Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming
Abstract
1. Introduction
2. Materials and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Mumali, F. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. Comput. Ind. Eng. 2022, 165, 107964. [Google Scholar] [CrossRef]
- Adil, M.; Ullah, R.; Noor, S.; Gohar, N. Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural Comput. Appl. 2022, 34, 8355–8363. [Google Scholar] [CrossRef]
- Keskin, F.D.; Çiçekli, U.; İçli, D. Prediction of failure categories in plastic extrusion process with deep learning. J. Intell. Syst. Theory Appl. 2022, 5, 27–34. [Google Scholar] [CrossRef]
- Ghnatios, C.; Gravot, E.; Champaney, V.; Verdon, N.; Hascoët, N.; Chinesta, F. Polymer extrusion die design using a data-driven autoencoders technique. Int. J. Mater. Form. 2024, 17, 4. [Google Scholar] [CrossRef]
- Mrzygłód, B.; Hawryluk, M.; Janik, M.; Wożeńska, I.O. Sensitivity analysis of the artificial neural networks in a system for durability prediction of forging tools to forgings made of C45 steel. Int. J. Adv. Manuf. Technol. 2020, 109, 1385–1395. [Google Scholar] [CrossRef]
- Mrzygłód, B.; Hawryluk, M.; Gronostajski, Z.; Opaliński, A.; Kaszuba, M.; Polak, S.; Widomski, P.; Ziemba, J.; Zwierzchowski, M. Durability analysis of forging tools after different variants of surface treatment using a decision-support system based on artificial neural networks. Arch. Civ. Mech. Eng. 2018, 18, 1079–1091. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Kim, N. A Preform Design Approach for Uniform Strain Distribution in Forging Processes Based on Convolutional Neural Network. J. Manuf. Sci. Eng. 2022, 144, 121004. [Google Scholar] [CrossRef]
- Yuan, C.; Ling, Y.; Zhang, N.; Yang, Y.; Pan, L.; Han, C.; Cao, Y.; Zhang, H.; Nie, P.; Ma, H. Fault Diagnosis Method of Forging Press Based on Improved CNN. IEEE Access 2024, 12, 181925–181936. [Google Scholar] [CrossRef]
- Naranje, V.; Kumar, S.; Kashid, S.; Ghodke, A.; Hussein, H.M.A. Prediction of life of deep drawing die using artificial neural network. Adv. Mater. Process. Technol. 2016, 2, 132–142. [Google Scholar] [CrossRef]
- Sevsek, L.; Vilkovsky, S.; Majerníková, J.; Pepelnjak, T. Predicting the deep drawing process of TRIP steel grades using multilayer perceptron artificial neural networks. Adv. Prod. Eng. Manag. 2024, 19, 46–64. [Google Scholar] [CrossRef]
- Manoochehri, M.; Kolahan, F. Integration of artificial neural network and simulated annealing algorithm to optimize deep drawing process. Int. J. Adv. Manuf. Technol. 2014, 73, 241–249. [Google Scholar] [CrossRef]
- El Mrabti, I.; Touache, A.; El Hakimi, A.; Chamat, A. Springback optimization of deep drawing process based on FEM-ANN-PSO strategy. Struct. Multidiscip. Optim. 2021, 64, 321–333. [Google Scholar] [CrossRef]
- Liu, S.; Xia, Y.; Shi, Z.; Yu, H.; Li, Z.; Lin, J. Deep Learning in Sheet Metal Bending with a Novel Theory-Guided Deep Neural Network. IEEE/CAA J. Autom. Sin. 2021, 8, 565–581. [Google Scholar] [CrossRef]
- Sahib, M.M.; Kovács, G. Using Artificial Neural Networks to Predict the Bending Behavior of Composite Sandwich Structures. Polymers 2025, 17, 337. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Zhang, D.; Mirrashid, M.; Nguyen, D.K.; Singhatanadgid, P. Fast analysis and prediction approach for geometrically nonlinear bending analysis of plates and shells using artificial neural networks. Mech. Adv. Mater. Struct. 2023, 31, 10221–10239. [Google Scholar] [CrossRef]
- Xu, B.; Li, L.; Wang, Z.; Zhou, H.; Liu, D. Prediction of springback in local bending of hull plates using an optimized backpropagation neural network. Mech. Sci. 2021, 12, 777–789. [Google Scholar] [CrossRef]
- Thakur, S.K.; Das, A.K.; Jha, B.K. Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel. J. Alloys Metall. Syst. 2023, 4, 100044. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Linkens, D.A.; Talamantes-Silva, J.; Howard, I.C. Roll Force and Torque Prediction Using Neural Network and Finite Element Modelling. ISIJ Int. 2003, 43, 1957–1966. [Google Scholar] [CrossRef]
- Hwang, R.; Jo, H.; Kim, K.S.; Hwang, H.J. Hybrid Model of Mathematical and Neural Network Formulations for Rolling Force and Temperature Prediction in Hot Rolling Processes. IEEE Access 2020, 8, 153123–153133. [Google Scholar] [CrossRef]
- Rath, S.; Sengupta, P.P.; Singh, A.P.; Marik, A.K.; Talukdar, P. Mathematical-artificial neural network hybrid model to predict roll force during hot rolling of steel. Int. J. Comput. Mater. Sci. Eng. 2013, 2, 1350004. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Linkens, D.A.; Talamantes-Silva, J. Roll load prediction-data collection, analysis and neural network modelling. J. Mater. Process. Technol. 2004, 152, 304–315. [Google Scholar] [CrossRef]
- Xia, J.S.; Khabaz, M.K.; Patra, I.; Khalid, I.; Alvarez, J.R.N.; Rahmanian, A.; Eftekhari, S.A.; Toghraie, D. Using feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling. ISA Trans. 2023, 132, 353–363. [Google Scholar] [CrossRef]
- Ostasevicius, V.; Paleviciute, I.; Paulauskaite-Taraseviciene, A.; Jurenas, V.; Eidukynas, D.; Kizauskiene, L. Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force. Sensors 2022, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Zárate, L.E. A method to determinate the thickness control parameters in cold rolling process through predictive model via neural networks. J. Braz. Soc. Mech. Sci. Eng. 2005, 27, 357–363. [Google Scholar] [CrossRef]
- Wang, H.Y.; Huang, C.Q.; Deng, H. Prediction on Transverse Thickness of Hot Rolling Aluminum Strip Based on BP Neural Network. In Applied Mechanics and Materials; Trans Tech Publications, Ltd.: Bäch, Switzerland, 2012; Volume 157–158, pp. 78–83. [Google Scholar]
- Hou, C.K.J.; Behdinan, K. Neural networks with dimensionality reduction for predicting temperature change due to plastic deformation in a cold rolling simulation. AI EDAM 2023, 37, e1. [Google Scholar] [CrossRef]
- Ding, C.Y.; Ye, J.C.; Lei, J.W.; Wang, F.F.; Li, Z.Y.; Peng, W.; Zhang, D.H.; Sun, J. An interpretable framework for high-precision flatness prediction in strip cold rolling. J. Mater. Process. Technol. 2024, 329, 118452. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Qie, H.; Wang, X.; Shao, J.; Yang, Q. Predicting flatness of strip tandem cold rolling using a general regression neural network optimized by differential evolution algorithm. Int. J. Adv. Manuf. Technol. 2023, 126, 3219–3233. [Google Scholar] [CrossRef]
- Smetana, M.; Gala, M.; Gombarska, D.; Klco, P. Neural Network-Based Evaluation of Hardness in Cold-Rolled Austenitic Stainless Steel Under Various Heat Treatment Conditions. Appl. Sci. 2025, 15, 1352. [Google Scholar] [CrossRef]
- Cui, C.; Cao, G.; Li, X.; Gao, Z.; Liu, J.; Liu, Z. A strategy combining machine learning and physical metallurgical principles to predict mechanical properties for hot rolled Ti micro-alloyed steels. J. Mater. Process. Technol. 2023, 311, 117810. [Google Scholar] [CrossRef]
- Ghaisari, J.; Jannesari, H.; Vatani, M. Artificial neural network predictors for mechanical properties of cold rolling products. Adv. Eng. Softw. 2012, 45, 91–99. [Google Scholar] [CrossRef]
- Xu, Z.W.; Liu, X.M.; Zhang, K. Mechanical Properties Prediction for Hot Rolled Alloy Steel Using Convolutional Neural Network. IEEE Access 2019, 7, 47068–47078. [Google Scholar] [CrossRef]
- Xie, Q.; Suvarna, M.; Li, J.; Zhu, X.; Cai, J.; Wang, X. Online prediction of mechanical properties of hot rolled steel plate using machine learning. Mater. Des. 2021, 197, 109201. [Google Scholar] [CrossRef]
- Li, X.; Luan, F.; Wu, Y. A Comparative Assessment of Six Machine Learning Models for Prediction of Bending Force in Hot Strip Rolling Process. Metals 2020, 10, 685. [Google Scholar] [CrossRef]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Murugesan, M.; Sajjad, M.; Jung, D.W. Hybrid Machine Learning Optimization Approach to Predict Hot Deformation Behavior of Medium Carbon Steel Material. Metals 2019, 9, 1315. [Google Scholar] [CrossRef]
- Sheela KGnana Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 2013, 1, 425740. [Google Scholar]
- Heaton, J. Introduction to Neural Networks with Java; Heaton Research, Inc.: Chesterfield, MO, USA, 2008. [Google Scholar]
- Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Topological Optimization of Artificial Neural Networks to Estimate Mechanical Properties in Metal Forming Using Machine Learning. Metals 2021, 11, 1289. [Google Scholar] [CrossRef]
- Contreras-Fortes, J.; Rodríguez-García, M.I.; Sales, D.L.; Sánchez-Miranda, R.; Almagro, J.F.; Turias, I.A. Machine Learning Approach for Modelling Cold-Rolling Curves for Various Stainless Steels. Materials 2024, 17, 147. [Google Scholar] [CrossRef]
- Gorji, M.B.; Mohr, D. Towards neural network models for describing the large deformation behavior of sheet metal. IOP Conf. Ser. Mater. Sci. Eng. 2019, 651, 012102. [Google Scholar] [CrossRef]
- Byun, S.; Yu, J.; Cheon, S.; Lee, S.H.; Park, S.H.; Lee, T. Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation. J. Magnes. Alloys 2024, 12, 186–196. [Google Scholar] [CrossRef]
- Gerlach, J.; Schulte, R.; Schowtjak, A.; Clausmeyer, T.; Ostwald, R.; Tekkaya, A.E.; Menzel, A. Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification. Arch. Appl. Mech. 2024, 94, 2217–2242. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0262035613. [Google Scholar]
- Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws for neural language models. arXiv 2020, arXiv:2001.08361. [Google Scholar]
- MatWeb. Available online: https://www.matweb.com/ (accessed on 10 June 2025).
- Seidi, E.; Miller, S.F.; Kaviari, F.; Huang, L.; Stoughton, T.B. Novel method to assess anisotropy in formability using DIC. Int. J. Mech. Sci. 2025, 285, 109782. [Google Scholar] [CrossRef]
- Seidi, E.; Miller, S.; Huang, L.; Stoughton, T. Mathematical Analysis of the Tensile Behavior of DP 980 Steel Using Digital Image Correlation (DIC). ASME Int. Manuf. Sci. Eng. Conf. 2023, 87240, V002T06A038. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesús, O.D. Neural Network Design, 2nd ed.; E-book; PWS Publishing Co.: Hornsea, UK, 2014; Available online: https://hagan.okstate.edu/nnd.html (accessed on 10 June 2025).
Elements: | Cu | Zn | Fe | Pb | All Other Elements |
68.5–71.5% | 28.5–31.5% | ≤0.050% | ≤0.070% | ≤0.15% | |
Mechanical properties | Yield Stress | UTS | Young’s Modulus | Poisson’s Ratio | Elongation at Break |
95 MPa | 315 MPa | 110 GPa | 0.375 | 65% | |
Thermal properties | Liquidus | Solidus | Specific Heat Capacity | Thermal Conductivity | Coefficient of Thermal Expansion |
955 °C | 915 °C | 0.375 J/g-°C | 120 W/m-K | 19.9 µm/m-°C |
Rank | Structure | Avg. RMSE Test | Avg. MAE Test | Avg. R-Value Test | STD R-Value Test | Train-Test R-Value Gap | Avg. Run Time | Avg. Num. of Epoch | Avg. Rel. Error Train | Avg. Rel. ErrorValidation | Avg. Rel. Error Test |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12 | 3.498 | 2.465 | 0.941 | 0.017 | 0.004 | 66.506 | 123.36 | 3.972% | 3.4796% | 3.598% |
2 | 10 | 3.556 | 2.521 | 0.939 | 0.019 | 0.003 | 63.026 | 109.88 | 3.921% | 4.2868% | 3.656% |
3 | 8 | 3.676 | 2.570 | 0.938 | 0.019 | 0.007 | 55.809 | 119.48 | 3.774% | 4.1852% | 4.061% |
4 | 4 | 3.706 | 2.574 | 0.938 | 0.020 | 0.006 | 34.223 | 122.04 | 3.729% | 4.5739% | 4.212% |
5 | 7 | 3.723 | 2.531 | 0.938 | 0.021 | 0.007 | 50.068 | 110.3 | 3.713% | 3.8558% | 4.595% |
6 | 6 | 3.716 | 2.542 | 0.935 | 0.021 | 0.008 | 47.129 | 107.54 | 3.950% | 3.6053% | 4.213% |
7 | 9 | 3.675 | 2.519 | 0.937 | 0.026 | 0.008 | 60.671 | 125.58 | 3.772% | 3.6189% | 4.281% |
8 | 11 | 3.685 | 2.597 | 0.934 | 0.024 | 0.008 | 64.222 | 104.02 | 3.835% | 4.5527% | 3.926% |
9 | 5 | 3.870 | 2.589 | 0.932 | 0.019 | 0.012 | 41.815 | 111.96 | 3.722% | 3.8279% | 4.941% |
Rank | Structure | Avg. RMSE Test | Avg. MAE Test | Avg. R-Value Test | STD R-Value Test | Train-Test R-Value Gap | Avg. Run Time | Avg. Num. of Epoch | Avg. Rel. Error Train | Avg. Rel. ErrorValidation | Avg. Rel. Error Test |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5-4 | 3.221 | 2.242 | 0.951 | 0.015 | 0.004 | 57.149 | 78.33 | 3.396% | 3.990% | 3.386% |
2 | 12-11 | 3.239 | 2.231 | 0.950 | 0.017 | 0.007 | 49.340 | 84.87 | 3.368% | 3.576% | 3.559% |
3 | 11-8 | 3.290 | 2.254 | 0.949 | 0.014 | 0.007 | 50.387 | 85.85 | 3.335% | 3.872% | 3.628% |
4 | 8-8 | 3.256 | 2.241 | 0.948 | 0.016 | 0.008 | 83.608 | 84.75 | 3.375% | 3.655% | 3.491% |
5 | 10-4 | 3.296 | 2.275 | 0.948 | 0.013 | 0.008 | 55.286 | 86.92 | 3.430% | 3.715% | 3.373% |
6 | 9-9 | 3.308 | 2.297 | 0.949 | 0.016 | 0.004 | 62.901 | 73.4 | 3.528% | 3.357% | 3.426% |
7 | 7-8 | 3.290 | 2.295 | 0.948 | 0.013 | 0.007 | 76.452 | 78.61 | 3.335% | 4.469% | 3.245% |
8 | 11-10 | 3.295 | 2.260 | 0.948 | 0.015 | 0.008 | 50.410 | 80.04 | 3.326% | 3.775% | 3.528% |
9 | 9-5 | 3.297 | 2.285 | 0.948 | 0.015 | 0.007 | 87.574 | 77.63 | 3.399% | 4.110% | 3.432% |
10 | 10-6 | 3.319 | 2.236 | 0.948 | 0.015 | 0.009 | 53.327 | 84.26 | 3.262% | 3.840% | 3.750% |
Rank | Structure | Avg. RMSE Test | Avg. MAE Test | Avg. R-Value Test | STD R-Value Test | Train-Test R-Value Gap | Avg. Run Time | Avg. Num. of Epoch | Avg. Rel. Error Train |
Avg. Rel. Error Validation | Avg. Rel. Error Test |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12-5-5 | 3.201 | 2.315 | 0.955 | 0.014 | 0.001 | 73.663 | 61.74 | 3.648% | 4.067% | 3.024% |
2 | 12-4-4 | 3.101 | 2.129 | 0.953 | 0.012 | 0.007 | 73.700 | 69.44 | 3.141% | 3.873% | 3.230% |
3 | 12-5-7 | 3.145 | 2.173 | 0.953 | 0.014 | 0.004 | 73.513 | 69.52 | 3.314% | 3.377% | 3.326% |
4 | 5-5-4 | 3.119 | 2.179 | 0.953 | 0.014 | 0.005 | 78.218 | 68.9 | 3.275% | 3.763% | 3.008% |
5 | 11-5-10 | 3.176 | 2.225 | 0.952 | 0.015 | 0.003 | 68.719 | 60.8 | 3.426% | 3.657% | 3.065% |
6 | 11-5-12 | 3.161 | 2.145 | 0.953 | 0.013 | 0.007 | 69.087 | 76.5 | 3.197% | 3.436% | 3.298% |
7 | 5-7-9 | 3.231 | 2.155 | 0.953 | 0.014 | 0.006 | 84.592 | 70.98 | 3.137% | 3.848% | 3.797% |
8 | 11-6-8 | 3.132 | 2.148 | 0.952 | 0.014 | 0.007 | 69.425 | 75.74 | 3.244% | 3.731% | 3.163% |
9 | 9-4-8 | 3.126 | 2.167 | 0.952 | 0.017 | 0.005 | 69.094 | 67.18 | 3.340% | 3.628% | 3.179% |
10 | 9-7-9 | 3.159 | 2.159 | 0.952 | 0.015 | 0.006 | 66.581 | 64 | 3.355% | 3.177% | 3.180% |
Num. of Layers | Best Run | Num. of Neurons |
Num. of Weight Elements |
Test R-Value |
Train R-Value |
Train–Test R-Value Gap Difference |
Avg. Test R-Value (50 Runs) |
STD Test R-Value (50 Runs) |
T-Test (p-Value) |
---|---|---|---|---|---|---|---|---|---|
1-layer | 11 | 11 | 109 | 0.9774 | 0.957 | 0.0202 | 0.934 | 0.024 | 0.424 |
2-layer | 9 & 9 | 18 | 265 | 0.9821 | 0.972 | 0.0096 | 0.949 | 0.016 | 0.329 |
3-layer | 11 & 8 & 9 | 28 | 421 | 0.9835 | 0.973 | 0.0104 | 0.952 | 0.015 | 0.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidi, E.; Kaviari, F.; Miller, S.F. Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming. J. Manuf. Mater. Process. 2025, 9, 260. https://doi.org/10.3390/jmmp9080260
Seidi E, Kaviari F, Miller SF. Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming. Journal of Manufacturing and Materials Processing. 2025; 9(8):260. https://doi.org/10.3390/jmmp9080260
Chicago/Turabian StyleSeidi, Ebrahim, Farnaz Kaviari, and Scott F. Miller. 2025. "Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming" Journal of Manufacturing and Materials Processing 9, no. 8: 260. https://doi.org/10.3390/jmmp9080260
APA StyleSeidi, E., Kaviari, F., & Miller, S. F. (2025). Hyperparameter Tuning of Artificial Neural Network-Based Machine Learning to Optimize Number of Hidden Layers and Neurons in Metal Forming. Journal of Manufacturing and Materials Processing, 9(8), 260. https://doi.org/10.3390/jmmp9080260