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Abstract: Proteins embedded in biological membranes perform essential functions in all organisms,
serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular
roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of
FDA-approved drugs, yet their extensive characterization using established biochemical and biophys-
ical methods has continued to be elusive due to challenges associated with the purification of these
insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein
particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be
expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer
sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spec-
troscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields
quantitative biophysical information, such as diffusion kinetics and concentrations, about individual
or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS
fundamentals. We then provide a focused review of studies that employed FCS in combination with
nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin,
bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis
type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor
(EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).

Keywords: fluorescent correlation spectroscopy; membrane proteins; nanodiscs; cell-free expression

1. Isolation of Membrane Proteins

Membrane protein research is critical to understanding cell uptake (e.g., of nutrients,
pharmaceuticals, invading pathogens and toxic materials), signaling across the membrane,
and diverse other functions. Unfortunately, the hydrophobicity of membrane proteins con-
tributes to their insolubility and instability outside their natural lipid bilayer environment,
thus complicating their purification and subsequent structural and solution-based studies.
Indeed, while they comprise almost 30% of all human proteins [1], membrane proteins
make up only 3–4% of structures in the Protein Data Bank [2].

While the common approach of detergent micelle solubilization can enable solution
studies of membrane proteins, these methods are fraught with difficulties in producing
suitable quantities of pure, stable, soluble, monodisperse protein and often require trun-
cation or modification of the full-length membrane protein to create a stable construct.
Optimization of solubilization conditions while maintaining native fold can be difficult
to impossible and may lead to the loss of functionally critical phospholipids, making ag-
gregation challenging to avoid [3]. Newer amphiphilic reagents with advantages over
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conventional detergents continue to be developed, including the use of peptides [4–7],
amphiphilic polymers [8], and maltose-neopentyl glycol (MNG) amphiphiles [9]. Alterna-
tively, modifying the membrane protein of interest can also enable solution-based studies,
for example by fusion with an N-terminal peptide that prevents membrane insertion and
with a C-terminal amphipathic protein that keeps it soluble [10]. However, all of the above
approaches remove the membrane protein of interest from its native lipid environment,
which can significantly impact protein conformation and function.

As a result, a major focus of research has been the development of membrane mimetics
that can be used to assess the in vitro behavior of membrane proteins while preserving their
native structure and function, the most widespread of which are liposomes [11,12]. Unlike
detergents, liposomes provide a more native environment in which membrane proteins are
embedded in a lipid bilayer. They can be made in different sizes ranging from 20 nm to
>1 µm depending on the preparation method [13–16]. However, liposomes present their
own drawbacks and suffer from substantial issues with size heterogeneity and reproducible
production of high-quality liposomes for different protein systems [13,17]. Liposomes are
also often sparingly soluble and provide no control over how individual proteins inserted
interact and oligomerize, thus confounding studies of protein association and binding that
require isolated entities.

2. Nanodiscs as a Membrane Mimetic

An alternative method to simulate the membrane environment in solution is the use
of membrane mimetics that form membrane protein supporting scaffolds in the form of a
lipid “nanodisc”. Nanodiscs consist of a section of lipid bilayer ~10 nm in diameter sur-
rounded by a supporting belt or scaffold (Figure 1) [18]. Integral membrane proteins can be
embedded in the bilayer to form soluble protein–nanodisc complexes. The composition of
the bilayer can be varied to contain specific lipid mixtures, cholesterol, lipopolysaccharides,
and synthetic lipids or membrane-incorporating species such as telodendrimers [19,20].
Thus, the composition can be specified to mimic cellular membranes, while species with
specific functionality (e.g., biotinylation [21–24], Ni functionalization [25–28] or fluorescent
labels) can also be incorporated. In some cases, lipids from native membranes can also be
incorporated [29–35]. Compared to lipid vesicles, nanodiscs are easier to synthesize with
monodisperse or discrete size distributions and do not introduce any unnatural curvature.
Multiple types of nanodiscs have been developed in recent decades which principally
differ based on the scaffold used to contain the lipid bilayer, including scaffolds consisting
of apolipoproteins (to form nanolipoprotein particles, or NLPs), polymers, saposin, pep-
tides, and DNA. Each platform has advantages and drawbacks for use in structural and
biochemical studies, as discussed in a recent review [36].

Nanolipoprotein particles (NLPs), the most widely adopted version of nanodiscs, use
membrane scaffold proteins (MSPs) to encircle and stabilize the lipid bilayer. The MSP
usually consists of two copies of an apolipoprotein, an amphipathic α-helical protein with
a physiological role in lipid-binding and transport. NLPs were first developed in 2002 by
Bayburt, Grinkova, and Sligar while studying human membrane-binding proteins as a
means to create realistic and structurally consistent artificial membranes [37]. Common
MSPs use a truncated version of the human lipid-binding protein Apo A-1 (MSP1) and its
various engineered derivatives, producing nanodiscs with diameters ranging from 10 to
15 nm [3,19,38]. More recently, Nasr et al. achieved even greater homogeneity in nanodisc
size (11–12 nm) by covalently linking the C- and N-termini of MSPs. These “covalently
circularized nanodiscs” have improved thermostability and proteolytic resistance, and the
technology can be extended to produce a variety of defined sizes and geometries [39,40].

However, a limitation of MSP-based nanodiscs is that both membrane protein and
apolipoprotein must be recombinantly expressed and solubilized by detergents before they
are assembled into nanodiscs, which may cause denaturation and aggregation before the
membrane protein of interest can be introduced into the membrane mimetic. Cell-free
co-translation of the scaffold protein and target membrane protein in the presence of lipid,
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which leads to the embedding of the membrane protein into the bilayer and self-assembly
of apolipoprotein scaffolded nanodiscs, enables the encapsulation of membrane proteins
within homogenous populations of membrane mimetics particles while circumventing the
need for detergent solubilization and purification before lipid bilayer insertion [41–43]. This
avoids often lengthy optimization steps, both in detergent selection and in the engineering
of stable constructs, to ensure the membrane protein is soluble and presents a native
fold. Importantly, this both functionally expands the utility of nanodisc encapsulation to
full-length membrane proteins previously not amenable to detergent solubilization and
preserves native function for such systems [44,45].

Membranes 2022, 12, 392 3 of 17 
 

 

 
Figure 1. (A) Transmembrane protein embedded in a nanodisc lipid bilayer supported by (left) scaf-
fold lipoproteins (NLPs) and (right) styrene maleic acid copolymers (SMALPs). (B) One-pot cell-
free synthesis of membrane protein NLP complexes using a co-translational approach: transmem-
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of nanodisc loaded with the membrane protein of interest [41–43]. 
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Figure 1. (A) Transmembrane protein embedded in a nanodisc lipid bilayer supported by (left) scaf-
fold lipoproteins (NLPs) and (right) styrene maleic acid copolymers (SMALPs). (B) One-pot cell-free
synthesis of membrane protein NLP complexes using a co-translational approach: transmembrane
proteins and apolipoproteins are translated from cDNA simultaneously in the presence of liposomes
using the translational machinery of an E. coli cell-free lysate, leading to the self-assembly of nanodisc
loaded with the membrane protein of interest [41–43].

Another limitation of NLPs is that depending on the method of preparation, some
heterogeneity in disc size and membrane protein insertion rate can remain. One study noted
a broad size distribution [46], while several others reported the existence of the inserted
membrane protein in a multimeric state [29,47]. Greater control over size and protein
insertion rate can be achieved by various techniques and should be optimized for the
particular protein under study. For example, with the ability to precisely prescribe the size
of covalently circularized nanodiscs and lipid compositions, one can influence the number
of proteins incorporated in the constrained bilayer [40]. It has also been demonstrated that
with careful specification of plasmid levels and lipid compositions in cell-free expression
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systems, a monomeric incorporation of the membrane protein can be achieved in ~80% of
NLPs [48]. Such techniques can be tuned to reduce heterogeneity and specify insertion rate
as suitable for different types of studies.

Other varieties of nanodisc have been developed that use a co-polymer rather than
lipid-binding proteins as the surrounding belt, as reviewed recently [34,49,50]. The most
widely used polymer is styrene maleic acid (SMA), first shown to form nanodiscs on
introduction to bacteriorhodopsin loaded liposomes by Knowles et al. in 2009 [30]. Newer
co-polymers such as di-isobutylene maleic acid (DIBMA) are increasingly utilized to vary
disc geometry and tune polymer/membrane interaction [51,52]. SMA removes a section of
lipid bilayer to form styrene co-maleic acid lipid particles (SMALPs), a technique that has
found greatest use in detergent-free solubilization of proteins of interest from native cell
membranes for biochemical and structural studies [31–35,53–55]. Avoiding disassembly
and reconstitution allows membrane proteins to exist in a disc of membrane as close as
possible to their natural cellular conditions. SMALPs also display excellent thermal and
temporal stability, keeping their protein monodisperse and functional for over a week
at 4 ◦C [35,56]. While polymer nanodiscs do not have the benefit of the discretized size
population of MSP-based nanodiscs, varying the co-polymer monomer ratios and new
polymer designs are improving their size control, pH stability, and other spectroscopic and
biochemical properties [57].

3. Fluorescence Correlation Spectroscopy

The interactions between membrane proteins and their ligands, agonists, and antag-
onists provide a basis for understanding their physiological functions and how they are
affected by pathogens, cancer, and drugs. Techniques for studying these interactions in-
clude atomic force microscopy (AFM), surface plasmon resonance (SPR), circular dichroism
spectroscopy, and fluorescence techniques such as fluorescence correlation spectroscopy
(FCS), fluorescence recovery after photobleaching (FRAP), and Förster resonance energy
transfer (FRET). Here, we first focus on FCS, then review the use of FCS combined with
nanodisc technologies in studies of several membrane proteins.

In comparison to other techniques, the relative strength of fluorescence techniques are
their specificity, sensitivity, and high-throughput potential. While the species of interest
must be labeled with chromophores or bulky fluorescent proteins, this ensures that the
signal observed is from the molecule of interest. In addition, multiple colors may be used,
allowing multiple species to be traced simultaneously in the same sample. Furthermore,
fluorescence techniques can be used in tandem with other forms of microspectroscopy [58].

Fluorescence correlation spectroscopy is one of the most common fluorescence tech-
niques to study molecular dynamics (Figure 2). In its most common configuration, a
confocal microscope is used to create a femtoliter-sized detection volume in a solution
of fluorescent tagged molecules [59,60]. Individual photons emitted from the fluorescent
molecules diffusing through the detection volume are detected using single photon count-
ing detectors, which record the timestamps of the photon arrivals [61]. By performing the
mathematical correlation operation, the data are converted into a correlation curve which
can be fit to models for various diffusion processes.

FCS presents several advantages over related fluorescence systems. Fluorescence
recovery after photobleaching (FRAP) measures protein diffusion kinetics by briefly photo-
bleaching a region inside a solution, cell, or membrane containing fluorescently labeled
proteins and measuring the time needed for the region to recover the fluorescence signal
as non-bleached proteins diffuse in. Unlike FRAP, FCS can measure multicomponent
diffusion and protein concentrations, requires lower protein concentrations, and is better
suited for short time scale observations [62,63]. Förster resonance energy transfer (FRET) is
a form of nonradiative energy transfer between two molecules used to determine if they
are in proximity to each other. As the FRET efficiency is proportional to the sixth power of
distance between the fluorescent donor and acceptor, FRET is a very sensitive method to
probe for intermolecular binding and protein conformations [64–67]. In practice, however,
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binding measurements using FRET are much more challenging than using FCS because
successful design of FRET pairs at specific positions on proteins requires precise knowledge
of protein structures.
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are of the human β-2 adrenergic receptor conjugated with the green fluorescent protein and embed-
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Figure 2. Fluorescence correlation spectroscopy (FCS) applied to membrane proteins embedded in
nanodiscs. (A) FCS instrument schematic for a single-color system based on a confocal microscope.
A tightly focused laser excitation combined with a confocal pinhole define a small, femtoliter-scale
open detection volume. The emitted fluorescence signal is typically split and projected onto two
detectors to eliminate detector dead time and afterpulsing effects. OBJ: objective; DM: dichroic mirror;
L: lens; PH: pinhole; BS: beamsplitter; BP: bandpass filter; APD: avalanche photodiode. (B) As a
molecule of the fluorescently labeled species, such as the membrane protein embedded in a nanodisc
shown, diffuses through the open detection volume, the detected fluorescence signal fluctuates. Size
of nanodisc in comparison to laser focus not drawn to scale. (C) The g(2) correlation is calculated from
the fluorescence signal (green data points). A simple diffusion model (Equation (1)) (black line) is
fitted to the data, giving the diffusion time and concentration of the diffusing species. Data shown are
of the human β-2 adrenergic receptor conjugated with the green fluorescent protein and embedded
inside an Apo-A1 encircled DMPC nanodisc. Fitted diffusion time τD = 0.92 ± 0.02 ms.

By attaching fluorescent tags to biological macromolecules, virtually any molecule
in solution can be studied by FCS. Proteins can be either expressed as fusions with other
fluorescent proteins or functionalized with chemical fluorescent dyes. The sample does not
need to be removed from solution, allowing solution dynamics to remain unchanged. In
addition to measurements in solution, FCS may be measured inside cells [68–71] allowing
findings from simpler solution-based assays to be validated in cell-based experiments.

Analysis of the correlation curve from FCS measurements gives insight into the phys-
ical properties of a system. The shape of the correlation curve depends on an effective
detection profile produced by the laser excitation volume combined with the detection
pinhole. The simplest model for FCS is that of a single species diffusing in a 2D Gaussian
detection profile, with correlation C given by

C(τ) = 1 +
1

N
(

1 + τ
τD

) (1)

where τ is the time delay, τD is the diffusion time, and N is the average number of fluo-
rescent molecules in the detection volume. τD represents the average time for a molecule
to diffuse out of the open detection volume in the solution. The diffusion constant D,
which is dependent on factors including molecular size and structure, can be calculated
by D = r2

4τD
, where r is the width of the 2D Gaussian profile as determined through a

calibration. The concentration of the species can be calculated from N and the calibrated
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volume. In this model, diffusion in the axial dimension (along the optical path) is ignored
since the timescale of diffusion out of the open detection volume in that axis is much longer.

Deviations from the simple model above can indicate the presence of additional
species with different diffusion times [72], an anomalously diffusing species, or other
photophysical behaviors such as triplet-state excitation [73]. The diffusion of two distinct
species with average numbers N1 and N2 and diffusion times τD1 and τD2 can be modeled
with correlation function

C(τ) = 1 +
N1

(N1 + N2)
2
(

1 + τ
τD1

) +
N2

(N1 + N2)
2
(

1 + τ
τD2

) (2)

The presence of multiple species may be due to different entities (e.g., different pro-
teins) or different states of the same entity (e.g., oligomers or aggregates). The presence
of two species is expected when a biomolecule is present that binds to the fluorescently
tagged species, for example in cases of two interacting proteins or drug binding to protein.
Under sub-saturating concentrations of the non-fluorescent molecule, one species would
be the bound complex (with a longer diffusion time) while the second would be the free
fluorescently labeled molecule. A shift in the correlation curve towards longer diffusion
times is a simple readout of binding when probing for molecular interactions. Note, how-
ever, that the diffusion times of the two species must differ by at least a factor of 1.6 to be
distinguishable under typical conditions [72]. Since diffusion time is inversely proportional
to the cubed root of mass, this criterion stipulates that the masses of the two species must
differ minimally by a factor of 4. Thus, a critical strategy when investigating potential
interactions (e.g., during drug screening) is the placement of the fluorescent label on the
small ligand so that a large change in mass occurs upon binding of the larger protein.

FCS can also be expanded to use multiple colors to observe multiple molecular species
simultaneously. In fluorescence cross-correlation spectroscopy (FCCS), two or more molec-
ular species that may interact are labeled with spectrally dissimilar fluorescent tags and
excited with separate lasers [74]. The distinct fluorescence signals can be autocorrelated
individually as in single-color FCS or cross correlated. Fitting the cross-correlation curve
gives the concentration of bound pairs, which can be used with the concentrations of
each unbound species to calculate the binding coefficient [61]. Alternating laser excitation
and pulsed-interleaved excitation allow for the elimination of many sources of spurious
cross-correlations [75–77].

Conventional FCS only measures diffusion at a single spot of hundreds of nanometers
to 1 µm in size, much smaller than many target areas of interest in biological systems,
thus missing potential spatial heterogeneity in the sample. Various methods have been
developed that extend conventional FCS to provide greater spatial information. Scanning
FCS performs measurements as the observation volume is continuously moved through
the sample, providing spatial information while reducing photobleaching [78]. Imaging
correlation spectroscopy makes use of EMCCD cameras that achieve single-photon sen-
sitivity over a much wider area. Instead of tracking photon counts from a single point,
the camera records an image containing FCS data for hundreds or thousands of pixels
simultaneously [79,80]. Acquiring many correlations in parallel across space not only
provides location-dependent information but also increases the statistics while reducing
acquisition time, thus allowing high-throughput measurements of diffusing species and
their interactions.

FCS has several limitations as a technique in general and when applied to the study
of membrane proteins. As with all fluorescence techniques, one must first ensure that
the fluorescent label does not interfere with the structure or function of the protein under
study. The requirement that two species have masses that differ by at least a factor of 4
to be distinguishable in single-color FCS has been discussed above [72]. Accurate concen-
tration determination requires an accurate calibration of the detection volume as well as
sufficient signal-to-noise ratio. While the use of higher laser powers improves the signal-
to-noise ratio, it can also lead to triplet-state excitation and enlargement of the detection
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volume [73,81,82]. High laser powers can also lead to photobleaching of fluorophores, a
common issue with many fluorescence measurements. Photobleaching is especially detri-
mental in experiments involving slowly diffusing molecules that require long acquisition
times, in which case lower laser powers should be used. In addition, slowly diffusing
aggregations of fluorescently labeled proteins, a problem common with membrane proteins,
produce strong signals that can dramatically skew correlation curves even with a compara-
tively low concentration of aggregates. This again underscores the importance of methods
such as nanodiscs to producing soluble non-aggregated membrane proteins. Finally, proper
interpretation of FCS data requires fitting to a suitable model. Photobleaching, triplet-state
excitation, aggregations, and complexities arising from measurements taken inside cells or
on membranes (e.g., constrained diffusion, immobilization, and active transport) all result
in correlation curves requiring models beyond simple diffusion [83,84].

4. FCS Measurements of Membrane Proteins Embedded in Nanodiscs

Nanodiscs permit the application of solution-based techniques such as FCS to the
study of individual membrane proteins embedded in well-defined bilayers. Starting in the
past decade, FCS has been applied to the study of various membrane proteins embedded
in nanodiscs, as reviewed below and summarized in Table 1.

Table 1. Membrane proteins embedded in nanodiscs and studied by FCS.

Membrane Protein Species Expression and
Assembly System Nanodisc Type Fluorescent Label

Diffusion
Characteristic
(FCS)

Reference

Bacteriorhodopsin
(bR)

H.
salinarum

Cell-free
co-translation

DMPC +
Apo∆49A1

BODIPY-lysine
during translation τD = 0.35 ms Gao et al.,

2011 [47]

ZipA E. coli
Proteins from E. coli,
then mixed
with lipids

E. coli lipid
extract + MSP1D1

Lissamine
rhodamine B on
lipids

D = 32 ± 4 µm2/s
Hernandez-
Rocamora et al.,
2012 [85]

SecYEG E. coli
Proteins from E. coli,
then mixed
with lipids

DOPC, DOPE,
DOPG, CL +
MSP1D1

Alexa Fluor 488 on
protein D = 27 ± 3 µm2/s

Wu et al.,
2012 [86]

YidC E. coli
Proteins from E. coli,
then mixed
with lipids

DOPC, DOPE,
DOPG, CL +
MSP1D1

Alexa Fluor 488 or
Atto 647N on
protein

D = 31 ± 2 µm2/s
Kedrov et al.,
2013 [87]

YidC E. coli
Proteins from E. coli,
then mixed
with lipids

DOPC, DOPE,
DOPG + MSP1D1

Alexa Fluor 488 on
protein D = 39 ± 2 µm2/s

Geng et al.,
2015 [88]

YopB Y. pestis Cell-free
co-translation

DMPC +
Apo∆49A1

Binding to
LcrV-GFP

τD = 0.63 ±
0.06 ms

Ly et al.,
2014 [89]

Epidermal growth
factor receptor
(EGFR)

H. sapiens Cell-free
co-translation

DMPC +
Apo∆49A1

SNAP fusion
construct labeled
with SNAP surface
594

τD = 0.167 ±
0.002 ms

Quinn et al.,
2019 [48]

ABCB1/P-
glycoprotein

M.
musculus

Membrane protein
from P. pastoris, MSP
from E. coli, then
mixed with lipids

DMPC + MSP1D1
Binding to small
BODIPY-linked
ligands

τD = 3.0 ± 0.2 ms Li et al.,
2017 [90]

ABCG2/BCRP
(breast cancer
resistance protein)

H. sapiens

HEK293T expression,
then native
membrane extraction
by SMA

SMALP GFP fusion
construct

D = 31 ± 4 µm2/s
(likely dimer)

Horsey et al.,
2020 [29]

Neurokinin-1
receptor (NK1R) H. sapiens Cell-free

co-translation
DMPC +
Apo∆49A1

GFP fusion
construct

τD = 0.51 ±
0.37 ms

Gao et al.,
2012 [45]
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Table 1. Cont.

Membrane Protein Species Expression and
Assembly System Nanodisc Type Fluorescent Label

Diffusion
Characteristic
(FCS)

Reference

Adenosine A2A
receptor (A2AR) H. sapiens

P. pastoris expression,
then native
membrane extraction
by SMA

SMALP
Binding to small
red BODIPY-linked
ligand

τD = 0.63 ±
0.02 ms
D = 30 ± 4 µm2/s

Grime et al.,
2020 [91]

Neurotensin
receptor 1 (NTSR1) H. sapiens

HEK293T expression,
then native
membrane extraction
by SMA

SMALP mRuby fusion
construct

τD = 5.88 ms
D = 16 µm2/s
(broad size
distribution and
large residuals
noted)

Dathe et al.,
2019 [46]

Wsc1 S. cerevisiae

S. cerevisiae
expression, then
native membrane
extraction by SMA

SMALP GFP fusion
construct

D = 50 ±
4.6 µm2/s

Voskoboynikova
et al., 2021 [92]

Cytochrome c
oxidase (CytcO)

R.
sphaeroides

Membrane protein
from R. sphaeroides,
MSP from E. coli, then
mixed with lipids

DOPG + MSP1D1
or MSP1E3D1

Fluorescein on
lipids or protein

Xu et al.,
2016 [93]

Cell-free co-translation: proteins expressed in the presence of lipids for self-assembly of nanodiscs during
expression. SMALP: styrene maleic acid lipid particles. Apo∆49A1: truncated apolipoprotein A1. DMPC:
1,2-dimyristoyl-sn-glycero-3-phosphocholine. DOPC: dioleoylphosphatidylcholine. DOPE: dioleoylphos-
phatidylethanolamine. DOPG: dioleoylphosphatidylglycerol. CL: cardiolipin. τD: diffusion time. D: diffusion
coefficient.

In the first FCS characterization of a nanodisc-embedded membrane protein, Gao et al.
measured the diffusion times of bacteriorhodopsin (bR) embedded in nanodiscs made
of a DMPC-lipid bilayer surrounded by truncated Apo-A1 [47]. Empty and bR-loaded
nanodiscs had diffusion times ~0.5 ms. The authors also measured the diffusion times
of several particles (e.g., large vesicles, beads, and fluorescent dyes) of known sizes as
determined by dynamic light scattering. From this calibration of diffusion time vs. particle
size, the ~0.5 ms diffusion times of empty and bR-nanodiscs correspond to diameters of
~10 nm, agreeing with the value expected of Apo-A1 nanodiscs.

Since then, FCS has been used to characterize interactions between several other
nanodisc-embedded bacterial membrane proteins and their soluble binding partners.
Hernandez-Rocamora et al. measured the binding of nanodisc-embedded E. coli ZipA,
which provides essential membrane tethering during cell division, to FtsZ in different
polymerization and nucleotide states [85]. Empty nanodiscs made of E. coli polar lipid
extract surrounded by MSP1D1 and discs containing one ZipA protein had diffusion times
of ~0.5 ms, corresponding to diameters of 10 and 13 nm, respectively, as expected. The
addition of FtsZ resulted in a rightward shift of the correlation curve from which the
fraction of bound species was determined.

Wu et al. [86], Kedrov et al. [87], and Geng et al. [88] elucidated the specific nature
of binding between the ribosome and E. coli’s two membrane insertases, SecYEG and
YidC and, in the process, revealed the importance of using a native-like lipid environ-
ment when attempting to uncover physiological binding behavior. Membrane insertases
associate with translating ribosomes and integrate nascent polypeptides into the lipid
bilayer. By FCS measurements of SecYEG embedded in nanodiscs, Wu et al. found that
SecYEG binds ribosome strongly only in the presence of a nascent chain (ribosome-bound
nascent chain complex, RNC) as seen by a rightward shift in the diffusion curve [86]. This
requirement of nascent chain was not fully apparent if not for the use of nanodiscs, as
ribosome without nascent chain was still able to bind the majority of SecYEG solubilized
in detergent. The authors further found that the addition of the SecA protein, which also
binds SecYEG, competitively inhibits binding of RNC to SecYEG-nanodiscs, as seen by
decreases in the fraction of RNC-SecYEG-nanodisc species in FCS diffusion curves. In
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contrast, this competitive binding behavior of SecA and RNC to SecYEG was not observed
when SecYEG was solubilized in detergent rather than nanodiscs; in detergent, almost
all SecYEG was bound to RNC despite the presence of excess SecA. In a parallel study
to that of SecYEG, Kedrov et al. found that when embedded in nanodiscs, YidC binding
to ribosome, as measured by a rightward shift in the FCS correlation curve, also requires
the presence of a translating nascent chain [87]. In contrast, YidC in detergent exhibited
several artifactual interaction characteristics, such as binding of ribosome without nascent
chain at non-physiological acidic pH. Geng et al. further explored the structural basis of
the binding between YidC-nanodiscs and RNC through FCS measurements of YidC mutant
constructs and found that YidC’s cytosolic loop C2 and C terminus are both crucial in this
interaction [88]. All the above results underscore the importance of nanodiscs in providing
a native-like environment to study physiological membrane protein interactions.

Ly et al. used FCS to measure the interactions between Yersinia pestis membrane-bound
YopB and soluble LcrV, two proteins of the bacteria’s type III secretion system critical for
host cell invasion [89]. Binding of YopB-nanodisc to eGFP-LcrV resulted in a rightward
shift in the correlation curve from which the fraction of bound species was determined
(Figure 3). A full binding curve obtained by varying concentrations of YopB-nanodisc
produced a dissociation constant ~20 nM. In addition to enabling FCS measurements, YopB
produced concurrently with nanodiscs in the cell-free expression system had the added
advantage of greater protein solubility [44].
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Figure 3. Binding of nanodisc-embedded membrane proteins to smaller, fluorescently labeled ligands
are easily detectable by FCS due to a large change in diffusion time. (A) Cartoon of the Y. pestis
membrane protein YopB (a multimer) inserted into a 10 nm nanodisc and its cognate protein LcrV
(PDB: 1R6F) labeled with EGFP. (B) FCS correlation curves of LcrV-EGFP in the presence of different
concentrations of YopB-nanodisc (data selected from Ly et al. [89]). Addition of YopB-nanodisc
shifts the correlation curve of LcrV-EGFP to the right. Intermediate concentrations of YopB-nanodisc
result in a diffusion curve with two species present, one of free LcrV-EGFP and one bound to
YopB-nanodisc. Curves are fitted to Equation (2) to obtain the diffusion times and fractions of
the two species. (C) Fraction of LcrV-EGFP bound to YopB-nanodisc at different YopB-nanodisc
concentrations. A fit to the Hill equation gives dissociation constant KD = 20 ± 2 nM and Hill
coefficient n = 1.4 [89].

In addition to studying the above bacterial proteins, FCS in combination with nan-
odisc technology has been used to characterize various eukaryotic membrane proteins.
Voskoboynikova et al. used FCS to demonstrate successful production of monodisperse
Wsc1, a yeast transmembrane cell wall stress sensor, embedded in SMALPs by SMA extrac-
tion from native S. cerevisiae cell membrane [92]. Other studies further characterized by FCS
the interactions between eukaryotic membrane proteins and their substrates. Quinn et al.
measured FCS on nanodisc-embedded full-length epidermal growth factor receptor (EGFR)
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produced by cell-free expression [48]. Remarkably, the authors reported the ability to detect
microsecond shifts in diffusion times upon ATP binding to EGFR-nanodisc and upon phos-
phorylated EGFR-nanodisc binding to a specific antibody. Li et al. [90] and Horsey et al. [29]
used FCS to study ligand binding of ATP binding cassette (ABC) transporters, which couple
ATP hydrolysis to the binding and transport of substrates across membranes and which
play major roles in drug interactions and resistance. Li et al. found that the binding
of several fluorescent-labeled substrates to nanodisc-embedded ABCB1/P-glycoprotein
is dependent on different nucleotide states of the protein [90]. Horsey et al. measured
the binding of fluorescent-prazosin to ABCG2/BCRP (breast cancer resistance protein)
embedded in SMALP by SMA extraction from the native HEK293 cell membrane [29].

Finally, FCS combined with nanodisc technology has been used to study G protein-
coupled receptors (GPCRs), the largest family of membrane proteins in humans and major
drug targets. Dathe et al. purified SMALPs containing neurotensin receptor 1 (NTSR1) and
found its diffusion time by FCS to be much larger than expected along with large fitting
residuals, suggesting a broad rather than monodisperse distribution of sizes [46]. Other
studies investigated ligand binding to GPCRs. Gao et al. produced several nanodisc-bound
human GPCRs by cell-free expression, including neurokinin-1 receptor (NK1R), adrenergic
receptor ADRB2, and dopamine receptor DRD1 [45]. The authors proceeded to measure
by FCS a full binding curve between NK1R-nanodisc and its fluorescently labeled ligand
Substance P, from which a dissociation constant ~83 nM was obtained. More recently, Grime
et al. measured the binding of human adenosine A2A receptor embedded in SMALP to its
fluorescently labeled antagonist xanthine amine congener [91]. The use of FCS to measure
interactions between a small fluorescently-labeled ligand and a large nanodisc-embedded
GPCR invites many future studies for potential drug development.

Beyond the determination of the binding and diffusion biophysics of membrane
proteins, the combination of FCS and nanodisc technology has been used to study the
protonation effect of membranes. Lipid membrane can enrich [H+] near its surface in a
phenomenon known as the local membrane proton-collecting antenna effect, serving to ac-
celerate proton uptake by membrane-bound proton transporters such as bacteriorhodopsin
and cytochrome c oxidase (CytcO). Xu et al. measured FCS curves of fluorescein-labeled
nanodiscs of different sizes, in the absence or the presence of membrane-embedded CytcO,
and under various buffer conditions [93]. The curves were fitted to a multistate model
with components including normal diffusion and fluorescence decay, the latter serving
as the readout of protonation levels as fluorescein fluorescence is highly sensitive to pH.
While previous studies had measured the proton antenna effect for large 30 nm vesicles,
the use of nanodiscs allowed the authors to detect the effect for membranes as small as
9 nm in diameter. The authors also found that the presence of CytcO in the membrane
decreased the effect, requiring a larger membrane (12 nm in diameter) to achieve the same
protonation levels.

A direct comparison of diffusion times is not possible across all the above studies since
different FCS setups have slightly different focal volumes. Rather, conclusions are drawn
within a study based on changes in correlation curves under different biological conditions.
Nevertheless, it is informative to visualize FCS curves of nanodiscs-membrane proteins in
relation to other species across a wide range of sizes. As expected, correlation curves and
diffusion times of membrane proteins embedded in ~10 nm-nanodiscs lie between those of
individual fluorescent proteins (GFP and mCherry) and polystyrene microspheres with
diameters ~40–100 nm (Figure 4).
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Figure 4. FCS correlation curves and diffusion times of nanodisc-embedded membrane proteins
among a large range of particle sizes. (A) A representative correlation curve, from data collected
for 1 min, for each species given in (B). Blue shaded area represents the range in which curves for
membrane proteins embedded in nanodiscs are expected to reside. Green shades represent data
collected with 488 nm laser excitation, and red shades represent data collected with 561 nm laser
excitation. Data were collected on a homemade FCS system with a calibrated detection volume of
~3 µm3. (B) Diffusion times of different species plotted against particle size (diameter). Error bars
on diffusion times are standard deviations based on multiple measurements. Error bars on size are
estimated from diameters of the species. Blue shaded area represents the range in which nanodisc-
embedded membrane proteins are expected to reside. Atto488 (Sigma-Aldrich, St. Louis, MS, USA,
product #41051); Alexa555: Alexa Fluor 555 NHS ester (Thermo Fisher Scientific, Carlsbad, CA, USA,
product #A20009); FluoSphere505 and FluoSphere580: FluoSpheres fluorescent carboxylate-modified
microspheres 0.04 µm (Thermo Fisher Scientific, product #F10720); TetraSpeck: TetraSpeck fluorescent
microspheres 0.1 µm (Thermo Fisher Scientific, product #T7279).

5. Summary and Future Directions

Despite its age, FCS remains an effective and widely used biophysical technique to
study protein biophysics and binding in solution as well as within cells. Nanodiscs enable
FCS measurements of in-solution, purified, individual membrane proteins residing in a
native-like lipid environment. While only a handful of studies have used this combination
as reviewed above, the simplicity of FCS combined with the versatility of nanodiscs
presents great potential for future studies of the plethora of membrane proteins. FCS may
be applied to any of the ~100 membrane proteins that have been successfully reconstituted
in nanodiscs (as listed in several recent reviews [3,34]) as well as important nanodisc-
embedded membrane proteins to be successfully isolated in the future. Candidates for the
latter include other bacterial type III secretion proteins which play critical roles in host cell
invasion, in FCS binding studies analogous to those performed for Y. pestis YopB [89].

Future studies may leverage the ability to precisely control lipid composition in
nanodiscs to investigate the effects of lipids on membrane protein function and structure.
Membrane lipids have immense diversity, with the human body containing thousands of
different lipids with significant implications for cellular shape and function [94,95]. Studies
have broadly established that membrane lipid composition, such as cholesterol content and
phospholipid type, affects membrane protein behavior through both direct lipid-protein
interactions and indirect mechanisms such as membrane fluidity and curvature [96–102]. In
recent years, computational research in lipid bilayers has also had a focus on increasing the
complexity of the system to more closely replicate various biological membranes [103–107].
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This coordinated drive towards complex realism in experimental and computational work
opens the opportunities for both disciplines to inform the other. Of particular interest are
studies of the major drug targets GPCRs embedded in nanodiscs of various prescribed
lipid compositions. The effects of the surrounding membrane composition on interactions
with G proteins, affinities for ligands, and affinities for therapeutic drugs of many GPCRs
remain to be investigated by computational tools, FCS, and other experimental techniques.

The FCS-nanodisc assay shows great promise for future improvements. Advancements
in detector technology will continue to increase the range of concentrations over which FCS
can be performed by increasing photon count limits and time resolution [108,109]. New
types of spatial extent FCS such as line scanning FCS or imaging FCS have not yet been
applied to nanodisc measurements, but future work may find them useful in enhancing
the throughput power of the assay over a short time interval. Continued improvements
to nanodisc technology, such as further development and use of polymers and membrane
scaffold proteins, will facilitate the ease of protein isolation and increase the fidelity of the
mimetic to the native membrane. Future studies employing such nanodiscs will give FCS
access to a broader selection of context-relevant membrane proteins and the complexes
they form.
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Urbančič, I. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. J. Phys. D:
Appl. Phys. 2020, 53, 164003. [CrossRef] [PubMed]

http://doi.org/10.1039/D0NR01060J
http://www.ncbi.nlm.nih.gov/pubmed/32428052
http://doi.org/10.3390/jof7020118
http://doi.org/10.1016/j.bpj.2016.03.035
http://doi.org/10.1038/nrm.2017.138
http://doi.org/10.1038/nchembio.1960
http://doi.org/10.1016/j.jmb.2012.01.023
http://www.ncbi.nlm.nih.gov/pubmed/22306739
http://doi.org/10.1073/pnas.1210373109
http://www.ncbi.nlm.nih.gov/pubmed/23151510
http://doi.org/10.1016/j.bpj.2016.04.042
http://www.ncbi.nlm.nih.gov/pubmed/27276266
http://doi.org/10.1021/acs.biochem.8b01194
http://www.ncbi.nlm.nih.gov/pubmed/30618239
http://doi.org/10.1038/nchembio.2372
http://doi.org/10.1038/s41580-018-0049-3
http://doi.org/10.1021/acs.chemrev.8b00460
http://doi.org/10.1007/s00894-019-3964-0
http://doi.org/10.1021/acs.jpcb.0c03368
http://doi.org/10.1016/j.bpj.2017.10.017
http://www.ncbi.nlm.nih.gov/pubmed/29113676
http://doi.org/10.1021/ja507832e
http://www.ncbi.nlm.nih.gov/pubmed/25229711
http://doi.org/10.1021/jp505881z
http://www.ncbi.nlm.nih.gov/pubmed/25060197
http://doi.org/10.1088/1361-6463/ab6cca
http://www.ncbi.nlm.nih.gov/pubmed/33191951

	Isolation of Membrane Proteins 
	Nanodiscs as a Membrane Mimetic 
	Fluorescence Correlation Spectroscopy 
	FCS Measurements of Membrane Proteins Embedded in Nanodiscs 
	Summary and Future Directions 
	References

