Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater
Abstract
1. Introduction
2. Experimental Work
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization of the Prepared Membranes
2.3.1. CA Test
2.3.2. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX)
2.3.3. Fourier Transforms Infrared Spectroscopy (FTIR) and X-ray Diffraction
2.3.4. AFM Test
2.3.5. Tensile Test
2.3.6. Porosity Test
2.4. PVC-TiO2-NPs Membrane Performance
2.5. Experimental Setup
3. Results and Discussion
3.1. CA, Thickness, and Porosity
3.2. EDX Analysis
3.3. FTIR Results
3.4. X-ray Diffraction Results
3.5. Morphology Examination by SEM
3.6. AFM Test
3.7. Mechanical Tensile Test
3.8. Performance of the Membranes (Short-Term and Long-Term)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO and UNICEF. Global Water Supply and Sanitation Assessment; Report; World Health Organization and United Nations Children’s Fund: New York, NY, USA, 2000; ISBN 92-4-156202-1. [Google Scholar]
- Metcalf and Eddy, Inc. Wastewater Engineering, Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Sadiq, A.J.; Shabeeb, K.M.; Khalil, B.I.; Alsalhy, Q.F. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chem. Eng. Commun. 2020, 207, 733–750. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem. Eng. J. 2018, 133, 130–139. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E.; Jabuk, S.I.A. A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor. Chem. Eng. Process. Process Intensif. 2018, 130, 262–274. [Google Scholar] [CrossRef]
- Jamed, M.J.; Alanezi, A.A.; Alsalhy, Q.F. Effects of embedding functionalized multiwalled carbon nanotubes and alumina on the direct contact poly (vinylidene fluoride-cohexafluoropropylene) membrane distillation performance. Chem. Eng. Commun. 2019, 206, 1035–1057. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Ali, J.M.; Ali, A.A.; Ali, R.; Bart, V.D.B.; Balta, S. Enhancement of poly(phenyl sulfone) membranes with ZnO nanoparticles. Desalin. Water Treat. 2013, 51, 6070–6081. [Google Scholar] [CrossRef]
- Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 2006, 253, 2003–2010. [Google Scholar] [CrossRef]
- Claudia, U.; Roberto, C.; Drioli, E.; Gzara, L.; MAlbeirutty, H.; Figoli, A. Progress of Nanocomposite Membranes for Water Treatment. Membranes 2018, 8, 18. [Google Scholar]
- Yu, Z.; Zhao, Y.; Gao, B.; Liu, X.; Jia, L.; Zhao, F.; Ma, J. Performance of novel a Ag-n-TiO2/PVC reinforced hollow fiber membrane applied in water purification: In situ antibacterial properties and resistance to biofouling. R. Soc. Chem. 2015, 5, 97320–97329. [Google Scholar] [CrossRef]
- Abedini, R.; Mousavi, S.M.; Aminzadeh, R. A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination 2011, 277, 40–45. [Google Scholar] [CrossRef]
- Yuliwati, E.; Mohruni, A.S.; Ismail, A.F. Reducing of energy process on refinery wastewater treatment using membrane ultrafiltration. In Proceedings of the EnCon 2013, 6th Engineering Conference, Energy and Environment, Kuching Sarawak, Malaysia, 2–4 July 2013; pp. 1–7. [Google Scholar]
- Madaeni, S.S.; Zinadini, S.; Vatanpour, V.A. new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 2011, 380, 155–162. [Google Scholar] [CrossRef]
- Teow, Y.H.; Seng, O.B.; Ahmad, A.L.; Lim, J.K. Mixed-Matrix Membrane for Humic Acid Removal: Influence of Different Types of TiO2 on Membrane Morphology and Performance. Int. J. Chem. Eng. Appl. 2012, 3, 374–379. [Google Scholar] [CrossRef]
- Rajaeian, B.; Heitz, A.; Tade, M.O.; Liu, S. Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Membr. Sci. 2015, 485, 48–59. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Pi, J.K.; Yang, H.C.; Wan, L.S.; Wu, J.; Xu, Z.K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci. 2016, 500, 8–15. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Rahimpour, A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 2014, 20, 1261–1268. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Balta, S.; Kim, J.; van der Bruggen, B. Doping of polyethersulfone nanofiltration membranes: Antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 2011, 21, 10311. [Google Scholar] [CrossRef]
- Behboudiy, A.; Jafarzadah, Y.; Yegani, R. Preparation and characterization of TiO2 embedded PVC Ultrafiltration membranes. Chem. Eng. Res. Des. 2016, 144, 96–107. [Google Scholar] [CrossRef]
- Mcgaughey, A.L.; Gustafson, R.D.; Childress, A.E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. J. Membr. Sci. 2017, 543, 143–150. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Tyler, J.L.; Stretz, H.A.; Wells, M.J. Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination 2015, 372, 47–56. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; Bruggen, B.V. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes. J. Colloid Interface Sci. 2011, 363, 540–550. [Google Scholar] [CrossRef]
- Reddeppa, N.; Sharma, A.K.; Narasimha, R.V.; Chen, W. AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 2014, 47, 33–41. [Google Scholar] [CrossRef]
- El Sherbiny, S.; Morsy, F.; Marwa, S.; Fouad, O.A. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 2014, 4, 305–313. [Google Scholar] [CrossRef]
- Strathmann, H.; Kock, K. The Formation mechanism of phase inversion membranes. Desalination 1977, 21, 241–255. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Sufyan, F.; Alwan, G.M.; Simone, S.; Figoli, A.; Drioli, E. Hollow fiber ultrafiltration membranes from poly(vinyl chloride): Preparation, morphologies and properties. Sep. Sci. Technol. 2011, 46, 2199–2210. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Rashid, K.T.; Noori, W.A.; Simone, S.; Figoli, A.; Drioli, E. Poly (vinyl chloride) hollow fibers membranes for ultrafiltration applications: Effects of internal coagulant composition. J. Appl. Polym. Sci. 2012, 124, 2087–2099. [Google Scholar] [CrossRef]
- Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S. Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humicacid removal. Desalination 2011, 273, 85–92. [Google Scholar] [CrossRef]
- He, Y.; Jiang, Z.W. Technology review: Treating oilfield wastewater. Filtr. Sep. 2008, 45, 14–16. [Google Scholar] [CrossRef]
- Salahi, A.; Gheshlaghi, A.; Mohammadi, T.; Madaeni, S.S. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 2010, 262, 235–242. [Google Scholar] [CrossRef]
- Salahi, A.; Noshadi, I.; Badrnezhad, R.; Kanjilal, B.; Mohammadi, T. Nano porous membrane process for oily wastewater treatment: Optimization using response surface methodology. J. Environ. Chem. Eng. 2013, 1, 218–225. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption technique. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef]
- Council of Ministers. Rivers Maintaining System and General Water from Pollution No. 25; Council of Ministers: Baghdad, Iraq, 2010. [Google Scholar]
- Rahimpour, A.; Rajaeian, B.; Hosienzadeh, A.; Madaeni, S.S.; Ghoreishi, F. Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes. Desalination 2011, 265, 190–198. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 2011, 273, 226–234. [Google Scholar] [CrossRef]
- Rabiee, H.; Farahani, M.H.D.A.; Vatanpour, V. Preparation and characterization of emulsion poly (vinylchloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J. Membr. Sci. 2014, 472, 185–193. [Google Scholar] [CrossRef]
Polymers | Process | Nanoparticles | Reference | |
---|---|---|---|---|
Name | Content | |||
PVC | UF | (Ag-n-TiO2) | 0 to 1.5 wt% | [10] |
PVDF | MF | TiO2 | 0.05 wt. % | [13] |
PVDF | UF | TiO2 | 0.1 g/l | [14] |
PVDF | UF | TiO2 | 0.5–1 wt. % | [15] |
PVDF | UF | TiO2 | 0–6 wt % | [16] |
PP | UF | TiO2 | --- | [17] |
PSF | UF | TiO2 | 0.1, 0.25 and 0.5 wt. % | [18] |
CAC | UF | TiO2 | 0–25 wt.% | [11] |
PES | NF | TiO2 | 0.125 gm | [19] |
Element | TiO2 Content | ||
---|---|---|---|
0.5 (mg) | 1 (mg) | 1.5 (mg) | |
C | 64.35 | 56.92 | 36.36 |
Cl | 27.65 | 32.36 | 43.64 |
O | 6.89 | 9.17 | 7.89 |
Ti | 1.11 | 1.54 | 12.11 |
Membrane Type | Mean Pore Size (nm) | |
---|---|---|
Top Surface | Bottom Surface | |
PT-0 | 69 | 96 |
PT-0.5 | 92 | 99 |
PT-1 | 99 | 114 |
PT-1.5 | 77 | 112 |
Materials Type | Rz (nm) | Rq (nm) | Rz (nm) | |||
---|---|---|---|---|---|---|
Top | Bottom | Top | Bottom | Top | Bottom | |
PT-0 | 6.48 | 2.18 | 7.9 | 2.52 | 35.8 | 8.62 |
PT-0.5 | 4.6 | 3.8 | 5.42 | 4.6 | 20.7 | 20.5 |
PT-1 | 2.36 | 1.49 | 2.97 | 1.78 | 19.8 | 7.58 |
PT-1.5 | 2.82 | 2.74 | 3.46 | 3.46 | 18 | 17.7 |
Materials Type | Tensile Strength |
---|---|
PT-0 | 2.098 ± 0.21 |
PT-0.5 | 2.254 ± 0.43 |
PT-1 | 2.269 ± 0.37 |
PT-1.5 | 2.281 ± 0.51 |
Influent | PT-0 | PT-0.5 | PT-1_Effluent | PT-1.5 | Allowable Limits | |
---|---|---|---|---|---|---|
Turbidity (NTU) | 20.7 | 1.25 | 1.1 | 0.4 | 0.9 | 5 |
TSS (mg/L) | 146 | 14.6 | 6.2 | 1.1 | 1.8 | 60 |
Oil and grease (mg/L) | 40.41 | 4.4 | 2.4 | 1 | 1.5 | 10 |
Heavy metal “Zn” (mg/L) | 82.3 | 0.039 | 0.028 | 0.028 | 0.027 | 2.0 |
COD (mg/L) | 290 | 99 | 67 | 65 | 59 | 100 |
Membrane Material | Type and Amount of Additive | Mean Pore Size (nm) | Porosity (%) | Contact Angle | Flux Recovery Ratio (%) | Removal Efficiency (%) | PWP (L/m2·h) | Ref. |
---|---|---|---|---|---|---|---|---|
PVC (15 wt.%) (Flat sheet) | MWCNT-g-GO (0.119 wt.%) | 259 | 81.4 | 13.9° | - | COD: 88.9 | 254 | [3] |
PVDF (16wt.%) (Flat sheet) | TiO2 (˂ 2 wt.%) | 47.3 | 76° | - | * BSA:100 | 111.7 | [8] | |
PSF/PVP; 18:5 wt/wt% (hollow fiber) | TiO2 (2 wt.%) | 53.82 | 71.7 | _ | - | * (HA) ˃90% | 120.11 | [29] |
NF-1 NE2540-70 NF-2.NE2540-90 (SAEHAN Corp., Korea) Polyamide (supported by PSf+polyester) | 0.29 0.18 | Long-term operation of 8 h With Stable final flux | Oily wastewater COD: 69 COD: 84 | 32 29 | [35] | |||
PVDF; 19 wt.% (hollow fiber) | TiO2 (1.95 wt.%) | 34.05 | 85.41 | 50 | 81.7 | Synthetic refinery wastewater: 98.83 | 82.5 | [36] |
* EPVC/PEG; 15:4 wt./wt.% | TiO2 (2 wt.%) | 25 | 78.7 | 57.2° | 81 | BSA: 98 | 435 | [37] |
PVC (15 wt.%) (Flat-sheet) | TiO2: 1.5 gm | 77 | 79.5 | 62.5° | 89.9 | Oil and grease: 96.3 COD: 79.7 TSS: 98.8 | 116 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes 2020, 10, 77. https://doi.org/10.3390/membranes10040077
Al-Ani FH, Alsalhy QF, Raheem RS, Rashid KT, Figoli A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes. 2020; 10(4):77. https://doi.org/10.3390/membranes10040077
Chicago/Turabian StyleAl-Ani, Faris H., Qusay F. Alsalhy, Rawia Subhi Raheem, Khalid T. Rashid, and Alberto Figoli. 2020. "Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater" Membranes 10, no. 4: 77. https://doi.org/10.3390/membranes10040077
APA StyleAl-Ani, F. H., Alsalhy, Q. F., Raheem, R. S., Rashid, K. T., & Figoli, A. (2020). Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes, 10(4), 77. https://doi.org/10.3390/membranes10040077