Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20324 KB  
Article
Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming
by Ebrahim Seidi, Farnaz Kaviari and Scott F. Miller
J. Manuf. Mater. Process. 2025, 9(8), 260; https://doi.org/10.3390/jmmp9080260 - 3 Aug 2025
Viewed by 940
Abstract
Cold rolling is widely recognized as a key industrial process for enhancing the mechanical properties of materials, particularly hardness, through strain hardening. Despite its importance, accurately predicting the final hardness remains a challenge due to the inherently nonlinear nature of the deformation. While [...] Read more.
Cold rolling is widely recognized as a key industrial process for enhancing the mechanical properties of materials, particularly hardness, through strain hardening. Despite its importance, accurately predicting the final hardness remains a challenge due to the inherently nonlinear nature of the deformation. While several studies have employed artificial neural networks to predict mechanical properties, architectural parameters still need to be investigated to understand their effects on network behavior and model performance, ultimately supporting the design of more effective architectures. This study investigates hyperparameter tuning in artificial neural networks trained using Resilient Backpropagation by evaluating the impact of varying number of hidden layers and neurons on the prediction accuracy of hardness in 70-30 brass specimens subjected to cold rolling. A dataset of 1000 input–output pairs, containing dimensional and hardness measurements from multiple rolling passes, was used to train and evaluate 819 artificial neural network architectures, each with a different configuration of 1 to 3 hidden layers and 4 to 12 neurons per layer. Each configuration was tested over 50 runs to reduce the influence of randomness and enhance result consistency. Enhancing the network depth from one to two hidden layers improved predictive performance. Architectures with two hidden layers achieved better performance metrics, faster convergence, and lower variation than single-layer networks. Introducing a third hidden layer did not yield meaningful improvements over two-hidden-layer architectures in terms of performance metrics. While the top three-layer model converged in fewer epochs, it required more computational time due to increased model complexity and weight elements. Full article
Show Figures

Figure 1

14 pages, 1863 KB  
Article
Advancements in Hole Quality for AISI 1045 Steel Using Helical Milling
by Pedro Mendes Silva, António José da Fonseca Festas, Robson Bruno Dutra Pereira and João Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 256; https://doi.org/10.3390/jmmp9080256 - 31 Jul 2025
Cited by 1 | Viewed by 657
Abstract
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, [...] Read more.
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, remains underexplored in the literature. This study addresses this gap by systematically evaluating the influence of key process parameters—cutting speed (Vc), axial depth of cut (ap), and tool diameter (Dt)—on hole quality attributes, including surface roughness, burr formation, and nominal diameter accuracy. A full factorial experimental design (23) was employed, coupled with analysis of variance (ANOVA), to quantify the effects and interactions of these parameters. The results reveal that, with a higher Vc, it is possible to reduce surface roughness (Ra) by 30% to 40%, while an increased ap leads to a 50% increase in Ra. Additionally, Dt emerged as the most critical factor for nominal diameter accuracy, reducing geometrical errors by 1% with a larger Dt. Burr formation was predominantly observed at the lower end of the hole, highlighting challenges specific to this technique. These findings provide valuable insights into optimizing helical milling for low-carbon steels, offering a foundation for broader industrial adoption and further research. Full article
Show Figures

Figure 1

16 pages, 3072 KB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 898
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

21 pages, 4393 KB  
Article
Lightweight and Sustainable Steering Knuckle via Topology Optimization and Rapid Investment Casting
by Daniele Almonti, Daniel Salvi, Emanuele Mingione and Silvia Vesco
J. Manuf. Mater. Process. 2025, 9(8), 252; https://doi.org/10.3390/jmmp9080252 - 24 Jul 2025
Cited by 2 | Viewed by 1321
Abstract
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing [...] Read more.
Considering the importance of the automotive industry, reducing the environmental impact of automotive component manufacturing is crucial. Additionally, lightening of the latter promotes a reduction in fuel consumption throughout the vehicle’s life cycle, limiting emissions. This study presents a comprehensive approach to optimizing and manufacturing a MacPherson steering knuckle using topology optimization (TO), additive manufacturing, and rapid investment casting (RIC). Static structural simulations confirmed the mechanical integrity of the optimized design, with stress and strain values remaining within the elastic limits of the SG A536 iron alloy. The TO process achieved a 30% reduction in mass, resulting in lower material use and production costs. Additive manufacturing of optimized geometry reduced resin consumption by 27% and printing time by 9%. RIC simulations validated efficient mold filling and solidification, with porosity confined to removable riser regions. Life cycle assessment (LCA) demonstrated a 27% reduction in manufacturing environmental impact and a 31% decrease throughout the component life cycle, largely due to vehicle lightweighting. The findings highlight the potential of integrated TO and advanced manufacturing techniques to produce structurally efficient and environmentally sustainable automotive components. This workflow offers promising implications for broader industrial applications that aim to balance mechanical performance with ecological responsibility. Full article
Show Figures

Figure 1

55 pages, 8888 KB  
Article
Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making
by Ravipudi Venkata Rao and Joao Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 249; https://doi.org/10.3390/jmmp9080249 - 22 Jul 2025
Cited by 2 | Viewed by 1370
Abstract
Manufacturing processes are inherently complex, multi-objective in nature, and highly sensitive to process parameter settings. This paper presents two simple and efficient optimization algorithms—Best–Worst–Random (BWR) and Best–Mean–Random (BMR)—developed to solve both constrained and unconstrained optimization problems of manufacturing processes involving single, multi-, and [...] Read more.
Manufacturing processes are inherently complex, multi-objective in nature, and highly sensitive to process parameter settings. This paper presents two simple and efficient optimization algorithms—Best–Worst–Random (BWR) and Best–Mean–Random (BMR)—developed to solve both constrained and unconstrained optimization problems of manufacturing processes involving single, multi-, and many-objectives. These algorithms are free from metaphorical inspirations and require no algorithm-specific control parameters, which often complicate other metaheuristics. Extensive testing reveals that BWR and BMR consistently deliver competitive, and often superior, performance compared to established methods. Their multi- and many-objective extensions, named MO-BWR and MO-BMR, respectively, have been successfully applied to tackle 2-, 3-, and 9-objective optimization problems in advanced manufacturing processes such as friction stir processing (FSP), ultra-precision turning (UPT), laser powder bed fusion (LPBF), and wire arc additive manufacturing (WAAM). To aid in decision-making, the proposed BHARAT can be integrated with MO-BWR and MO-BMR to identify the most suitable compromise solution from among a set of Pareto-optimal alternatives. The results demonstrate the strong potential of the proposed algorithms as practical tools for intelligent decision-making in real-world manufacturing applications. Full article
Show Figures

Figure 1

18 pages, 2891 KB  
Article
Size Effects on Process-Induced Porosity in Ti6Al4V Thin Struts Additively Manufactured by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
J. Manuf. Mater. Process. 2025, 9(7), 226; https://doi.org/10.3390/jmmp9070226 - 2 Jul 2025
Cited by 1 | Viewed by 1263
Abstract
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan [...] Read more.
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan lengths, affecting the melt pool behavior between transient and quasi-steady states. This study investigates the keyhole porosity in Ti6Al4V thin struts fabricated by L-PBF, incorporating a range of strut sizes, along with various levels of linear energy densities. Micro-scaled computed tomography and image analysis were employed for porosity measurements and evaluations. Generally, keyhole porosity lessens with decreasing energy density, though with varying patterns across a higher energy density range. Keyhole porosity in struts predictably becomes severe at high laser powers and/or low scan speeds. However, a major finding reveals that the porosity is reduced with decreasing strut size (if less than 1.25 mm diameter), plausibly because the keyhole formed has not reached a stable state to produce pores in a permanent way. This implies that a higher linear energy density, greater than commonly formulated in making bulk components, could be utilized in making small-scale features to ensure not only full melting but also minimum keyhole porosity. Full article
Show Figures

Figure 1

19 pages, 4360 KB  
Article
A Feasibility Study on UV Nanosecond Laser Ablation for Removing Polyamide Insulation from Platinum Micro-Wires
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(7), 208; https://doi.org/10.3390/jmmp9070208 - 21 Jun 2025
Cited by 1 | Viewed by 989
Abstract
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must [...] Read more.
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must not only ensure the complete removal of the polyamide insulation but also maintain the tensile strength of the wire to withstand mechanical handling in subsequent manufacturing stages. Additionally, the exposed platinum surface must exhibit low surface roughness to enable effective soldering and be free of thermal damage or residual debris to pass strict visual inspections. The wires have a total diameter of 65 µm, consisting of a 50 µm platinum core encased in a 15 µm polyamide coating. By utilizing a UV laser with a wavelength of 355 nm, average power of 3 W, a repetition rate range of 20 to 200 kHz, and a high-speed marking system, the process parameters were systematically refined. Initial attempts to perform the ablation in an air medium were unsuccessful due to inadequate thermal control and incomplete removal of the polyamide coating. Hence, a water-assisted ablation technique was explored to address these limitations. Experimental results demonstrated that a scanning speed of 1200 mm/s, coupled with a line spacing of 1 µm and a single ablation pass, resulted in complete coating removal while ensuring the integrity of the platinum substrate. The incorporation of a water layer above the ablation region was considered crucial for effective heat dissipation, preventing substrate overheating and ensuring uniform ablation. The laser’s spot diameter of 20 µm in air and a focal length of 130 mm introduced challenges related to overlap control between successive passes, requiring precise calibration to maintain consistency in coating removal. This research demonstrates the feasibility and reliability of water-assisted laser ablation as a method for a high-precision, non-contact coating material. Full article
(This article belongs to the Special Issue Advances in Laser-Assisted Manufacturing Techniques)
Show Figures

Figure 1

12 pages, 4178 KB  
Article
Evaluation of Conditions for Self-Healing of Additively Manufactured Polymer Composites with Continuous Carbon Fiber Reinforcement
by Marius Rimašauskas, Tomas Kuncius, Rūta Rimašauskienė and Tomas Simokaitis
J. Manuf. Mater. Process. 2025, 9(6), 179; https://doi.org/10.3390/jmmp9060179 - 28 May 2025
Cited by 2 | Viewed by 920
Abstract
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. [...] Read more.
Additive manufacturing (AM) is one of the most frequently used technologies to produce complex configuration products. Moreover, AM is very well known as a technology which is characterized by a low amount of generated waste and the potential to be called zero-waste technology. As is known, there are seven main groups of technologies described in the ISO/ASTM 52900 standard that allow the use of very different materials from polymers to metals, ceramics, and composites. However, the increased utilization of additively manufactured composites for different applications requires a deeper analysis of production processes and materials’ characteristics. Various AM technologies can be used to produce complex composite structures reinforced with short fibers; however, only material extrusion (MEX)-based technology is used for the production of composites reinforced with continuous fibers (CFs). At this time, five different methods exist to produce CF-reinforced composite structures. This study focuses on co-extrusion with the towpreg method. Because of the complexity and layer-by-layer nature of the process, defects can occur during production, such as poor interlayer adhesion, increased porosity, insufficient impregnation, and others. To eliminate or minimize defects’ influence on mechanical properties and structural integrity of additively manufactured structures, a hypothesis was proposed involving heat treatment. Carbon fiber’s conductive properties can be used to heal the composite structures, by heating them up through the application of electric current. In this research article, an experimental evaluation of conditions for additively manufactured composites with continuous carbon fiber reinforcement for self-healing processes is presented. Mechanical testing was conducted to check the influence of heat treatment on the flexural properties of the composite samples. Full article
Show Figures

Graphical abstract

23 pages, 4160 KB  
Article
Computed Tomography-Based Volumetric Additive Manufacturing: Development of a Model Based on Resin Properties and Part Size Interrelationship—Part I
by Amir H. Behravesh, Asra Tariq, John Buni and Ghaus Rizvi
J. Manuf. Mater. Process. 2025, 9(6), 178; https://doi.org/10.3390/jmmp9060178 - 28 May 2025
Cited by 1 | Viewed by 787
Abstract
This study presents an analytical description of the computed tomography-based volumetric additive manufacturing (VAM) process, with an emphasis on the impact of resin properties on product dimensions. The main issue addressed in this study is the assessment of the dimensional limitation of the [...] Read more.
This study presents an analytical description of the computed tomography-based volumetric additive manufacturing (VAM) process, with an emphasis on the impact of resin properties on product dimensions. The main issue addressed in this study is the assessment of the dimensional limitation of the objects produced using the VAM process, which is usually reported to be of the order of one centimeter. An analytical model is introduced to predict the product size based on the resin property (penetration depth—Dp), vial size (radius), and the duration of part formation, and the results indicate significant correlations among these parameters. A method of Dp measurement and analysis that is appropriate for the VAM process is also introduced. Mathematical justification is provided along with experimental verification for the effects of the main governing factor, Dp, on the maximum possible product size. Multiple criteria are also introduced for selecting the appropriate size of the resin container (vial) based on the desired object size and the value of Dp. It was found that the Dp is a crucial factor in analysis and experimentation in the VAM process, and its value is fundamentally different from the one obtained in the conventional polymerization AM methods. The product dimension based on the resin property, vial size, and time for the formation of the part is introduced by the analytical model. This model provides valuable insights into the complex interplay of factors influencing VAM outcomes and can facilitate informed decision-making in material selection and process design. Full article
Show Figures

Figure 1

13 pages, 4249 KB  
Article
The First Layer: Single-Track Insights into Direct Energy Deposition Processed Cu-Ni Thermoelectric Alloys
by Nick Williams, Kyle Snyder, Ian Smith, Anthony Duong, Everett Carpenter and Radhika Barua
J. Manuf. Mater. Process. 2025, 9(6), 170; https://doi.org/10.3390/jmmp9060170 - 23 May 2025
Cited by 1 | Viewed by 1015
Abstract
The shift to sustainable energy has accelerated the development of thermoelectric (TE) material for direct heat-to-electricity conversion without batteries or grid reliance. Cu-Ni alloys show promise for high-power, thermally stable TE applications like waste heat recovery and electronics cooling but require thermal conductivity [...] Read more.
The shift to sustainable energy has accelerated the development of thermoelectric (TE) material for direct heat-to-electricity conversion without batteries or grid reliance. Cu-Ni alloys show promise for high-power, thermally stable TE applications like waste heat recovery and electronics cooling but require thermal conductivity and microstructure optimization. This study investigates additive manufacturing (AM) of Cu-Ni alloys via laser powder-directed energy deposition (L-DED), enabling precise control over deposition parameters. Track geometries were analyzed using linear mass density (ML) and linear heat input (HL), which influence deposition quality and microstructural characteristics. A weighted qualitative process parameter decision matrix was developed to evaluate process conditions systematically. Optimal deposition was achieved with HL < 70 J/mm for ML ~0.016–0.021 g/mm and 98 J/mm < HL < 137 J/mm for ML = 0.026 g/mm, corresponding to an energy-to-mass ratio of ~4000 ± 500 kJ/g. While this study does not directly assess thermoelectric properties, it provides essential first-layer insights into how processing conditions affect track geometry, defect formation, and microstructure—information that is foundational for optimizing multi-layer builds and, ultimately, improving thermoelectric performance. These findings mark a critical step toward predictive process optimization and the accelerated design of Cu-Ni-based thermoelectric materials using AM techniques. Full article
Show Figures

Figure 1

20 pages, 10342 KB  
Article
Investigation of the Thermo-Mechanical Modeling of the Manufacturing of Large-Scale Wire Arc Additive Manufacturing Components with an Outlook Towards Industrial Applications
by Tim Fritschle, Moritz Kaess, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(5), 166; https://doi.org/10.3390/jmmp9050166 - 20 May 2025
Cited by 2 | Viewed by 1708
Abstract
The simulation of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), is becoming increasingly important to predict material and component properties in advance of the real-life manufacturing. In contrast to prior work focusing on the simulation of simplified WAAM parts, this [...] Read more.
The simulation of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM), is becoming increasingly important to predict material and component properties in advance of the real-life manufacturing. In contrast to prior work focusing on the simulation of simplified WAAM parts, this paper presents an investigation into the thermo-mechanical finite element (FE) simulation of the manufacturing of large-scale WAAM components. The investigation focuses on various problems within the individual steps of the FE workflow wherein ABAQUS influences the modeling of large-scale components. The investigations are founded upon a thermo-mechanically coupled FE model in ABAQUS 2020. For this purpose, several thermo-mechanical simulation models are set up with the target of investigating the meshing, element activation and variation of process parameters. Appropriate discretization of WAAM components is found to be a major problem when setting up a simulation. The meshing of the component is limited by the element type and size and the meshing routines used. Also, differences in the axes of motion for the simulation and the real process cause the simulation to differ from reality. High element start temperatures are found to be beneficial for simulation stability and performance. An integrated parameter variation was made possible with the modeling techniques used. Full article
(This article belongs to the Special Issue Large-Scale Metal Additive Manufacturing)
Show Figures

Figure 1

18 pages, 8376 KB  
Article
Knot-TPP: A Unified Deep Learning Model for Process Incidence and Tool Wear Monitoring in Stacked Drilling
by Jiduo Zhang, Robert Heinemann and Otto Jan Bakker
J. Manuf. Mater. Process. 2025, 9(5), 160; https://doi.org/10.3390/jmmp9050160 - 14 May 2025
Cited by 1 | Viewed by 820
Abstract
In drilling Carbon-Fibre-Reinforced Polymers (CFRP)/Al stacks, adaptive drilling facilitates the optimisation of cutting parameters for each constituent stack layer and tool wear, thus enhancing cutting efficiency and borehole quality. This study proposed a knot–Temporal Pyramid Pooling (TPP) model aimed at monitoring both process [...] Read more.
In drilling Carbon-Fibre-Reinforced Polymers (CFRP)/Al stacks, adaptive drilling facilitates the optimisation of cutting parameters for each constituent stack layer and tool wear, thus enhancing cutting efficiency and borehole quality. This study proposed a knot–Temporal Pyramid Pooling (TPP) model aimed at monitoring both process incidences and tool wear in the drilling of hybrid stacks, which subsequently informs the machine tool to adjust cutting parameters or, if necessary, replaces the tool. TPP is introduced to remove the restriction of input dimensions, allowing for the acceptance of inputs with arbitrary shapes. On the other hand, a knot structure has been proposed to incorporate the classification of process incidences into the tool wear analysis, thereby enhancing prediction accuracy. The proposed model achieves a process incidence identification accuracy of 99.19% and a Mean Absolute Error (MAE) of 10 μm in tool wear prediction, demonstrating robust performance across a wide range of sampling conditions. This achievement facilitates decision-making and optimisation relating to cutting parameters and tool replacement in the context of adaptive drilling of aerospace materials. Full article
Show Figures

Figure 1

22 pages, 3812 KB  
Article
Dynamic Dwell Time Adjustment in Wire Arc-Directed Energy Deposition: A Thermal Feedback Control Approach
by Md Munim Rayhan, Abderrachid Hamrani, Fuad Hasan, Tyler Dolmetsch, Arvind Agarwal and Dwayne McDaniel
J. Manuf. Mater. Process. 2025, 9(5), 143; https://doi.org/10.3390/jmmp9050143 - 27 Apr 2025
Cited by 1 | Viewed by 1483
Abstract
Precise thermal management remains a critical challenge in Wire Arc-Direct Energy Deposition (W-DED) processes due to significant temperature fluctuations that can adversely impact part quality, dimensional accuracy, and process reliability. To address these issues, this study introduces a novel Hybrid Interlayer Hysteresis Controller [...] Read more.
Precise thermal management remains a critical challenge in Wire Arc-Direct Energy Deposition (W-DED) processes due to significant temperature fluctuations that can adversely impact part quality, dimensional accuracy, and process reliability. To address these issues, this study introduces a novel Hybrid Interlayer Hysteresis Controller (HIHC) designed specifically for W-DED, which integrates real-time thermal feedback and adaptive dwell time control. The system implements a dual-mode cooling strategy based on a temperature threshold, utilizing optical character recognition-based temperature monitoring and a rolling buffer system for stability. Experimental validation demonstrated improvements in thermal management, with the dynamic control system maintaining an average temperature undershoot of 1.38% while achieving 96.29% optimal temperature window compliance. Surface quality analysis revealed an 8.67% improvement in front face smoothness and a 5.15% enhancement in top surface quality. The dynamic control system also exhibited superior dimensional accuracy, producing thin walls with widths of 61.98 mm versus 66.43 mm in fixed dwell time samples, relative to the intended 60 mm specification. This study advances the field of additive manufacturing by establishing a robust framework for precise thermal management in W-DED processes, contributing to enhanced part quality, reduced post-processing requirements, and improved process reliability. Despite these advances, limitations include the system’s dependence on external optical monitoring hardware, potential scalability constraints for complex geometries, and limited testing across diverse material systems. Future work should focus on integrating multi-axis thermal sensors, extending the framework to multi-material deposition scenarios and implementing machine learning algorithms for predictive thermal modeling. Full article
(This article belongs to the Special Issue Advances in Directed Energy Deposition Additive Manufacturing)
Show Figures

Figure 1

15 pages, 4776 KB  
Article
Stack and Structure: Ultrafast Lasers for Additive Manufacturing of Thin Polymer Films for Medical Applications
by Dominic Bartels, Yvonne Reg, Mahboobeh Borandegi, Maximilian Marschall, Alexander Sommereyns and Michael Schmidt
J. Manuf. Mater. Process. 2025, 9(4), 125; https://doi.org/10.3390/jmmp9040125 - 8 Apr 2025
Viewed by 1081
Abstract
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by [...] Read more.
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by the laminated object manufacturing technology and is based on using thin films as raw material, which are processed using an ultrafast laser source. Utilizing thin films as a starting material helps to avoid powder contamination during additive manufacturing, thus supporting the generation of internal cavities that can be filled with secondary phases. Additionally, the use of medical materials mitigates the burden of a later certification of potential implants. Furthermore, the ultrafast laser supports the generation of highly resolved structures smaller than the average layer thickness (from 50 to 100 µm) through material ablation. These structures can be helpful to obtain progressive part properties or a targeted stress flow, as well as a specified release of secondary phases (e.g., hydrogels) upon load. Within this work, first investigations on the joining, cutting, and structuring of thin polymer films with layer thickness of between 50 and 100 µm using a ps-pulsed laser are reported. It is shown that thin film sizes of around 50 µm could be structured, joined, and cut successfully using ultrafast lasers emitting in the NIR spectral range. Full article
Show Figures

Figure 1

17 pages, 3618 KB  
Article
Alternative Real-Time Part Quality Monitoring Method by Using Stamping Force in Progressive Stamping Process
by Juras Skardžius and Justinas Gargasas
J. Manuf. Mater. Process. 2025, 9(4), 104; https://doi.org/10.3390/jmmp9040104 - 22 Mar 2025
Cited by 1 | Viewed by 768
Abstract
The manufacture of automotive parts using progressive stamping tools demands high precision and efficiency to meet industry standards. This research explores integrating quality monitoring techniques, focusing on load sensors and tonnage monitoring, to enhance the production process. Progressive tools, which perform multiple operations [...] Read more.
The manufacture of automotive parts using progressive stamping tools demands high precision and efficiency to meet industry standards. This research explores integrating quality monitoring techniques, focusing on load sensors and tonnage monitoring, to enhance the production process. Progressive tools, which perform multiple operations within a single press cycle, are critical for maintaining dimensional accuracy and minimizing defects. This research examines the correlation between real-time load sensor data and the tonnage applied during stamping, aiming to detect anomalies and deviations that may define part quality. By analyzing variations in tool loads and press tonnage, this research identifies patterns that allow the user to connect the applied force with the observed part quality and could help to determine potential issues such as instability of force or part dimensions, tool wear or improper alignment. The results of this research demonstrate that incorporating advanced monitoring systems into progressive stamping processes does not only improve part quality but also extends tool life and reduces downtime. The proposed approach provides a robust framework for ensuring reliability and efficiency in the production of automotive components, aligning with the industry demand for high-quality, cost-effective manufacturing solutions. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

24 pages, 14414 KB  
Article
Feasibility Study on Laser Powder Bed Fusion of Ferritic Steel in High Vacuum Atmosphere
by Steffen Fritz, Sven Sewalski, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2025, 9(3), 101; https://doi.org/10.3390/jmmp9030101 - 18 Mar 2025
Viewed by 819
Abstract
The boiling point of metals is dependent on the ambient pressure. Therefore, in laser-based fusion welding and additive manufacturing processes, the resulting process regime, ranging from heat conduction welding to the keyhole mode, is also influenced by the process pressure. While laser welding [...] Read more.
The boiling point of metals is dependent on the ambient pressure. Therefore, in laser-based fusion welding and additive manufacturing processes, the resulting process regime, ranging from heat conduction welding to the keyhole mode, is also influenced by the process pressure. While laser welding deliberately uses reduced process pressures to achieve the keyhole mode with a lower laser power input as well as a more stable keyhole, there are no positive findings on the laser powder bed fusion process (PBF-LB/M) under vacuum conditions so far. Furthermore, the literature suggests that the process window is significantly reduced, particularly in the high vacuum regime. However, this work demonstrates that components made of the ferritic steel 22NiMoCr3-7 can be successfully manufactured at low process pressures of 2 × 102 mbar using a double-scanning strategy. The strategy consists of a first scan with a defocused laser beam, where the powder is preheated and partially sintered, followed by a second scan with a slightly defocused laser beam, in which the material within a single layer is completely melted. To test this manufacturing strategy, 16 test cubes were manufactured to determine the achievable relative densities and tensile specimens were produced to assess the mechanical properties. Metallographic analysis of the test cubes revealed that relative densities of up to 98.48 ± 1.43% were achieved in the test series with 16 different process parameters. The tensile strength determined ranged from 722 to 724 MPa. Additionally, a benchmark part with complex geometric features was successfully manufactured in a high vacuum atmosphere without the need for a complex parameterization of individual part zones in the scanning strategy. Full article
Show Figures

Figure 1

14 pages, 68479 KB  
Article
Design Guide for Hybrid-Additive Manufacturing of Inconel 718 Combining PBF-LB/M and In Situ High-Speed Milling
by David Sommer, Simon Hornung, Cemal Esen and Ralf Hellmann
J. Manuf. Mater. Process. 2025, 9(3), 88; https://doi.org/10.3390/jmmp9030088 - 10 Mar 2025
Cited by 1 | Viewed by 1486
Abstract
As the correlation between design rules and process limitations is of the upmost importance for the full exploitation of any manufacturing technology, we report a design guide for hybrid-additive manufacturing of Inconel 718. Basic limitations need to be evaluated for this particular hybrid [...] Read more.
As the correlation between design rules and process limitations is of the upmost importance for the full exploitation of any manufacturing technology, we report a design guide for hybrid-additive manufacturing of Inconel 718. Basic limitations need to be evaluated for this particular hybrid approach that combines laser powder bed fusion (PBF-LB/M) and in situ high-speed milling. Fundamental geometric limitations are examined with regard to the minimum feasible wall thickness, cylinders, overhanging structures, and chamfers. Furthermore, geometrical restrictions due to the integrated three-axis milling process with respect to inclinations, inner angles, notches, and boreholes are investigated. From these findings, we derive design guidelines for a reliable build process using this hybrid manufacturing. Additionally, a design guideline for the hybrid-additive manufacturing approach is presented, depicting a step-to-step guide for the adjustment of constructions. To demonstrate this, a powder nozzle for a direct energy deposition (DED-LB/M) process is redesigned following the previously defined guidelines. This redesign encompasses analysis of the existing component and identification of problematic areas such as flat angles, leading to a new construction that is suitable for a hybrid-additive manufacturing approach. Full article
(This article belongs to the Special Issue Advances in Powder Bed Fusion Technologies)
Show Figures

Figure 1

16 pages, 11669 KB  
Article
Deposition Strategies for Bar Intersections Using Dot-by-Dot Wire and Arc Additive Manufacturing
by Niccolò Grossi, Flavio Lazzeri and Giuseppe Venturini
J. Manuf. Mater. Process. 2025, 9(3), 77; https://doi.org/10.3390/jmmp9030077 - 27 Feb 2025
Cited by 4 | Viewed by 809
Abstract
Dot-by-dot Wire and Arc Additive Manufacturing (WAAM) is a promising technique for producing large-scale lattice structures, offering significant benefits in terms of deposition rate and material utilization. This study explores strategies for fabricating bar intersections using the dot-by-dot WAAM technology, focusing on creating [...] Read more.
Dot-by-dot Wire and Arc Additive Manufacturing (WAAM) is a promising technique for producing large-scale lattice structures, offering significant benefits in terms of deposition rate and material utilization. This study explores strategies for fabricating bar intersections using the dot-by-dot WAAM technology, focusing on creating robust and predictable structures without requiring parameter modifications or real-time monitoring during the deposition. Two different deposition strategies were proposed, that can be, at least geometrically, applied to a general intersection with multiple bars with different angles. In this work such strategies were only experimentally tested on two-bar intersections, assessing their performance in terms of geometrical accuracy, symmetry, and material efficiency. Strategies which utilize layer-by-layer deposition with multiple overlapping dots, called B here, demonstrated the best results in terms of the geometrical features in the intersection zone, assessed by different metrics obtained through an analysis of pictures, such as low asymmetry and high material volume in the intersection zone. In addition, the findings suggest that removing cooling pauses during the deposition of multiple dots on the same layer slightly improves the joint by minimizing excess material buildup. The proposed approach offers a scalable framework for optimizing intersection deposition, paving the way for improved large-scale metal lattice structure manufacturing. Full article
(This article belongs to the Special Issue Large-Scale Metal Additive Manufacturing)
Show Figures

Figure 1

19 pages, 5484 KB  
Article
Effects of Scanning Strategies, Part Orientation, and Hatching Distance on the Porosity and Hardness of AlSi10Mg Parts Produced by Laser Powder Bed Fusion
by Naol Dessalegn Dejene, Wakshum Mekonnen Tucho and Hirpa G. Lemu
J. Manuf. Mater. Process. 2025, 9(3), 78; https://doi.org/10.3390/jmmp9030078 - 27 Feb 2025
Cited by 4 | Viewed by 2701
Abstract
Laser powder bed fusion (L-PBF) shows potential in metal additive manufacturing for producing complex components. However, achieving ideal hardness and minimizing porosity poses a significant challenge. This study explores the impact of part orientation, scanning methods, and hatching distance on the hardness and [...] Read more.
Laser powder bed fusion (L-PBF) shows potential in metal additive manufacturing for producing complex components. However, achieving ideal hardness and minimizing porosity poses a significant challenge. This study explores the impact of part orientation, scanning methods, and hatching distance on the hardness and porosity of AlSi10Mg alloy produced through L-PBF. Utilizing a Box–Behnken design of experiments (DOE), cubic samples were systematically produced. Hardness was quantitatively assessed using Vickers hardness tests, while porosity measurements involved 2D image analysis of polished scanning electron microscopy (SEM) samples, the porosity percentages analyzed using ImageJ software. The results demonstrate that both scanning strategy and hatching distance significantly influence hardness and porosity. The spiral scanning pattern notably enhances hardness and reduces porosity. In contrast, the bidirectional scanning strategy results in lower hardness and more pronounced porosity formations. An inverse correlation between grain size distribution and hardness was observed, with finer grain sizes leading to higher hardness values, indicating that grain refinement improves mechanical properties. Additionally, a negative relationship between hardness and porosity was established, emphasizing the importance of minimizing porosity to enhance material hardness. These findings contribute to the overall understanding of the L-PBF additive manufacturing process, providing valuable insights for optimizing material properties and ensuring the mechanical integrity of high-performance L-PBF produced metal parts. Full article
Show Figures

Figure 1

14 pages, 4509 KB  
Article
A Nanoindentation Approach to Investigating Dislocation Density in Additive-Manufactured SS316L-Graded Lattice Structures
by Kamal Sleem, Gabriele Grima and Marcello Cabibbo
J. Manuf. Mater. Process. 2025, 9(2), 59; https://doi.org/10.3390/jmmp9020059 - 13 Feb 2025
Cited by 2 | Viewed by 3487
Abstract
The dislocation density in additive-manufactured components significantly influences the local mechanical behavior of crystalline metals. Nanoindentation, renowned for its sensitivity to local mechanical responses and hardness, facilitates the assessment of local dislocation density. This study aimed to analyze the evolution of local dislocation [...] Read more.
The dislocation density in additive-manufactured components significantly influences the local mechanical behavior of crystalline metals. Nanoindentation, renowned for its sensitivity to local mechanical responses and hardness, facilitates the assessment of local dislocation density. This study aimed to analyze the evolution of local dislocation densities in bulk, graded lattice structures (GLSs), and reduced-size GLSs of LPBF SS316L via nanoindentation. Components were fabricated using laser powder bed fusion with 316L stainless steel. The microstructural analysis revealed that the distribution of mechanical deformation across the bodies of the parts was higher in the reduced-size GLS compared to that obtained for the GLS. The simulation of plastic deformation allowed for recognizing that this difference is attributed to the different thermal stresses resulting from the higher rate of thermal excursions to which the scaffold structure was subjected whenever there was a reduction in the reciprocal distance of the struts. Mechanical deformation, identified as the primary factor contributing to dislocation density in additive manufacturing, was significant in both the GLS and reduced-size GLS, for which the dislocation density was incremented by one order of magnitude compared to the bulk material. Full article
Show Figures

Figure 1

21 pages, 2745 KB  
Article
Preliminary Investigation on Biodegradable Ureteral Stents Using 3D Printing
by Chirag Chetan and Sagil James
J. Manuf. Mater. Process. 2025, 9(2), 52; https://doi.org/10.3390/jmmp9020052 - 6 Feb 2025
Cited by 4 | Viewed by 2987
Abstract
The prevalence of kidney stones, a significant urological health concern, necessitates advancements in the management and treatment methods, particularly in the domain of ureteral stents. This study explores the feasibility and potential benefits of utilizing three biodegradable polymers—Polylactic Acid (PLA), Tough Polylactic Acid [...] Read more.
The prevalence of kidney stones, a significant urological health concern, necessitates advancements in the management and treatment methods, particularly in the domain of ureteral stents. This study explores the feasibility and potential benefits of utilizing three biodegradable polymers—Polylactic Acid (PLA), Tough Polylactic Acid (Tough PLA), and Polylactic Acid/Poly-hydroxybutyrate (PLA/PHB)—for the fabrication of 3D-printed ureteral stents tailored to patient-specific needs. Through the integration of CAD and Fused Deposition Modeling (FDM) 3D printing technology, ureteral stents were successfully produced, demonstrating key advantages in terms of biodegradability and mechanical properties. The study involved a rigorous evaluation of the biodegradability, tensile strength, and hardness of the stents. Biodegradability tests performed in a simulated physiological environment revealed that PLA/PHB and Tough PLA stents exhibited higher degradation rates compared to PLA, aligning with the requirements for temporary urinary tract support. Tensile strength testing indicated that while PLA showed the highest strength, PLA/PHB and Tough PLA stents provided beneficial ductility, reducing the risk of blockage due to material breakage. Hardness assessments classified PLA/PHB stents as medium soft, optimizing patient comfort during the stenting period. These findings demonstrate the potential of using biodegradable polymers to produce ureteral stents that could eliminate the need for removal procedures, thereby enhancing patient recovery and comfort. Full article
Show Figures

Figure 1

51 pages, 47146 KB  
Review
A Review of Friction Stir Welding of Industrial Alloys: Tool Design and Process Parameters
by Vincenzo Lunetto, Manuela De Maddis, Franco Lombardi and Pasquale Russo Spena
J. Manuf. Mater. Process. 2025, 9(2), 36; https://doi.org/10.3390/jmmp9020036 - 28 Jan 2025
Cited by 8 | Viewed by 3573
Abstract
Friction stir welding (FSW) is a pivotal technology with ongoing relevance across industries. Renowned for its ability to join materials with dissimilar melting points while mitigating thermal distortions, FSW offers relevant advantages over traditional fusion welding. However, the adoption of FSW for high-strength [...] Read more.
Friction stir welding (FSW) is a pivotal technology with ongoing relevance across industries. Renowned for its ability to join materials with dissimilar melting points while mitigating thermal distortions, FSW offers relevant advantages over traditional fusion welding. However, the adoption of FSW for high-strength alloys poses notable challenges, including: (i) accelerated tool wear, (ii) the need for special tool features tailored to these alloys, and (iii) a narrow process window. This review provides a comprehensive overview of FSW as an advanced technique for joining metal alloys for several industrial fields. Emphasis is on materials such as Mg-, Cu-, Ti-, and Ni-based alloys, automotive steels, stainless steels, and maraging steels. The research highlights the critical influence of tool design—main dimensions, features, and materials—and process parameters—rotational and welding speeds, tilt angle, and plunge depth or vertical load—also considering their influences on defect formation. Detailed insights are provided into material flow and the formation of the different weld regions, including SZ, TMAZ, and HAZ. Full article
(This article belongs to the Special Issue Advances in Welding Technology)
Show Figures

Figure 1

18 pages, 573 KB  
Article
Towards Zero Defect and Zero Waste Manufacturing by Implementing Non-Destructive Inspection Technologies
by Joan Lario, Javier Mateos, Foivos Psarommatis and Ángel Ortiz
J. Manuf. Mater. Process. 2025, 9(2), 29; https://doi.org/10.3390/jmmp9020029 - 21 Jan 2025
Cited by 6 | Viewed by 3946
Abstract
This study aims to provide an overview of Zero Defect, Zero Waste, and non-destructive inspection technologies (NDITs), which play a crucial role in the early detection of defects and material consumption in industrial processes. Integrating Zero Defect and Zero Waste strategies with non-destructive [...] Read more.
This study aims to provide an overview of Zero Defect, Zero Waste, and non-destructive inspection technologies (NDITs), which play a crucial role in the early detection of defects and material consumption in industrial processes. Integrating Zero Defect and Zero Waste strategies with non-destructive inspection technologies supports Industry 4.0 by using advanced sensors, robotics, and AI to create smart manufacturing systems that optimise resources and improve quality. The analysis covers the main functionalities, applications and technical specifications of several NDITs to automate the inspection of industrial processes. It also discusses both the benefits and limitations of these techniques through benchmarking. Deploying inspection as a service solution based on NDITs with data-driven decision-making Artificial Intelligence for in-process or in-line inspection policies increases production control by reducing material waste and energy use, and by optimising the final factory cost. After a comprehensive assessment, this paper aims to examine and review recent developments in the Zero Defects and Zero Waste field due to emerging non-destructive inspection systems, and their combination with other technologies, such as augmented reality. Advances in sensors, robotics, and decision-making processes through Artificial Intelligence can increase Human–Robot Collaboration in the inspection process by enhancing quality assurance during production. Full article
(This article belongs to the Special Issue Industry 4.0: Manufacturing and Materials Processing)
Show Figures

Figure 1

14 pages, 9357 KB  
Article
Design and Development of a Bespoke Rotary Friction Welding Machine in Exploration of Joining Dissimilar Materials for Nuclear Applications
by Michail Dellepiane, Laurie Da Silva and Athanasios Toumpis
J. Manuf. Mater. Process. 2025, 9(1), 27; https://doi.org/10.3390/jmmp9010027 - 18 Jan 2025
Cited by 2 | Viewed by 1781
Abstract
Rotary friction welding is a solid-state welding process that can manufacture high-integrity joints between similar and dissimilar materials with short weld times. However, access to expensive and complex industrial-grade friction welding machines is not always possible. This study explores the design process and [...] Read more.
Rotary friction welding is a solid-state welding process that can manufacture high-integrity joints between similar and dissimilar materials with short weld times. However, access to expensive and complex industrial-grade friction welding machines is not always possible. This study explores the design process and functionality of a laboratory-scale friction welding setup following the fundamentals of large-scale machinery. The proposed setup is designed to be easily manufactured, employing the use of a calibrated drill press and load cell, thus ensuring welding parameters such as rotational speed and applied axial load are monitored. The decision to investigate rotary friction welding of aluminium bronze Ca104 to austenitic stainless steel AISI316 was taken to explore the limitations of this bespoke friction welding machine for prospective applications in the nuclear energy sector. The workpieces were friction welded at four sets of rotational speeds with constant friction and forging pressures. The microstructural evolution and mechanical properties of the dissimilar material welds were investigated via optical and scanning electron microscopy with energy dispersive spectroscopy, 4-point bend testing and microhardness measurements. Results show a change in the hardness along the weld interface and evidence of metallic diffusion between the dissimilar materials, demonstrating the successful application of the small-scale experimental setup. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

19 pages, 11551 KB  
Article
Mechanical Performance of rPET Filament Obtained by Thermal Drawing for FFF Additive Manufacturing
by Pedro Pires, Martim Lima de Aguiar and André Costa Vieira
J. Manuf. Mater. Process. 2025, 9(1), 26; https://doi.org/10.3390/jmmp9010026 - 16 Jan 2025
Cited by 2 | Viewed by 3201
Abstract
The growing production of plastic waste and its recycling, from a circular economy perspective, faces challenges in finding solutions that are easy to implement, cheap in labor and energy during recycling, and locally implementable to avoid transportation. This work developed and validated a [...] Read more.
The growing production of plastic waste and its recycling, from a circular economy perspective, faces challenges in finding solutions that are easy to implement, cheap in labor and energy during recycling, and locally implementable to avoid transportation. This work developed and validated a methodology to address these challenges. Designed for small-scale use at home or in schools following a Do It Yourself (DIY) approach, it transforms water bottles into plastic strips, which, after passing through an extruder nozzle, become filaments with a diameter of 1.75 mm. These can replace commercially available thermoplastic filaments. Specimens produced by additive manufacturing with recycled PET (rPET) and commercial PETG showed similar mechanical properties and can serve as alternatives to commercial PETG. PETG shows higher strength (30 MPa) compared to rPET (24 MPa), a slightly higher Young’s modulus of 1.44 GPa versus 1.43 GPa, and greater strain at failure with 0.03 mm/mm against 0.02 mm/mm, making it stiffer and more ductile. This simple and widely applicable local solution may absorb a considerable amount of bottle waste, offering an economical, sustainable alternative to commercial filaments. Full article
Show Figures

Figure 1

23 pages, 16038 KB  
Article
Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition
by Leila Sorkhi, Nathan J. Madden and Grant A. Crawford
J. Manuf. Mater. Process. 2025, 9(1), 3; https://doi.org/10.3390/jmmp9010003 - 26 Dec 2024
Cited by 2 | Viewed by 1671
Abstract
Additive manufacturing of magnesium (Mg) alloys is of interest for the fabrication of complex-shaped lightweight materials. This study evaluates the microstructure of WE43 Mg alloy deposited using laser powder directed energy deposition (LPDED) additive manufacturing technique in as-deposited and post-processed conditions. As-deposited samples [...] Read more.
Additive manufacturing of magnesium (Mg) alloys is of interest for the fabrication of complex-shaped lightweight materials. This study evaluates the microstructure of WE43 Mg alloy deposited using laser powder directed energy deposition (LPDED) additive manufacturing technique in as-deposited and post-processed conditions. As-deposited samples exhibited roughly 2% porosity, which was reduced to below 0.1% after hot isostatic pressing. Despite limited grain growth after heat treatment, some grains experienced abnormal grain growth, likely due to Zener pinning and non-uniform dissolution of grain boundary precipitates. Moreover, as-deposited specimens contained Nd-rich grain boundary precipitates which dissolved during post-processing. Additionally, during heat treatment. a fine distribution of needle-like β1 or β precipitates formed. Overall, the precipitate size and distribution following heat treatment was non-uniform, likely because of the non-uniform response of the LPDED material to heat treatment, owing to the variation in local- and global-temperature profiles during deposition. Furthermore, arc-shaped phases with a high concentration of Y, O, and Zr were present for all processing conditions and are associated with the passivation of the feedstock powder prior to deposition. Moreover, an equiaxed-grain structure with a random orientation and a finer grain size in the regions adjacent to the arc-shaped phases was observed in all processing conditions. Full article
Show Figures

Figure 1

21 pages, 32765 KB  
Article
Sustainable Synthesis of Diamond-like Carbon and Giant Carbon Allotropes from Hyperbaric Methanol–Water Mixtures Through the Critical Point
by Mohamad E. Alabdulkarim, Vibhor Thapliyal and James L. Maxwell
J. Manuf. Mater. Process. 2024, 8(6), 286; https://doi.org/10.3390/jmmp8060286 - 9 Dec 2024
Cited by 2 | Viewed by 1929
Abstract
Freeform carbon fibres were 3D-printed from CH3OH:H2O mixtures using hyperbaric-pressure laser chemical vapour deposition (HP-LCVD). The experiment overlapped a region of known diamond growth, with the objective of depositing diamond-like carbon without the use of plasmas or hot filaments. [...] Read more.
Freeform carbon fibres were 3D-printed from CH3OH:H2O mixtures using hyperbaric-pressure laser chemical vapour deposition (HP-LCVD). The experiment overlapped a region of known diamond growth, with the objective of depositing diamond-like carbon without the use of plasmas or hot filaments. A high-pressure regime was investigated for the first time through the precursor’s critical point. Seventy-two C-fibres were grown from 13 different CH3OH:H2O mixtures at total pressures between 7.8 and 180 bar. Maximum steady-state axial growth rates of 14 µm/s were observed. Growth near the critical point was suppressed, ostensibly due to thermal diffusion and selective etching. In addition to nanostructured graphite, various carbon allotropes were synthesised at/within the outer surface of the fibres, including diamond-like carbon, graphite polyhedral crystal, and tubular graphite cones. Several allotropes were oversized compared to structures previously reported. Raman spectral pressure–temperature (P-T) maps and a pictorial P-T phase diagram were compiled over a broad range of process conditions. Trends in the Raman ID/IG and I2D/IG intensity ratios were observed and regions of optimal growth for specific allotropes were identified. It is intended that this work provide a basis for others in optimising the growth of specific carbon allotropes from methanol using HP-LCVD and similar CVD processes. Full article
Show Figures

Figure 1

17 pages, 17995 KB  
Article
The Wettability and High-Temperature Properties of Porous BN/Si3N4 Ceramics Bonded with SiTi22 Filler
by Yanli Zhuang, Hao Cheng, Xiao Wang, Limin Dong, Panpan Lin, Tiesong Lin, Peng He, Dan Li, Xinxin Jin and Jian Li
J. Manuf. Mater. Process. 2024, 8(6), 279; https://doi.org/10.3390/jmmp8060279 - 3 Dec 2024
Viewed by 1260
Abstract
The wettability and high-temperature mechanical properties of porous BN/Si3N4 ceramics brazed with SiTi22 (wt. %) filler were studied. It is manifested that SiTi22 filler presents remarkable wetting and spreading capabilities on the porous BN/Si3N4 ceramic surface. An [...] Read more.
The wettability and high-temperature mechanical properties of porous BN/Si3N4 ceramics brazed with SiTi22 (wt. %) filler were studied. It is manifested that SiTi22 filler presents remarkable wetting and spreading capabilities on the porous BN/Si3N4 ceramic surface. An interfacial reaction layer is generated at the interface, and the thickness of the reaction layer initially grows and subsequently remains constant with the escalation of temperature. Carbon coating modification is beneficial to the wettability and high-temperature mechanical properties of porous BN/Si3N4 ceramics. The wetting driving force is mainly controlled by the interfacial reaction at the three-phase line of the wetting front. The mechanical properties of the carbon-coated joints are significantly enhanced in comparison with uncoated joints. The joint strength attains a maximum value of roughly 73 MPa in the shear test implemented at 800 °C. The strength of the joint is significantly enhanced mainly due to the TiN0.7C0.3 particles that consume energy by changing the crack propagation direction, and the SiC nanowires strengthen the connection by bridging. Full article
Show Figures

Figure 1

17 pages, 8436 KB  
Article
Impact of Combined Zr, Ti, and V Additions on the Microstructure, Mechanical Properties, and Thermomechanical Fatigue Behavior of Al-Cu Cast Alloys
by Peng Hu, Kun Liu, Lei Pan and X.-Grant Chen
J. Manuf. Mater. Process. 2024, 8(6), 250; https://doi.org/10.3390/jmmp8060250 - 6 Nov 2024
Viewed by 1303
Abstract
The effects of minor additions of the transition elements Zr, Ti, and V on the microstructure, mechanical properties, and out-of-phase thermomechanical fatigue behavior of 224 Al-Cu alloys were investigated. The results revealed that the introduction of the transition elements led to a refined [...] Read more.
The effects of minor additions of the transition elements Zr, Ti, and V on the microstructure, mechanical properties, and out-of-phase thermomechanical fatigue behavior of 224 Al-Cu alloys were investigated. The results revealed that the introduction of the transition elements led to a refined grain size and a finer and much denser distribution of θ″/θ′ precipitates compared to that of the base alloy, which enhanced the tensile strength but reduced the elongation at both room temperature and 300 °C. Constitutive analyses based on theoretical strength calculations indicated that precipitation strengthening was the primary mechanism contributing to the strength of both tested alloys at room temperature and 300 °C. The out-of-phase thermomechanical fatigue test results showed that the addition of transition elements caused a slight decrease in the fatigue lifetime, which was mainly attributed to the reduced ductility and higher peak tensile stress at low temperatures. During the fatigue process, the transition element-added alloy exhibited a lower coarsening ratio, indicating higher thermal stability, which mitigated the negative impact of the reduced ductility on the fatigue performance to some extent. Considering their various properties, the addition of Zr, Ti, and V is recommended to improve the overall performance of Al-Cu 224 cast alloys. Full article
Show Figures

Figure 1

23 pages, 3823 KB  
Article
Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting
by Tamás Sándor Tima and Norbert Geier
J. Manuf. Mater. Process. 2024, 8(6), 247; https://doi.org/10.3390/jmmp8060247 - 5 Nov 2024
Cited by 2 | Viewed by 1980
Abstract
Several challenges arise during edge trimming of carbon fibre-reinforced polymer (CFRP) composites, such as the formation of machining-induced burrs and delamination. In a recent development, appropriate-quality geometric features in CFRPs can be machined using special cutting tools and optimised machining parameters. However, these [...] Read more.
Several challenges arise during edge trimming of carbon fibre-reinforced polymer (CFRP) composites, such as the formation of machining-induced burrs and delamination. In a recent development, appropriate-quality geometric features in CFRPs can be machined using special cutting tools and optimised machining parameters. However, these suitable technologies quickly become inappropriate due to the accelerated tool wear. Therefore, the main aim of our research was to find a novel solution for maintaining the machined edge quality even if the tool condition changed significantly. We developed a novel mechanical edge-trimming technology inspired by wobble milling, i.e., the composite plate compression is governed by the proper tool tilting. The effectiveness of the novel technology was tested through mechanical machining experiments and compared with that of conventional edge-trimming technology. Furthermore, the influences of the tool tilting angle and the permanent chamfer size on the burr characteristics were also investigated. A one-fluted solid carbide end mill with a helix angle of 0° was applied for the experiments. The machined edges were examined trough stereomicroscopy and scanning electron microscopy. The images were evaluated through digital image processing. Our results show that multi-axis edge-trimming technology produces less extensive machining-induced burrs than conventional edge trimming by an average of 50%. Furthermore, we found that the tool tilting angle has a significant impact on burr size, while permanent chamfer does not influence it. These findings suggest that multi-axis edge trimming offers a strong alternative to conventional methods, especially when using end-of-life cutting tools, and highlight the importance of selecting the optimal tool tilting angle to minimize machining-induced burrs. Full article
Show Figures

Figure 1

49 pages, 12372 KB  
Review
Review of Image Processing Methods for Surface and Tool Condition Assessments in Machining
by Ali Ercetin, Oguzhan Der, Fatih Akkoyun, Manjunath Patel Gowdru Chandrashekarappa, Ramazan Şener, Mücahit Çalışan, Nevzat Olgun, Ganesh Chate and Kurki Nagaraja Bharath
J. Manuf. Mater. Process. 2024, 8(6), 244; https://doi.org/10.3390/jmmp8060244 - 31 Oct 2024
Cited by 14 | Viewed by 7333
Abstract
This paper systematically explores the applications of image processing techniques in machined surface analysis, a critical area in industries like manufacturing, aerospace, automotive, and healthcare. It examines the integration of image processing in traditional Computer Numerical Control (CNC) machining and micromachining, focusing on [...] Read more.
This paper systematically explores the applications of image processing techniques in machined surface analysis, a critical area in industries like manufacturing, aerospace, automotive, and healthcare. It examines the integration of image processing in traditional Computer Numerical Control (CNC) machining and micromachining, focusing on its role in tool wear analysis, workpiece detection, automatic CNC programming, and defect inspection. With AI and machine learning advancements, these technologies enhance defect detection, surface texture analysis, predictive maintenance, and quality optimization. The paper also discusses future advancements in high resolutions, 3D imaging, augmented reality, and Industry 4.0, highlighting their impact on productivity, precision, and challenges such as data privacy. In conclusion, image processing remains vital to improving manufacturing efficiency and quality control. Full article
Show Figures

Figure 1

20 pages, 10195 KB  
Article
Finite Element Simulation of Ti-6Al-4V Alloy Machining with a Grain-Size-Dependent Constitutive Model Considering the Ploughing Effect Under MQL and Cryogenic Conditions
by Guang Chen, Zhuoyang Wu, James Caudill and I. S. Jawahir
J. Manuf. Mater. Process. 2024, 8(6), 239; https://doi.org/10.3390/jmmp8060239 - 28 Oct 2024
Cited by 2 | Viewed by 2332
Abstract
The finite element modeling method has been widely applied in the modeling of the cutting process to characterize the instantaneous and microscale deformation mechanism that was difficult to obtain using physical experiments. The lubrication and cooling conditions, such as minimum quantity lubrication and [...] Read more.
The finite element modeling method has been widely applied in the modeling of the cutting process to characterize the instantaneous and microscale deformation mechanism that was difficult to obtain using physical experiments. The lubrication and cooling conditions, such as minimum quantity lubrication and cryogenic liquid nitrogen, affect the thermo-mechanical behaviors and machined surface integrity in the cutting process. In this work, a grain-size-dependent constitutive model was used to model orthogonal cutting for Ti-6Al-4V alloy with MQL and LN2 conditions. The cutting forces and chip morphologies that were measured in the cutting experiments of Ti-6Al-4V alloy were used to validate the simulated forces. The relative errors between the measured and simulated principal forces were less than 8%, while the relative errors of thrust forces were less than 19%. The predicted chip morphologies and surface grain refinement agreed well with the experimental results under the conditions with different uncut chip thicknesses and edge radii. Additionally, the relationship between the plastic displacement and grain refinement, as well as the microhardness and residual stresses under MQL and cryogenic conditions, were discussed. This work provides an effective modeling method for the orthogonal cutting of Ti-6Al-4V alloy to understand the mechanism of the plastic deformation and machined surface integrity under the MQL and LN2 conditions. Full article
(This article belongs to the Special Issue Advances in High-Performance Machining Operations)
Show Figures

Figure 1

27 pages, 9760 KB  
Article
Precision Calibration in Wire-Arc-Directed Energy Deposition Simulations Using a Machine-Learning-Based Multi-Fidelity Model
by Fuad Hasan, Abderrachid Hamrani, Md Munim Rayhan, Tyler Dolmetsch, Dwayne McDaniel and Arvind Agarwal
J. Manuf. Mater. Process. 2024, 8(5), 222; https://doi.org/10.3390/jmmp8050222 - 2 Oct 2024
Cited by 3 | Viewed by 2847
Abstract
Thermal simulation is essential in wire-arc-directed energy deposition (W-DED) to accurately estimate temperature distributions, impacting residual stress and distortion in components. Proper calibration of simulation models minimizes inaccuracies caused by varying material properties, machine settings, and environmental conditions. The lack of standardized calibration [...] Read more.
Thermal simulation is essential in wire-arc-directed energy deposition (W-DED) to accurately estimate temperature distributions, impacting residual stress and distortion in components. Proper calibration of simulation models minimizes inaccuracies caused by varying material properties, machine settings, and environmental conditions. The lack of standardized calibration methods further complicates thermal predictions. This paper introduces a novel calibration method integrating both machine learning, as the high-fidelity (HF) model, and response surface modeling, as the low-fidelity (LF) model, within a multi-fidelity (MF) framework. The approach utilizes Bayesian optimization to effectively explore the search space for optimal solutions. A two-tiered model employs the LF model to identify feasible regions, followed by the HF model to refine calibration parameters, such as thermal efficiency (η), convection coefficient (h), and emissivity (ε), which are difficult to determine experimentally. A three-factor Box–Behnken design (BBD) is applied to explore the design space, requiring only thirteen parameter configurations, conserving resources and enabling robust model training. The efficacy of this MF model is demonstrated in multi-layer W-DED calibration, showing strong alignment between experimental and simulated temperatures, with a mean absolute error (MAE) of 7.47 °C. This method offers a replicable framework for broader additive manufacturing processes. Full article
Show Figures

Figure 1

29 pages, 31375 KB  
Article
The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
by Jan-Philipp Roth, Ivo Šulák, Markéta Gálíková, Antoine Duval, Germain Boissonnet, Fernando Pedraza, Ulrich Krupp and Katrin Jahns
J. Manuf. Mater. Process. 2024, 8(5), 223; https://doi.org/10.3390/jmmp8050223 - 2 Oct 2024
Cited by 2 | Viewed by 1855
Abstract
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. [...] Read more.
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to the AM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enriched variant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure, and it was found that the conditioning led to a significant increase in the TiN formation along grain boundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the ex situ FBR approach not only revealed a superior microstructure compared to unconditioned parts but also with respect to a recently introduced in situ approach based on a gas atomization reaction synthesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enabled an effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatigue properties, even at elevated temperatures up to 750 °C. Such outstanding properties have never been documented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioning marks a promising modification route for future alloy systems. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

23 pages, 9665 KB  
Article
Effects of Powder Reuse and Particle Size Distribution on Structural Integrity of Ti-6Al-4V Processed via Laser Beam Directed Energy Deposition
by MohammadBagher Mahtabi, Aref Yadollahi, Courtney Morgan-Barnes, Matthew W. Priddy and Hongjoo Rhee
J. Manuf. Mater. Process. 2024, 8(5), 209; https://doi.org/10.3390/jmmp8050209 - 25 Sep 2024
Cited by 4 | Viewed by 3715
Abstract
In metal additive manufacturing, reusing collected powder from previous builds is a standard practice driven by the substantial cost of metal powder. This approach not only reduces material expenses but also contributes to sustainability by minimizing waste. Despite its benefits, powder reuse introduces [...] Read more.
In metal additive manufacturing, reusing collected powder from previous builds is a standard practice driven by the substantial cost of metal powder. This approach not only reduces material expenses but also contributes to sustainability by minimizing waste. Despite its benefits, powder reuse introduces challenges related to maintaining the structural integrity of the components, making it a critical area of ongoing research and innovation. The reuse process can significantly alter powder characteristics, including flowability, size distribution, and chemical composition, subsequently affecting the microstructures and mechanical properties of the final components. Achieving repeatable and consistent printing outcomes requires powder particles to maintain specific and consistent physical and chemical properties. Variations in powder characteristics can lead to inconsistencies in the microstructural features of printed components and the formation of process-induced defects, compromising the quality and reliability of the final products. Thus, optimizing the powder recovery and reuse methodology is essential to ensure that cost reduction and sustainability benefits do not compromise product quality and reliability. This study investigated the impact of powder reuse and particle size distribution on the microstructural and mechanical properties of Ti-6Al-4V specimens fabricated using a laser beam directed energy deposition technique. Detailed evaluations were conducted on reused powders with two different size distributions, which were compared with their virgin counterparts. Microstructural features and process-induced defects were examined using scanning electron microscopy and X-ray computed tomography. The findings reveal significant alterations in the elemental composition of reused powder, with distinct trends observed for small and large particles. Additionally, powder reuse substantially influenced the formation of process-induced defects and, consequently, the fatigue performance of the components. Full article
(This article belongs to the Special Issue Fatigue and Fracture Mechanics in Additive Manufacturing)
Show Figures

Figure 1

18 pages, 5769 KB  
Article
Investigating the Impact of Process Parameters on Bead Geometry in Laser Wire-Feed Metal Additive Manufacturing
by Mohammad Abuabiah, Tizia Charlotte Weidemann, Mahdi Amne Elahi, Bahaa Shaqour, Robin Day, Peter Plapper and Thomas Bergs
J. Manuf. Mater. Process. 2024, 8(5), 204; https://doi.org/10.3390/jmmp8050204 - 19 Sep 2024
Cited by 1 | Viewed by 2545
Abstract
Laser wire-feed metal additive manufacturing (LWAM) is an innovative technology that shows many advantages compared with traditional manufacturing approaches. Despite these advantages, its industrial adoption is limited by complex parameter management and inconsistent process quality. To address these issues and improve geometric accuracy, [...] Read more.
Laser wire-feed metal additive manufacturing (LWAM) is an innovative technology that shows many advantages compared with traditional manufacturing approaches. Despite these advantages, its industrial adoption is limited by complex parameter management and inconsistent process quality. To address these issues and improve geometric accuracy, this study explores how process parameters influence bead geometry. We conducted a parameter study varying laser power, wire feed rate, traverse speed, and welding angle. Using a full factorial design with a central composite design methodology, we assessed bead height and width. This allowed us to develop a model to estimate ideal process parameters. The findings offer a detailed analysis of parameter interactions and their effects on bead geometry, aiming to enhance geometric accuracy and process stability in LWAM. Moreover, we have evaluated the proposed process parameters from our developed model, which showed a significant enhancement to the overall quality. This was validated via printing a single layer and multi-layer structures. The quality of the final predicted sample using the proposed method was improved by 40% compared to the best sample produced for the Design of Experiment trials. Full article
Show Figures

Figure 1

23 pages, 8179 KB  
Article
Study on Extraordinarily High-Speed Cutting Mechanics and Its Application to Dry Cutting of Aluminum Alloys with Non-Coated Carbide Tools
by Jun Eto, Takehiro Hayasaka, Eiji Shamoto and Liangji Xu
J. Manuf. Mater. Process. 2024, 8(5), 198; https://doi.org/10.3390/jmmp8050198 - 13 Sep 2024
Viewed by 2755
Abstract
The friction/adhesion between the tool and chip is generally large in metal cutting, and it causes many problems such as high cutting energy/rough surface finish. To suppress this, cutting fluid and tool coating are used in practice, but they are high in energy/cost [...] Read more.
The friction/adhesion between the tool and chip is generally large in metal cutting, and it causes many problems such as high cutting energy/rough surface finish. To suppress this, cutting fluid and tool coating are used in practice, but they are high in energy/cost and environmentally unfriendly. Therefore, this paper investigates the extraordinarily high-speed cutting (EHS cutting) mechanics of mainly soft and highly heat-conductive materials and proposes their application to solve the friction/adhesion problem in an environmentally friendly manner. In order to clarify the EHS cutting mechanics, a simple analytical model is constructed and experiments are conducted with measurement of the cutting temperature and forces. As a result, the following points are clarified/found: (1) heat softening at the secondary plastic deformation zone rather than the primary plastic deformation zone, (2) friction coefficient drop to 0.170 in EHS cutting, and (3) gradually increasing trend of cutting temperature in EHS cutting. Finally, EHS cutting is applied to dry cutting of aluminum alloys with a non-coated carbide tool and compared to conventional wet cutting with a DLC-coated carbide tool, and it is shown that a coating/coolant can be omitted in this region to achieve environmentally friendly cutting. Full article
Show Figures

Figure 1

12 pages, 4342 KB  
Article
Investigating the Impact of 3D Printing Parameters on Hexagonal Structured PLA+ Samples and Analyzing the Incorporation of Sawdust and Soybean Oil as Post-Print Fillers
by Yeswanth Teja Ramisetty, Jens Schuster and Yousuf Pasha Shaik
J. Manuf. Mater. Process. 2024, 8(5), 193; https://doi.org/10.3390/jmmp8050193 - 3 Sep 2024
Viewed by 2086
Abstract
Today, around the world, there is huge demand for natural materials that are biodegradable and possess suitable properties. Natural fibers reveal distinct aspects like the combination of good mechanical and thermal properties that allow these types of materials to be used for different [...] Read more.
Today, around the world, there is huge demand for natural materials that are biodegradable and possess suitable properties. Natural fibers reveal distinct aspects like the combination of good mechanical and thermal properties that allow these types of materials to be used for different applications. However, fibers alone cannot meet the required expectations; design modifications and a wide variety of combinations must be synthesized and evaluated. It is of great importance to research and develop materials that are bio-degradable and widely available. The combination of PLA+, a bio-based polymer, with natural fillers like sawdust and soybean oil offers a novel way to create sustainable composites. It reduces the reliance on petrochemical-based plastics while enhancing the material’s properties using renewable resources. This study explores the creation of continuous hexagonal-shaped 3D-printed PLA+ samples and the application of post-print fillers, specifically sawdust and soybean oil. PLA+ is recognized for its eco-friendliness and low carbon footprint, and incorporating a hexagonal pattern into the 3D-printed PLA+ enhances its structural strength while maintaining its density. The addition of fillers is crucial for reducing shrinkage and improving binding capabilities, addressing some of PLA+’s inherent challenges and enhancing its load-bearing capacity and performance at elevated temperatures. Additionally, this study examines the impact of varying filler percentages and pattern orientations on the mechanical properties of the samples, which were printed with an infill design. Full article
Show Figures

Figure 1

22 pages, 7127 KB  
Article
Analysis of the Embodied Energy of Different Grades of Injection-Molded Polypropylene
by Peng Gao, Zarek Nieduzak, Joshua Krantz, Margaret J. Sobkowicz and Davide Masato
J. Manuf. Mater. Process. 2024, 8(4), 182; https://doi.org/10.3390/jmmp8040182 - 20 Aug 2024
Cited by 1 | Viewed by 3270
Abstract
This research investigates the correlation between polymer melt viscosity, tensile properties, and injection molding energy consumption for three grades of polypropylene: a virgin grade, a recycled grade, and a modified recycled grade. Cold runner and hot runner molds are considered. The experiments focus [...] Read more.
This research investigates the correlation between polymer melt viscosity, tensile properties, and injection molding energy consumption for three grades of polypropylene: a virgin grade, a recycled grade, and a modified recycled grade. Cold runner and hot runner molds are considered. The experiments focus on characterizing the thermal and mechanical energy drawn by the injection molding machine during the cycle. The data collected from the experiments are used to calculate the embodied energy as a function of the polymer viscosity and processing conditions. The analysis of the relationship between polymer rheology and processing provided guidelines for the molded parts’ embodied energy and mechanical characteristics. These guidelines and estimation techniques will support sustainable design for manufacturing practices. Full article
(This article belongs to the Special Issue Advances in Injection Molding: Process, Materials and Applications)
Show Figures

Figure 1

14 pages, 6538 KB  
Article
Extension of a Contact Subroutine for Composite Ring Rolling to Include Temperature Dependency
by Laurenz Kluge, Stefan Stergianou, Moritz Gouverneur and David Bailly
J. Manuf. Mater. Process. 2024, 8(4), 178; https://doi.org/10.3390/jmmp8040178 - 16 Aug 2024
Viewed by 1619
Abstract
By combining the ring rolling and roll bonding processes, the product spectrum can be additionally expanded. Since a successful composite ring rolling process requires a higher growth tendency for the inner ring, previous publications commonly included a softer inner ring to reduce the [...] Read more.
By combining the ring rolling and roll bonding processes, the product spectrum can be additionally expanded. Since a successful composite ring rolling process requires a higher growth tendency for the inner ring, previous publications commonly included a softer inner ring to reduce the flow resistance of the inner ring or specific geometries for rings and tools. In this work, the material combination of a 100Cr6 (DIN 1.3505, AISI 52100) outer ring and a 42CrMo4 (DIN 1.7225, AISI 4140) inner ring is used to show that the composite ring rolling process is also possible for material combinations with a balanced flow stress ratio and equal wall thicknesses. In earlier publications, the influence of temperature was neglected. As the influence on the yield stress and thus on the success of the process has a significant influence, this should be considered in order to be able to make a reliable statement. For this purpose, the bond formation of the two materials was investigated by bonding experiments, and an existing bond formation model was extended with respect to the temperature dependency. On the basis of this model, the process control parameters were investigated using FE simulations, and a ring rolling experiment was carried out. Full article
Show Figures

Figure 1

20 pages, 11988 KB  
Article
Additive Friction Stir Deposition of a Tantalum–Tungsten Refractory Alloy
by R. Joey Griffiths, Alexander E. Wilson-Heid, Marissa A. Linne, Eleanna V. Garza, Arnold Wright and Aiden A. Martin
J. Manuf. Mater. Process. 2024, 8(4), 177; https://doi.org/10.3390/jmmp8040177 - 14 Aug 2024
Cited by 6 | Viewed by 2822
Abstract
Additive friction stir deposition (AFSD) is a solid-state metal additive manufacturing technique, which utilizes frictional heating and plastic deformation to create large deposits and parts. Much like its cousin processes, friction stir welding and friction stir processing, AFSD has seen the most compatibility [...] Read more.
Additive friction stir deposition (AFSD) is a solid-state metal additive manufacturing technique, which utilizes frictional heating and plastic deformation to create large deposits and parts. Much like its cousin processes, friction stir welding and friction stir processing, AFSD has seen the most compatibility and use with lower-temperature metals, such as aluminum; however, there is growing interest in higher-temperature materials, such as titanium and steel alloys. In this work, we explore the deposition of an ultrahigh-temperature refractory material, specifically, a tantalum–tungsten (TaW) alloy. The solid-state nature of AFSD means refractory process temperatures are significantly lower than those for melt-based additive manufacturing techniques; however, they still pose difficult challenges, especially in regards to AFSD tooling. In this study, we perform initial deposition trials of TaW using twin-rod-style AFSD with a high-temperature tungsten–rhenium-based tool. Many challenges arise because of the high temperatures of the process and high mechanical demand on AFSD machine hardware to process the strong refractory alloy. Despite these challenges, successful deposits of the material were produced and characterized. Mechanical testing of the deposited material shows improved yield strength over that of the annealed reference material, and this strengthening is mostly attributed to the refined recrystallized microstructure typical of AFSD. These findings highlight the opportunities and challenges associated with ultrahigh-temperature AFSD, as well as provide some of the first published insights into twin-rod-style AFSD process behaviors. Full article
Show Figures

Figure 1

26 pages, 8585 KB  
Article
Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges
by Raphael Isaak Elias Schönecker, Jonas Baumann, Rafael Garcia Carballo and Dirk Biermann
J. Manuf. Mater. Process. 2024, 8(4), 174; https://doi.org/10.3390/jmmp8040174 - 10 Aug 2024
Cited by 5 | Viewed by 1788
Abstract
In milling processes in which material removal is performed periodically from solid material, dynamic effects are generally considered to be responsible for instabilities and subsequent productivity limits. Usually, in such applications, the process-inherent complex dynamic load spectrum on machines, tools and workpieces is [...] Read more.
In milling processes in which material removal is performed periodically from solid material, dynamic effects are generally considered to be responsible for instabilities and subsequent productivity limits. Usually, in such applications, the process-inherent complex dynamic load spectrum on machines, tools and workpieces is considered together with vibration-based relative displacements that can be attributed to the regenerative effect. There are numerous techniques in the literature addressing the suppression of these dynamic effects, but they require a large amount of analysis and implementation effort as well as specific expert knowledge. The approach presented here, however, provides a universally applicable method for suppressing chatter vibrations and deflections. By applying structure elements to the flanks of the minor cutting edges of HSS end mills, it was possible to increase the chatter-free limiting depth of cut ap,crit in the milling processes of the aluminum alloy EN AW-7075. Structured tools were used in ramp milling tests to investigate various effects, such as the influence of certain geometric design features on the stabilization potential compared to a reference tool. Furthermore, the effects of varied process parameter configurations and wear-related effects on the performance of the tool concept were focused on as well. The three key design features of the cutting edge and the structured profiles were identified from the results of the investigation, which, when combined in the most efficient design, in each case led to the development of an optimized structure and process configuration with cumulative potential for increasing the stability limit up to 200%. Full article
(This article belongs to the Special Issue Dynamics and Machining Stability for Flexible Systems)
Show Figures

Figure 1

16 pages, 4948 KB  
Article
Production of Ceramic Investment Casting Shells Using Lithography-Based Ceramic Manufacturing and Binder Jetting Technology
by Irina Sviridova, Hendrik Holling, Wenchao Tang, Alexander Küll and Christian Mendieta Terán
J. Manuf. Mater. Process. 2024, 8(4), 162; https://doi.org/10.3390/jmmp8040162 - 29 Jul 2024
Cited by 2 | Viewed by 4531
Abstract
This paper presents a comprehensive analysis of the utilization of 3D printing technology for the fabrication of ceramic shells in the context of investment casting. This study encompasses an exploration of various 3D printing techniques such as binder jetting technology and lithography-based ceramic [...] Read more.
This paper presents a comprehensive analysis of the utilization of 3D printing technology for the fabrication of ceramic shells in the context of investment casting. This study encompasses an exploration of various 3D printing techniques such as binder jetting technology and lithography-based ceramic manufacturing applied to ceramic materials tailored for investment casting applications for different materials. Comparative analyses between conventionally manufactured shells and those produced through 3D printing techniques are presented, shedding light on the potential advantages and challenges associated with the adoption of additive manufacturing in investment casting processes. The findings of this study reveal that both methods offer viable solutions for creating ceramic materials suitable as shells for investment casting. Both lithography-based ceramic manufacturing and binder jetting technology exhibit unique advantages and challenges. Lithography-based ceramic manufacturing demonstrates a superior surface finish and resolution, making it particularly suitable for intricate designs and fine details. On the other hand, binder jetting technology presents advantages in terms of speed and scalability, allowing for the rapid production of larger components. Full article
Show Figures

Figure 1

22 pages, 7692 KB  
Article
Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability
by Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske and Frank Doepper
J. Manuf. Mater. Process. 2024, 8(4), 158; https://doi.org/10.3390/jmmp8040158 - 25 Jul 2024
Cited by 2 | Viewed by 2219
Abstract
The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process [...] Read more.
The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment. Full article
(This article belongs to the Special Issue Design, Processes and Materials for Additive Manufacturing)
Show Figures

Figure 1

9 pages, 1703 KB  
Article
Effects of Layer Thickness and Compaction Thickness on Green Part Density in Binder Jetting Additive Manufacturing of Silicon Carbide: Designed Experiments
by Mostafa Meraj Pasha, Md Shakil Arman, Fahim Khan, Zhijian Pei and Stephen Kachur
J. Manuf. Mater. Process. 2024, 8(4), 148; https://doi.org/10.3390/jmmp8040148 - 9 Jul 2024
Cited by 5 | Viewed by 2655
Abstract
This paper reports on an experimental investigation that used a full factorial design to study the main effects and the interaction effect of layer thickness and compaction thickness on the green part density in the binder jetting additive manufacturing of silicon carbide. A [...] Read more.
This paper reports on an experimental investigation that used a full factorial design to study the main effects and the interaction effect of layer thickness and compaction thickness on the green part density in the binder jetting additive manufacturing of silicon carbide. A two-variable, two-level full factorial design was employed. The results show that the green part density was higher at the low level of layer thickness and at the high level of compaction thickness. These results can be useful in selecting the values of printing variables, enabling the fabrication of green parts with a desirable density that is crucial for advanced ceramic applications. Full article
Show Figures

Figure 1

31 pages, 3947 KB  
Review
Cost Modelling for Powder Bed Fusion and Directed Energy Deposition Additive Manufacturing
by Navneet Khanna, Harsh Salvi, Büşra Karaş, Ishrat Fairoz and Alborz Shokrani
J. Manuf. Mater. Process. 2024, 8(4), 142; https://doi.org/10.3390/jmmp8040142 - 4 Jul 2024
Cited by 16 | Viewed by 6772
Abstract
Additive manufacturing (AM) is increasingly used for fabricating parts directly from digital models, usually by depositing and bonding successive layers of various materials such as polymers, metals, ceramics, and composites. The design freedom and reduced material consumption for producing near-net-shaped components have made [...] Read more.
Additive manufacturing (AM) is increasingly used for fabricating parts directly from digital models, usually by depositing and bonding successive layers of various materials such as polymers, metals, ceramics, and composites. The design freedom and reduced material consumption for producing near-net-shaped components have made AM a popular choice across various industries, including the automotive and aerospace sectors. Despite its growing popularity, the accurate estimation of production time, productivity and cost remains a significant challenge due to the ambiguity surrounding the technology. Hence, reliable cost estimation models are necessary to guide decisions throughout product development activities. This paper provides a thorough analysis of the state of the art in cost models for AM with a specific focus on metal Directed Energy Deposition (DED) and Powder Bed Fusion (PBF) processes. An overview of DED and PBF processes is presented to enhance the understanding of how process parameters impact the overall cost. Consequently, suitable costing techniques and significant cost contributors in AM have been identified and examined in-depth. Existing cost modelling approaches in the field of AM are critically evaluated, leading to the suggestion of a comprehensive cost breakdown including often-overlooked aspects. This study aims to contribute to the development of accurate cost prediction models in supporting decision making in the implementation of AM. Full article
Show Figures

Figure 1

13 pages, 3638 KB  
Article
Investigating Workpiece Deflection in Precise Electrochemical Machining of Turbine Blades
by Elio Tchoupe Sambou, Daniel Lauwers, Timm Petersen, Tim Herrig, Andreas Klink, Matthias Meinke and Wolfgang Schröder
J. Manuf. Mater. Process. 2024, 8(4), 138; https://doi.org/10.3390/jmmp8040138 - 28 Jun 2024
Cited by 3 | Viewed by 2073
Abstract
Precise electrochemical machining (PECM) is being used increasingly to produce turbine blades (high-pressure compressors) from difficult-to-machine materials such as Inconel. However, the challenges associated with PECM are particularly pronounced for filigree workpieces characterized by high aspect ratios and thin-walled geometries. The need for [...] Read more.
Precise electrochemical machining (PECM) is being used increasingly to produce turbine blades (high-pressure compressors) from difficult-to-machine materials such as Inconel. However, the challenges associated with PECM are particularly pronounced for filigree workpieces characterized by high aspect ratios and thin-walled geometries. The need for high-pressure flushing within the working gap to renew the electrolyte poses a dilemma because it induces unwanted deflection in these thin-walled structures. This problem is intensified by the mechanical oscillation of the tool applied to promote flushing efficiency. The superposition of mechanical tool oscillation and turbulent flushing, which exacerbate fluid–structure interaction, has been identified as the essential cause of workpiece deflection. The aim of this paper is to present an experimental setup coupled with numerical methods to better investigate the phenomenon of workpiece deflection during PECM. In the first part of this work, a novel tool system for investigating the phenomenon of workpiece deflection in PECM is presented. The tool system combines typical PECM tool–workpiece arrangements for double-sided machining and a unique electrolytic mask that provides optical access to the working gap, allowing in situ measurements. After validating the tool system by experimental tests, the workpiece deflection is investigated using high-speed imaging. In a next step, analytical studies of the flushing conditions during machining operations are carried out. These investigations are followed by a structural investigation of the workpiece to improve the understanding of the deflection behavior of the workpiece. In addition, the effect on the blade tip caused by the continuously decreasing moment of inertia of the blade due to their thinning during machining is analyzed. Full article
Show Figures

Figure 1

22 pages, 8069 KB  
Article
Effects of δ Phase and Annealing Twins on Mechanical Properties and Impact Toughness of L-PBF Inconel 718
by Wakshum Mekonnen Tucho, Bjorn Andre Ohm, Sebastian Andres Pedraza Canizalez, Andreas Egeland, Martin Bernard Mildt, Mette Lokna Nedreberg and Vidar Folke Hansen
J. Manuf. Mater. Process. 2024, 8(4), 135; https://doi.org/10.3390/jmmp8040135 - 27 Jun 2024
Cited by 8 | Viewed by 3203
Abstract
In this study, the effects of the δ phase and annealing twins on the hardness, tensile properties, and Charpy impact toughness of Inconel 718 fabricated using L-PBF were investigated. The as-printed components underwent two stages of heat treatment to modify their microstructure and [...] Read more.
In this study, the effects of the δ phase and annealing twins on the hardness, tensile properties, and Charpy impact toughness of Inconel 718 fabricated using L-PBF were investigated. The as-printed components underwent two stages of heat treatment to modify their microstructure and phases. The δ phase was induced through solid-solution heat treatment at 980 °C for 1 h, while annealing twins were formed at 1100 °C for 3 h. Following precipitation hardening, specimens containing δ precipitates exhibited a higher ultimate tensile strength (13%), yield strength (27%), and hardness (12%) compared to those rich in annealing twins. The enhanced mechanical strength was attributed to the presence of δ precipitates and differences in the extent of recrystallization, leading to variations in the density of retained lattice defects, including subgrain boundaries and primary phases. Conversely, specimens with annealing twins demonstrated a significantly higher impact toughness (four times) and ductility (twice) than those with δ precipitates. Annealing twins were found to enhance plasticity by impeding dislocation movement, while δ precipitates reduced plasticity by acting as sites for void formation and crack propagation. Microstructural, compositional, phase, crystallographic, and fractographic analyses were conducted using OM, SEM, TEM, and XRD techniques to identify the factors influencing the observed differences. The results indicate that the heat treatment approach involving annealing twins can effectively enhance the ductility of Inconel 718 while maintaining the necessary mechanical strength. Full article
Show Figures

Figure 1

17 pages, 10529 KB  
Article
Heat Input Control Strategies in DED
by Sergei Egorov, Fabian Soffel, Timo Schudeleit, Markus Bambach and Konrad Wegener
J. Manuf. Mater. Process. 2024, 8(4), 136; https://doi.org/10.3390/jmmp8040136 - 27 Jun 2024
Viewed by 3927
Abstract
In the context of directed energy deposition (DED), the production of complex components necessitates precise control of all processing parameters while mitigating undesirable factors like heat accumulation. This research seeks to explore and validate with various materials the impact of a geometry-based analytical [...] Read more.
In the context of directed energy deposition (DED), the production of complex components necessitates precise control of all processing parameters while mitigating undesirable factors like heat accumulation. This research seeks to explore and validate with various materials the impact of a geometry-based analytical model for minimizing heat input on the characteristics and structure of the resultant DED components. Furthermore, it aims to compare this approach with other established methods employed to avoid heat accumulation during production. The geometry of the fabricated specimens was assessed using a linear laser scanner, cross-sections were analyzed through optical microscopy, and the effect on mechanical properties was determined via microhardness measurements. The specimens manufactured using the developed analytical model exhibited superior geometric precision with lower energy consumption without compromising mechanical properties. Full article
(This article belongs to the Special Issue Advances in Directed Energy Deposition Additive Manufacturing)
Show Figures

Figure 1

9 pages, 4839 KB  
Communication
Dissimilar Welding of Thick Ferritic/Austenitic Steels Plates Using Two Simultaneous Laser Beams in a Single Pass
by Fabio Giudice, Severino Missori and Andrea Sili
J. Manuf. Mater. Process. 2024, 8(4), 134; https://doi.org/10.3390/jmmp8040134 - 27 Jun 2024
Cited by 1 | Viewed by 1524
Abstract
Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, [...] Read more.
Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, a procedure with two simultaneous laser beams (working in a single pass) and consumable inserts as filler metal has been considered. Particular attention was paid to the choice of the filler metal (composition and amount), as well as welding parameters, which are crucial to obtain the right dilution necessary for a correct chemical composition in the weld zone. The first experimental investigations confirmed the achievement of a good weldability of the dissimilar pair ASTM A387 ferritic/AISI 304L austenitic steel, having ascertained that the microstructure of the weld zone is austenitic with a little amount of residual primary ferrite, which is the best condition to minimize the risk of hot cracking. Full article
Show Figures

Figure 1

Back to TopTop