unified thermodynamic mechanism underlying fouling behaviours of soluble microbial products (SMPs) in a membrane bioreactor. Water Res. 2019, 149, 477–487. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, M.; Shen, L.; Wang, X.; Ying, D.; Lin, H.; Li, R.; Xu, Y.; Hong, H. High propensity of membrane fouling and the underlying mechanisms in a membrane bioreactor during occurrence of sludge bulking. Water Res. 2023, 229, 119456. [Google Scholar] [CrossRef]
- Teng, J.; Zhang, H.; Tang, C.; Lin, H. Novel molecular insights into forward osmosis membrane fouling affected by reverse diffusion of draw solutions based on thermodynamic mechanisms. J. Membr. Sci. 2021, 620, 118815. [Google Scholar] [CrossRef]
- Teng, J.; Zhang, H.; Lin, H.; Wang, J.; Meng, F.; Wang, Y.; Lu, M. Synergistic fouling behaviours and thermodynamic mechanisms of proteins and polysaccharides in forward osmosis: The unique role of reverse solute diffusion. Desalination 2022, 536, 115850. [Google Scholar] [CrossRef]
- Long, Y.; You, X.; Chen, Y.; Hong, H.; Liao, B.Q.; Lin, H. Filtration behaviours and fouling mechanisms of ultrafiltration processes with polyacrylamide flocculation for water treatment. Sci. Total Environ. 2020, 703, 135540. [Google Scholar] [CrossRef]
- Zuthi, M.F.R.; Ngo, H.H.; Guo, W.S. Modelling bioprocesses and membrane fouling in membrane bioreactor (MBR): A review towards finding an integrated model framework. Bioresour. Technol. 2012, 122, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Zuthi, M.F.R.; Guo, W.; Ngo, H.H.; Nghiem, D.L.; Hai, F.I.; Xia, S.; Li, J.; Li, J.; Liu, Y. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor. Bioresour. Technol. 2017, 238, 86–94. [Google Scholar] [CrossRef]
- Brepols, C.; Comas, J.; Harmand, J.; Robles, A.; Rodriguez-Roda, I.; Ruano, M.V.; Smets, I.; Mannina, G. Position paper—Progress towards standards in integrated (aerobic) MBR modelling. Water Sci. Technol. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, Y.; Jauregui-Haza, U.J. Improved integrated dynamic model for the simulation of submerged membrane bioreactors for urban and hospital wastewater treatment. J. Membr. Sci. 2021, 624, 119053. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, K.; Xu, H.; Qi, T.; Li, Y.; Tan, J.; Wen, X.; Huang, X. Spectroscopic sensing of membrane fouling potential in a long-term running anaerobic membrane bioreactor. J. Chem. Eng. 2021, 426, 130799. [Google Scholar] [CrossRef]
- Han, H.; Zhang, S.; Qiao, J.; Wang, X. An intelligent detecting system for permeability prediction of MBR. Water Sci. Technol. 2018, 77, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Ba-Alawi, A.H.; Nam, K.; Heo, S.; Woo, T.; Aamer, H.; Yoo, C. Explainable multisensory fusion-based automatic reconciliation and imputation of faulty and missing data in membrane bioreactor plants for fouling alleviation and energy saving. Chem. Eng. J. 2023, 452, 139220. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Reng, J.; Ma, X.; Liu, Q.; Yao, P.; Ngo, H.H.; Nghiem, L.D. UV assisted backwashing for fouling control in membrane bioreactor operation. J. Membr. Sci. 2021, 639, 119751. [Google Scholar] [CrossRef]
- Yang, H.; Yu, X.; Liu, J.; Tang, Z.; Huang, T.; Wang, Z.; Zhong, Y.; Long, Z.; Wang, L. A concise review of theoretical models and numerical simulations of membrane fouling. Water 2022, 14, 3537. [Google Scholar] [CrossRef]
- Zhuang, L.; Tang, B.; Bin, L.; Li, P.; Huang, S.; Fu, F. Performance prediction of an internal-circulation membrane bioreactor basd on models comparison and data features analysis. Biochem. Eng. J. 2021, 166, 107850. [Google Scholar] [CrossRef]
- Jawad, J.; Hawari, A.H.; Zaidi, S.J. Artificial neural network modelling of wastewater treatment and desalination using membrane processes: A review. Biochem. Eng. J. 2021, 419, 129540. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Yan, H.; Wang, T. The application and research of the GA-BP neural network algorithm in the MBR membrane fouling. Abstr. Appl. Anal. 2014, 673156. [Google Scholar] [CrossRef]
- Yao, J.; Wu, Z.; Liu, Y.; Zheng, X.; Zhang, H.; Dong, R.; Qiao, W. Predicting membrane fouling in a high solid AnMBR treating OFMSW leachate through a genetic algorithm and the optimization of a BP neural network model. J. Environ. Manag. 2022, 307, 114585. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, Z.; Wahab, N.A.; Sudin, S. Soft computing techniques in modelling of membrane filtration system: A review. Desalin. Water Treat. 2019, 161, 144–155. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Ozesmi, U. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecol. Modell. 1999, 116, 15–31. [Google Scholar] [CrossRef]
- Montavon, G.; Binder, A.; Lapushckin, S.; Samek, W.; Muller, K.R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting; Lecture Notes in Artifical Intelligence; Springer: Cham, Switzerland, 2019; pp. 193–209. [Google Scholar] [CrossRef]
- Ko, D. Conceptual design optimization of an integrated membrane bioreactor system for wastewater treatment. Chem. Eng. Res. Des. 2018, 132, 385–398. [Google Scholar] [CrossRef]
- Puchongkawarin, C.; Gomez-Mont, C.; Stuckey, D.C.; Chachuat, B. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery. Chemosphere 2015, 140, 150–158. [Google Scholar] [CrossRef]
- Aboagye, E.A.; Burnham, S.M.; Dailey, J.; Zia, R.; Tran, C.; Desai, M.; Yenkie, K.M. Systematic design, optimization, and sustainability assessment for generation of efficient wastewater treatment networks. Water 2021, 13, 1326. [Google Scholar] [CrossRef]
- Al Ismaili, R.; Lee, M.W.; Wilson, D.I.; Vassiliadis, V.S. Heat exchanger network cleaning scheduling: From optimal control to mixed-integer decision making. Comput. Chem. Eng. 2018, 111, 1–15. [Google Scholar] [CrossRef]
- Adloor, S.D.; Pons, T.; Vassiliadis, V.S. An optimal control approach to scheduling and production in a process using decaying catalysts. Comput. Chem. Eng. 2020, 135, 106743. [Google Scholar] [CrossRef]
- Mappas, V.; Vassiliadis, V.S.; Dorneanu, B.; Routh, A.F.; Arellano-Garcia, H. Maintenance scheduling optimisation of reverse osmosis networks (RONs) via a multistage optimal control reformulation. Desalination 2022, 543, 116105. [Google Scholar] [CrossRef]
Membrane Characteristics | Operational Conditions | Feed and Biomass Characteristics |
---|---|---|
Material type | Operating mode | Mixed liquor suspended solids |
Aeration rate | Sludge apparent viscosity | |
Water affinity | Solid retention time | Extracellular polymeric substances |
Surface roughness | Hydraulic retention time | Floc size |
Surface charge | Temperature | Alkalinity and pH |
Pore size | Organic loading rate | Salinity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohail, N.; Riedel, R.; Dorneanu, B.; Arellano-Garcia, H. Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques. Membranes 2023, 13, 217. https://doi.org/10.3390/membranes13020217
Sohail N, Riedel R, Dorneanu B, Arellano-Garcia H. Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques. Membranes. 2023; 13(2):217. https://doi.org/10.3390/membranes13020217
Chicago/Turabian StyleSohail, Noman, Ramona Riedel, Bogdan Dorneanu, and Harvey Arellano-Garcia. 2023. "Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques" Membranes 13, no. 2: 217. https://doi.org/10.3390/membranes13020217
APA StyleSohail, N., Riedel, R., Dorneanu, B., & Arellano-Garcia, H. (2023). Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques. Membranes, 13(2), 217. https://doi.org/10.3390/membranes13020217