Electromembrane Processes: Emerging Applications, Materials and Process Configurations

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Processing and Engineering".

Deadline for manuscript submissions: closed (15 November 2020) | Viewed by 15187

Special Issue Editor


E-Mail Website
Guest Editor
IEC Group, Departament d’Enginyeria Quimica i Nuclear, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
Interests: ion transport; electrochemistry; electromembrane processes; water treatment; energy

Special Issue Information

Dear Colleagues,

Since the successful production of the first polymeric films with ion-exchange properties was achieved in the early years of the past century, the world has witnessed fascinating advances in the field of electrodialysis and related operations. Diverse disciplines of science and engineering merge into electromembrane processes, such as electrochemistry, surface science and mass transfer. Conceived initially for the deionization of brackish waters, electromembrane processes have evolved and find now application in a wide variety of devices. The singularity of selective ion transport lies in the fact that it involves a mass transfer process with the simultaneous motion of electric charge, thus exemplifying a key nexus between water and energy.

Scientists conducting research in the field of electromembrane and related processes are invited to submit their contributions to this special issue reporting their latest advances on new applications of electromembrane processes, novel modes of operation of electrochemical cells and the implementation of smart ion-exchange materials and their resulting outcomes. Papers about hybrid electrochemical cells such as bioelectrochemical reactors, energy-harvesting processes, such as reverse electrodialysis, and studies on overlimiting mass transfer phenomena are also within the scope of this special issue. Experimental and simulation works as well as reviews are welcome.

Dr. Manuel César Martí-Calatayud
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Electrodialysis
  • Ion-exchange membranes
  • Ion transport
  • Selective membrane materials
  • Deionization
  • Hybrid electrochemical reactors
  • Electroconvection
  • Polymer electrolyte membranes

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

8 pages, 3386 KiB  
Communication
Purification of Wet-Process Phosphoric Acid via Donnan Dialysis with a Perfluorinated Sulfonic Acid Cation-Exchange Membrane
by Qin Zhong, Tao Luo, Zhengjuan Yan, Lin Yang, Zhiye Zhang and Xinlong Wang
Membranes 2021, 11(4), 298; https://doi.org/10.3390/membranes11040298 - 20 Apr 2021
Cited by 6 | Viewed by 2367
Abstract
This work reports the application of an electromembrane process, Donnan dialysis (DD), for the purification of so-called wet-process phosphoric acid (WPA). Nitric acid is used as the stripping solution to remove metallic cations (mostly Fe3+, Al3+, and Mg2+ [...] Read more.
This work reports the application of an electromembrane process, Donnan dialysis (DD), for the purification of so-called wet-process phosphoric acid (WPA). Nitric acid is used as the stripping solution to remove metallic cations (mostly Fe3+, Al3+, and Mg2+) that are harmful to the further processing of WPA. The paper first presents a set of experimental data on the measurements of the metallic cation fluxes through a perfluorinated sulfonic acid cation-exchange membrane. Not only WPA, but also synthetic phosphoric acid solutions with mixed metallic cations (MPA) and with a single metallic cation (SPA) were studied. This confrontation confirms (1) that the order of metallic cations fluxes is Mg2+ > Al3+ > Fe3+; (2) that, compared with MPA, the purification effect of WPA causes only negligible change; (3) that, by comparing the DD processes with SPA and MPA solutions, the reason for the low transmembrane fluxes of Fe3+ and Al3+ could be explained by the large ionic charge and large hydrated ion radius. Furthermore, by analyzing the ion composition of membranes equilibrated in SPA solutions, we conclude that the forms of cations in the membrane are most likely Fe3+, Al3+, and Mg2+. Full article
Show Figures

Figure 1

15 pages, 1972 KiB  
Article
Trade-Off between Operating Time and Energy Consumption in Pulsed Electric Field Electrodialysis: A Comprehensive Simulation Study
by Manuel César Martí-Calatayud, Mario Sancho-Cirer Poczatek and Valentín Pérez-Herranz
Membranes 2021, 11(1), 43; https://doi.org/10.3390/membranes11010043 - 08 Jan 2021
Cited by 7 | Viewed by 1937
Abstract
Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application [...] Read more.
Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes. Full article
Show Figures

Figure 1

13 pages, 2610 KiB  
Article
Reverse Electrodialysis: Co- and Counterflow Optimization of Multistage Configurations for Maximum Energy Efficiency
by Joost Veerman
Membranes 2020, 10(9), 206; https://doi.org/10.3390/membranes10090206 - 28 Aug 2020
Cited by 12 | Viewed by 2396
Abstract
Reverse electrodialysis (RED) is one of the techniques able to harvest energy from the salinity gradient between different salt solutions. There is a tradeoff between efficiency and generated power in a RED stack. This paper focuses on efficiency. A simple model is presented [...] Read more.
Reverse electrodialysis (RED) is one of the techniques able to harvest energy from the salinity gradient between different salt solutions. There is a tradeoff between efficiency and generated power in a RED stack. This paper focuses on efficiency. A simple model is presented to calculate the efficiency in a co-flow or counterflow operated stack. Moreover, the efficiency can be improved by applying multistaging; the stacks in such a system can also be interconnected externally in co- and counterflow. The four combinations of internally and externally flow modes are the base of further considerations concerning procedures for optimization of these configurations. Three methods for optimization the energy efficiency in a multistage system are discussed: (A) successively maximizing the power of each individual stage, (B) maximizing the power of the whole system by adjusting the electrical current in all stages simultaneously, and (C) maximizing the power of the whole system by adjusting the same current through each stage. Method C is the most attractive because it only requires one converter (cheaper and easier to control) while the results are hardly inferior to B and much better than A. An alternative to multistaging is electrode segmentation and the advantages and disadvantages of both systems are briefly discussed. Full article
Show Figures

Graphical abstract

16 pages, 2094 KiB  
Article
Electrochemical Characteristics of Glycerolized PEO-Based Polymer Electrolytes
by Muhammad S. Mustafa, Hewa O. Ghareeb, Shujahadeen B. Aziz, M. A. Brza, Shakhawan Al-Zangana, Jihad M. Hadi and M. F. Z. Kadir
Membranes 2020, 10(6), 116; https://doi.org/10.3390/membranes10060116 - 05 Jun 2020
Cited by 45 | Viewed by 3845
Abstract
In this article, poly(ethylene oxide)-based polymer electrolyte films doped with ammonium iodide (NH4I) and plasticized with glycerol were provided by a solution casting method. In the unplasticized system, the maximum ionic conductivity of 3.96 × 10 5   S cm [...] Read more.
In this article, poly(ethylene oxide)-based polymer electrolyte films doped with ammonium iodide (NH4I) and plasticized with glycerol were provided by a solution casting method. In the unplasticized system, the maximum ionic conductivity of 3.96 × 10 5   S cm−1 was achieved by the electrolyte comprised of 70 wt. % PEO:30 wt. % NH4I. The conductivity was further enhanced up to   ( 1.77 × 10 4 S cm−1) for the plasticized system when 10 wt. % glycerol was added to the highest conducting unplasticized one at ambient temperature. The films were characterized by various techniques to evaluate their electrochemical performance. The results of impedance spectroscopy revealed that bulk resistance (Rb) considerably decreased for the highest plasticized polymer electrolyte. The dielectric properties and electric modulus parameters were studied in detail. The LSV analysis verified that the plasticized system can be used in energy storage devices with electrochemical stability up to 1.09 V and the TNM data elucidated that the ions were the main charge carrier. The values of the ion transference number (tion) and electron transfer number (tel) were calculated. The nonappearance of any redox peaks in the cyclic voltammograms indicated that the chemical reaction had not occurred at the electrode/electrolyte interface. Full article
Show Figures

Graphical abstract

21 pages, 4808 KiB  
Article
Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations
by Kayo Santana Barros, Tatiana Scarazzato, Valentín Pérez-Herranz and Denise Crocce Romano Espinosa
Membranes 2020, 10(4), 69; https://doi.org/10.3390/membranes10040069 - 11 Apr 2020
Cited by 23 | Viewed by 3935
Abstract
Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as [...] Read more.
Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion-exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection. Full article
Show Figures

Graphical abstract

Back to TopTop