Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization of the Prepared Membranes
2.3.1. CA Test
2.3.2. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX)
2.3.3. Fourier Transforms Infrared Spectroscopy (FTIR) and X-ray Diffraction
2.3.4. AFM Test
2.3.5. Tensile Test
2.3.6. Porosity Test
2.4. PVC-TiO2-NPs Membrane Performance
2.5. Experimental Setup
3. Results and Discussion
3.1. CA, Thickness, and Porosity
3.2. EDX Analysis
3.3. FTIR Results
3.4. X-ray Diffraction Results
3.5. Morphology Examination by SEM
3.6. AFM Test
3.7. Mechanical Tensile Test
3.8. Performance of the Membranes (Short-Term and Long-Term)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO and UNICEF. Global Water Supply and Sanitation Assessment; Report; World Health Organization and United Nations Children’s Fund: New York, NY, USA, 2000; ISBN 92-4-156202-1. [Google Scholar]
- Metcalf and Eddy, Inc. Wastewater Engineering, Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Sadiq, A.J.; Shabeeb, K.M.; Khalil, B.I.; Alsalhy, Q.F. Effect of embedding MWCNT-g-GO with PVC on the performance of PVC membranes for oily wastewater treatment. Chem. Eng. Commun. 2020, 207, 733–750. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem. Eng. J. 2018, 133, 130–139. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E.; Jabuk, S.I.A. A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor. Chem. Eng. Process. Process Intensif. 2018, 130, 262–274. [Google Scholar] [CrossRef]
- Jamed, M.J.; Alanezi, A.A.; Alsalhy, Q.F. Effects of embedding functionalized multiwalled carbon nanotubes and alumina on the direct contact poly (vinylidene fluoride-cohexafluoropropylene) membrane distillation performance. Chem. Eng. Commun. 2019, 206, 1035–1057. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Ali, J.M.; Ali, A.A.; Ali, R.; Bart, V.D.B.; Balta, S. Enhancement of poly(phenyl sulfone) membranes with ZnO nanoparticles. Desalin. Water Treat. 2013, 51, 6070–6081. [Google Scholar] [CrossRef]
- Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 2006, 253, 2003–2010. [Google Scholar] [CrossRef]
- Claudia, U.; Roberto, C.; Drioli, E.; Gzara, L.; MAlbeirutty, H.; Figoli, A. Progress of Nanocomposite Membranes for Water Treatment. Membranes 2018, 8, 18. [Google Scholar]
- Yu, Z.; Zhao, Y.; Gao, B.; Liu, X.; Jia, L.; Zhao, F.; Ma, J. Performance of novel a Ag-n-TiO2/PVC reinforced hollow fiber membrane applied in water purification: In situ antibacterial properties and resistance to biofouling. R. Soc. Chem. 2015, 5, 97320–97329. [Google Scholar] [CrossRef]
- Abedini, R.; Mousavi, S.M.; Aminzadeh, R. A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study. Desalination 2011, 277, 40–45. [Google Scholar] [CrossRef]
- Yuliwati, E.; Mohruni, A.S.; Ismail, A.F. Reducing of energy process on refinery wastewater treatment using membrane ultrafiltration. In Proceedings of the EnCon 2013, 6th Engineering Conference, Energy and Environment, Kuching Sarawak, Malaysia, 2–4 July 2013; pp. 1–7. [Google Scholar]
- Madaeni, S.S.; Zinadini, S.; Vatanpour, V.A. new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J. Membr. Sci. 2011, 380, 155–162. [Google Scholar] [CrossRef]
- Teow, Y.H.; Seng, O.B.; Ahmad, A.L.; Lim, J.K. Mixed-Matrix Membrane for Humic Acid Removal: Influence of Different Types of TiO2 on Membrane Morphology and Performance. Int. J. Chem. Eng. Appl. 2012, 3, 374–379. [Google Scholar] [CrossRef]
- Rajaeian, B.; Heitz, A.; Tade, M.O.; Liu, S. Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J. Membr. Sci. 2015, 485, 48–59. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Pi, J.K.; Yang, H.C.; Wan, L.S.; Wu, J.; Xu, Z.K. Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J. Membr. Sci. 2016, 500, 8–15. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Rahimpour, A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate. J. Ind. Eng. Chem. 2014, 20, 1261–1268. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Balta, S.; Kim, J.; van der Bruggen, B. Doping of polyethersulfone nanofiltration membranes: Antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 2011, 21, 10311. [Google Scholar] [CrossRef]
- Behboudiy, A.; Jafarzadah, Y.; Yegani, R. Preparation and characterization of TiO2 embedded PVC Ultrafiltration membranes. Chem. Eng. Res. Des. 2016, 144, 96–107. [Google Scholar] [CrossRef]
- Mcgaughey, A.L.; Gustafson, R.D.; Childress, A.E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. J. Membr. Sci. 2017, 543, 143–150. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Tyler, J.L.; Stretz, H.A.; Wells, M.J. Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination 2015, 372, 47–56. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; Bruggen, B.V. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes. J. Colloid Interface Sci. 2011, 363, 540–550. [Google Scholar] [CrossRef]
- Reddeppa, N.; Sharma, A.K.; Narasimha, R.V.; Chen, W. AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 2014, 47, 33–41. [Google Scholar] [CrossRef]
- El Sherbiny, S.; Morsy, F.; Marwa, S.; Fouad, O.A. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nanosci. 2014, 4, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Strathmann, H.; Kock, K. The Formation mechanism of phase inversion membranes. Desalination 1977, 21, 241–255. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Sufyan, F.; Alwan, G.M.; Simone, S.; Figoli, A.; Drioli, E. Hollow fiber ultrafiltration membranes from poly(vinyl chloride): Preparation, morphologies and properties. Sep. Sci. Technol. 2011, 46, 2199–2210. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Rashid, K.T.; Noori, W.A.; Simone, S.; Figoli, A.; Drioli, E. Poly (vinyl chloride) hollow fibers membranes for ultrafiltration applications: Effects of internal coagulant composition. J. Appl. Polym. Sci. 2012, 124, 2087–2099. [Google Scholar] [CrossRef]
- Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; Abdullah, M.S. Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humicacid removal. Desalination 2011, 273, 85–92. [Google Scholar] [CrossRef]
- He, Y.; Jiang, Z.W. Technology review: Treating oilfield wastewater. Filtr. Sep. 2008, 45, 14–16. [Google Scholar] [CrossRef]
- Salahi, A.; Gheshlaghi, A.; Mohammadi, T.; Madaeni, S.S. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 2010, 262, 235–242. [Google Scholar] [CrossRef]
- Salahi, A.; Noshadi, I.; Badrnezhad, R.; Kanjilal, B.; Mohammadi, T. Nano porous membrane process for oily wastewater treatment: Optimization using response surface methodology. J. Environ. Chem. Eng. 2013, 1, 218–225. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption technique. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Council of Ministers. Rivers Maintaining System and General Water from Pollution No. 25; Council of Ministers: Baghdad, Iraq, 2010. [Google Scholar]
- Rahimpour, A.; Rajaeian, B.; Hosienzadeh, A.; Madaeni, S.S.; Ghoreishi, F. Treatment of oily wastewater produced by washing of gasoline reserving tanks using self-made and commercial nanofiltration membranes. Desalination 2011, 265, 190–198. [Google Scholar] [CrossRef]
- Yuliwati, E.; Ismail, A.F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 2011, 273, 226–234. [Google Scholar] [CrossRef]
- Rabiee, H.; Farahani, M.H.D.A.; Vatanpour, V. Preparation and characterization of emulsion poly (vinylchloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J. Membr. Sci. 2014, 472, 185–193. [Google Scholar] [CrossRef]
Polymers | Process | Nanoparticles | Reference | |
---|---|---|---|---|
Name | Content | |||
PVC | UF | (Ag-n-TiO2) | 0 to 1.5 wt% | [10] |
PVDF | MF | TiO2 | 0.05 wt. % | [13] |
PVDF | UF | TiO2 | 0.1 g/l | [14] |
PVDF | UF | TiO2 | 0.5–1 wt. % | [15] |
PVDF | UF | TiO2 | 0–6 wt % | [16] |
PP | UF | TiO2 | --- | [17] |
PSF | UF | TiO2 | 0.1, 0.25 and 0.5 wt. % | [18] |
CAC | UF | TiO2 | 0–25 wt.% | [11] |
PES | NF | TiO2 | 0.125 gm | [19] |
Element | TiO2 Content | ||
---|---|---|---|
0.5 (mg) | 1 (mg) | 1.5 (mg) | |
C | 64.35 | 56.92 | 36.36 |
Cl | 27.65 | 32.36 | 43.64 |
O | 6.89 | 9.17 | 7.89 |
Ti | 1.11 | 1.54 | 12.11 |
Membrane Type | Mean Pore Size (nm) | |
---|---|---|
Top Surface | Bottom Surface | |
PT-0 | 69 | 96 |
PT-0.5 | 92 | 99 |
PT-1 | 99 | 114 |
PT-1.5 | 77 | 112 |
Materials Type | Rz (nm) | Rq (nm) | Rz (nm) | |||
---|---|---|---|---|---|---|
Top | Bottom | Top | Bottom | Top | Bottom | |
PT-0 | 6.48 | 2.18 | 7.9 | 2.52 | 35.8 | 8.62 |
PT-0.5 | 4.6 | 3.8 | 5.42 | 4.6 | 20.7 | 20.5 |
PT-1 | 2.36 | 1.49 | 2.97 | 1.78 | 19.8 | 7.58 |
PT-1.5 | 2.82 | 2.74 | 3.46 | 3.46 | 18 | 17.7 |
Materials Type | Tensile Strength |
---|---|
PT-0 | 2.098 ± 0.21 |
PT-0.5 | 2.254 ± 0.43 |
PT-1 | 2.269 ± 0.37 |
PT-1.5 | 2.281 ± 0.51 |
Influent | PT-0 | PT-0.5 | PT-1_Effluent | PT-1.5 | Allowable Limits | |
---|---|---|---|---|---|---|
Turbidity (NTU) | 20.7 | 1.25 | 1.1 | 0.4 | 0.9 | 5 |
TSS (mg/L) | 146 | 14.6 | 6.2 | 1.1 | 1.8 | 60 |
Oil and grease (mg/L) | 40.41 | 4.4 | 2.4 | 1 | 1.5 | 10 |
Heavy metal “Zn” (mg/L) | 82.3 | 0.039 | 0.028 | 0.028 | 0.027 | 2.0 |
COD (mg/L) | 290 | 99 | 67 | 65 | 59 | 100 |
Membrane Material | Type and Amount of Additive | Mean Pore Size (nm) | Porosity (%) | Contact Angle | Flux Recovery Ratio (%) | Removal Efficiency (%) | PWP (L/m2·h) | Ref. |
---|---|---|---|---|---|---|---|---|
PVC (15 wt.%) (Flat sheet) | MWCNT-g-GO (0.119 wt.%) | 259 | 81.4 | 13.9° | - | COD: 88.9 | 254 | [3] |
PVDF (16wt.%) (Flat sheet) | TiO2 (˂ 2 wt.%) | 47.3 | 76° | - | * BSA:100 | 111.7 | [8] | |
PSF/PVP; 18:5 wt/wt% (hollow fiber) | TiO2 (2 wt.%) | 53.82 | 71.7 | _ | - | * (HA) ˃90% | 120.11 | [29] |
NF-1 NE2540-70 NF-2.NE2540-90 (SAEHAN Corp., Korea) Polyamide (supported by PSf+polyester) | 0.29 0.18 | Long-term operation of 8 h With Stable final flux | Oily wastewater COD: 69 COD: 84 | 32 29 | [35] | |||
PVDF; 19 wt.% (hollow fiber) | TiO2 (1.95 wt.%) | 34.05 | 85.41 | 50 | 81.7 | Synthetic refinery wastewater: 98.83 | 82.5 | [36] |
* EPVC/PEG; 15:4 wt./wt.% | TiO2 (2 wt.%) | 25 | 78.7 | 57.2° | 81 | BSA: 98 | 435 | [37] |
PVC (15 wt.%) (Flat-sheet) | TiO2: 1.5 gm | 77 | 79.5 | 62.5° | 89.9 | Oil and grease: 96.3 COD: 79.7 TSS: 98.8 | 116 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ani, F.H.; Alsalhy, Q.F.; Raheem, R.S.; Rashid, K.T.; Figoli, A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes 2020, 10, 77. https://doi.org/10.3390/membranes10040077
Al-Ani FH, Alsalhy QF, Raheem RS, Rashid KT, Figoli A. Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes. 2020; 10(4):77. https://doi.org/10.3390/membranes10040077
Chicago/Turabian StyleAl-Ani, Faris H., Qusay F. Alsalhy, Rawia Subhi Raheem, Khalid T. Rashid, and Alberto Figoli. 2020. "Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater" Membranes 10, no. 4: 77. https://doi.org/10.3390/membranes10040077
APA StyleAl-Ani, F. H., Alsalhy, Q. F., Raheem, R. S., Rashid, K. T., & Figoli, A. (2020). Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes, 10(4), 77. https://doi.org/10.3390/membranes10040077