Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges
Abstract
:1. Introduction
1.1. Suppression of Dynamic Effects in Machining Processes
- Regeneration disturbance
- Process damping maximization
- System stiffness enhancement
- System damping enhancement
- Process parameter selection
1.2. Structure-Based Tool Concept for Chatter Suppression
1.3. Distinction from the State of Research
2. Materials and Methods
2.1. Workpiece Material
2.2. Experimental Setup
2.3. Preparation of the Structured Flanks of the Milling Tools
3. Results
3.1. Optimization of the Structured Flank Face Shape of the Minor Cutting Edge
3.1.1. Variation in the Applied Structure Element Length
3.1.2. Influence of the Radial Position of the Initial Structure Element of the Flank Face on the Stability Limit
3.1.3. Influence of the Number of Applied Structure Elements on the Stability Limit
3.2. Function of the Structure Tool Concept under Varied Process Parameters
3.3. Wear Development of Structured Milling Tools in the Cutting of Aluminum
3.3.1. Wear-Related Process Limits of the Tool Concept
3.3.2. Potential of Preconditioning of the Structure Tool Concept
4. Conclusions
4.1. Key Design Features and Optimized Structured Milling Tool
- The length of the applied structure elements has an increasing effect on the stability limits ap,crit. The maximum possible structure length that could be applied to the HSS milling tools enabled an increase in the stability limit ap,crit of 44% compared to the reference tool.
- The radial position of the structure elements of the flank faces on the outer tool radius influences not only the process stability but also the integrity of the cutting edge shape. The investigations have shown that the outer tool radius of an HSS milling tool should not start with the profile peak of a structure element in order to prevent its premature break-out. On the other hand, the authors recommend an open characteristic of the outer structure element when using the structure tool concept. Compared to the originally developed structure tool concept, this also enables an increase in the stability limit ap,crit by up to 34%.
- The number of applied structure elements on the flanks of the minor cutting edges has an effect on the process stability to the extent that an increase in this number should be accompanied by an increase in stability. In addition, the test results indicate that the structured cutting edge width resulting from the number of elements applied should correspond exactly to the radial engagement ae in order to exploit the maximum potential for increasing stability.
4.2. Technological Relevant and Suitable Process Parameter Range
- Regardless of the spindle speed used, tooth feeds of fz = 0.2 mm and higher can be assumed to be technologically irrelevant. In this tooth feed range, no significant increase in stability can be expected from the tool concept presented.
- In contrast, a significant stabilization potential was demonstrated in a technologically relevant tooth feed range (fz = 0.08 mm–0.12 mm). The optimum stabilization potential occurs at a tooth feed of fz = 0.12 mm. In this respect, the occurrence of the optimum coincides with the assumption from previous studies, which predicts optimum stability in the event that the value of the tooth feed fz corresponds to 120% of the structure element width bS used or an integer divisor of this value
- Although a stabilization potential could be demonstrated at an operating point with an unstable speed, it should be noted that a stabilization effect of the structure tool concept may be completely absent if unfavorable unstable operating speeds are used.
4.3. Wear-Dependent Cutting Edge Shape in Terms of Stability Optimum
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quintana, G.; Ciurana, J. Chatter in machining processes: A review. Int. J. Mach. Tools Manuf. 2011, 51, 363–376. [Google Scholar] [CrossRef]
- Weck, M.; Brecher, C. Werkzeugmaschinen 5, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-642-38748-7. [Google Scholar]
- Altintas, Y. Manufacturing Automation: Metal. Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd ed.; Cambridge University Press: New York, NY, USA, 2012; ISBN 978-1-107-00148-0. [Google Scholar] [CrossRef]
- Munoa, J.; Beudaert, X.; Dombovari, Z.; Altintas, Y.; Budak, E.; Brecher, C.; Stépán, G. Chatter suppression techniques in metal cutting. CIRP Ann. Manuf. Technol. 2016, 65, 785–808. [Google Scholar] [CrossRef]
- Baumann, J.; Krebs, E.; Biermann, D. Chatter avoidance in milling by using advanced cutting tools with structured functional surfaces. MM Sci. J. 2019, 4, 3019–3026. [Google Scholar] [CrossRef]
- Sellmeier, V. Über den Einfluss der Werkzeuggestalt auf die Dynamische Stabilität des Fräsprozesses. Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 26 June 2012. [Google Scholar] [CrossRef]
- Stone, B. Chatter and Machine Tools; Springer: Cham, Switzerland, 2014; ISBN 978-3-319-05236-6. [Google Scholar]
- Grabowski, R.; Denkena, B.; Köhler, J. Prediction of process forces and stability of end mills with complex geometries. Procedia CIRP 2014, 14, 119–124. [Google Scholar] [CrossRef]
- Guo, Q.; Jiang, Y.; Zhao, B.; Ming, P. Chatter modeling and stability lobes predicting for non-uniform helix tools. Int. J. Adv. Manuf. Technol. 2016, 87, 251–266. [Google Scholar] [CrossRef]
- Comak, A.; Budak, E. Modeling dynamics and stability of variable pitch and helix milling tools for development of a design method to maximize chatter stability. Precis. Eng. 2017, 47, 459–468. [Google Scholar] [CrossRef]
- Niu, J.; Ding, Y.; Zhu, L.; Ding, H. Mechanics and multi-regenerative stability of variable pitch and variable helix milling tools considering runout. Int. J. Mach. Tools Manuf. 2017, 123, 129–145. [Google Scholar] [CrossRef]
- Otto, A.; Rauh, S.; Ihlenfeldt, S.; Radons, G. Stability of milling with non-uniform pitch and variable helix tools. Int. J. Adv. Manuf. Technol. 2017, 89, 2613–2625. [Google Scholar] [CrossRef]
- Iglesias, A.; Dombovari, Z.; Gonzalez, G.; Munoa, J.; Stepan, G. Optimum selection of variable pitch for chatter suppression in face milling operations. Materials 2019, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Sellmeier, V.; Denkena, B. Stable islands in the stability chart of milling processes due to unequal tooth pitch. Int. J. Mach. Tools Manuf. 2011, 51, 152–164. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, C.; Ding, Y.; Xiong, Y. Variable-step integration method for milling chatter stability prediction with multiple delays. Sci. China Technol. Sci. 2011, 54, 3137–3154. [Google Scholar] [CrossRef]
- Volokh, V.; Boulakhov, S.; Sharivker, L.; Zeidner, S.; Galipko, V. Chatter-Resistant End Mill. U.S. Patent 8,221,036, 17 July 2012. [Google Scholar]
- Merdol, S.D.; Altintas, Y. Mechanics and dynamics of serrated cylindrical and tapered end mills. J. Manuf. Sci. Eng. 2004, 126, 317–326. [Google Scholar] [CrossRef]
- Dombovari, Z.; Altintas, Y.; Stepan, G. The effect of serration on mechanics and stability of milling cutters. Int. J. Mach. Tools Manuf. 2010, 50, 511–520. [Google Scholar] [CrossRef]
- Denkena, B.; Léon, L.; Grove, T. Prozessstabilität eines kordelierten Schaftfräsers. Z. Wirtsch. Fabr. 2010, 105, 37–41. [Google Scholar] [CrossRef]
- Denkena, B.; Grabowski, R.; Krödel, A.; Ellersieh, L. Process stability of a novel roughing-finishing end mill. Prod. Eng. Res. Dev. 2020, 14, 395–405. [Google Scholar] [CrossRef]
- Suzuki, N.; Takahashi, W.; Igeta, H.; Nakanomiya, T. Flank face texture design to suppress chatter vibration in cutting. CIRP Ann. Manuf. Technol. 2020, 69, 93–96. [Google Scholar] [CrossRef]
- Seguy, S.; Insperger, T.; Arnaud, L.; Dessein, G.; Peigné, G. On the stability of high-speed milling with spindle speed variation. Int. J. Adv. Manuf. Technol. 2010, 48, 883–895. [Google Scholar] [CrossRef]
- Seguy, S.; Insperger, T.; Arnaud, L.; Dessein, G.; Peigné, G. Suppression of period doubling chatter in high-speed milling by spindle speed variation. Mach. Sci. Technol. 2011, 15, 153–171. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, J. Internal energy based analysis on mechanism of spindle speed variation for regenerative chatter control. J. Vib. Control 2010, 16, 281–301. [Google Scholar] [CrossRef]
- Sahu, G.N.; Vashisht, S.; Wahi, P.; Law, M. Validation of a hardware-in-the-loop simulator for investigating and actively damping regenerative chatter in orthogonal cutting. CIRP J. Manuf. Sci. Technol. 2020, 29 Pt A, 115–129. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Wiederkehr, P.; Lerez, C.; Siebrecht, T.; Schmitz, H. Case study 1.1: Identification and active damping of critical workpiece vibrations in milling of thin walled workpieces. In Intelligent Fixtures for the Manufacturing of Low Rigidity Components, 53rd ed.; Möhring, H.-C., Wiederkehr, P., Gonzalo, O., Kolar, P., Eds.; Lecture Notes in Production Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–23. ISBN 978-3-319-45290-6. [Google Scholar]
- Abele, E.; Dohnal, F.; Feulner, M.; Sielaff, T.; Daume, C. Numerical investigation of chatter suppression via parametric anti-resonance in a motorized spindle unit during milling. Prod. Eng. 2018, 12, 309–317. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, D.; Zhang, X. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder. Chin. J. Aeronaut. 2020, 33, 3535–3549. [Google Scholar] [CrossRef]
- Wan, S.; Li, X.; Su, W.; Yuan, J.; Hong, J. Active chatter suppression for milling process with sliding mode control and electromagnetic actuator. Mech. Syst. Signal Process. 2020, 136, 106528. [Google Scholar] [CrossRef]
- Wang, M.; Fei, R. Improvement of machining stability using a tunable-stiffness boring bar containing an electrorheological fluid. Smart Mater. Struct. 1999, 8, 511–514. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, D.; Wu, B.; Luo, M.; Liu, Y. Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture. Int. J. Adv. Manuf. Technol. 2017, 88, 1231–1242. [Google Scholar] [CrossRef]
- Sellmeier, V.; Denkena, B. High speed process damping in milling. CIRP J. Manuf. Sci. Technol. 2012, 5, 8–19. [Google Scholar] [CrossRef]
- Wöste, F.; Baumann, J.; Wiederkehr, P.; Surmann, T. Analysis and simulation of process damping in HPC milling. Prod. Eng. Res. Devel. 2019, 13, 607–616. [Google Scholar] [CrossRef]
- Wöste, F.; Platt, T.; Baumann, J.; Biermann, D.; Wiederkehr, P. Fundamental investigation on process damping potentials of cutting tools with flank face chamfers. CIRP J. Manuf. Sci. Technol. 2023, 47, 7–17. [Google Scholar] [CrossRef]
- Gao, J.; Altintas, Y. Chatter stability of synchronized elliptical vibration assisted milling. CIRP J. Manuf. Sci. Technol. 2020, 28, 76–86. [Google Scholar] [CrossRef]
- Hirsch, A. Werkzeugmaschinen: Grundlagen, Auslegung, Ausführungsbeispiele, 2nd ed.; Springer: Hannover, Germany, 2012; ISBN 978-3-8348-2364-9. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Q.; Liu, H.; Huang, T.; Shan, X. Research on vibration suppression by a multi-point flexible following support head in thin-walled parts mirror milling. Int. J. Adv. Manuf. Technol. 2020, 106, 3335–3344. [Google Scholar] [CrossRef]
- Altintas, Y.; Budak, E. Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 1995, 44, 357–362. [Google Scholar] [CrossRef]
- Budak, E.; Altintaş, Y. Analytical prediction of chatter stability in milling—Part I: General formulation. J. Dyn. Syst. Meas. Control 1998, 120, 358–362. [Google Scholar] [CrossRef]
- Brecher, C.; Esser, M. Stability prediction: Advances and current restrictions, Bd. 21. In Proceedings of the 6th International Conference on High Speed Machining, San Sebastian, Spain, 21–22 March 2007. [Google Scholar]
- Insperger, T.; Gradisek, J.; Kalveram, M.; Stépán, G.; Weinert, K.; Govekar, E. Machine tool chatter and surface quality in milling processes. In Proceedings of the Manufacturing Engineering and Materials Handling—2004, Presented at the 2004 ASME International Mechanical Engineering Congress, Anaheim, CA, USA, 13–19 November 2004; ASME: New York, NY, USA, 2004; pp. 971–983, ISBN 0-7918-4713-6. [Google Scholar]
- Altintas, Y.; Kersting, P.; Biermann, D.; Budak, E.; Denkena, B.; Lazoglu, I. Virtual process systems for part machining operations. CIRP Ann. Manuf. Technol. 2014, 63, 585–605. [Google Scholar] [CrossRef]
- Wiederkehr, P.; Siebrecht, T. Virtual machining: Capabilities and challenges of process simulations in the aerospace industry. Procedia Manuf. 2016, 6, 80–87. [Google Scholar] [CrossRef]
- Kang, Z.; Fu, Y.; Kim, D.M.; Joe, H.E.; Fu, X.; Gabor, T.; Park, H.W.; Jun, M.B.-G. From macro to micro, evolution of surface structures on cutting tools: A review. JMST Adv. 2019, 1, 89–106. [Google Scholar] [CrossRef]
- Enomoto, T.; Sugihara, T.; Yukinaga, S.; Hirose, K.; Satake, U. Highly wear-resistant cutting tools with textured surfaces in steel cutting. CIRP. Ann. 2012, 61, 571–574. [Google Scholar] [CrossRef]
- Kümmel, J.; Braun, D.; Gibmeier, J.; Schneider, J.; Greiner, C.; Schulze, V.; Wanner, A. Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. J. Mater. Process. Technol. 2015, 215, 62–70. [Google Scholar] [CrossRef]
- Niketh, S.; Samuel, G.L. Drilling performance of micro textured tools under dry, wet and MQL condition. J. Manuf. Process. 2018, 32, 254–268. [Google Scholar] [CrossRef]
- Beer, N.; Özkaya, E.; Biermann, D. Drilling of Inconel 718 with Geometry-modified Twist Drills. Procedia CIRP 2014, 24, 49–55. [Google Scholar] [CrossRef]
- Chang, W.; Sun, J.; Luo, X.; Ritchie, J.M.; Mack, C. Investigation of microstructured milling tool for deferring tool wear. Wear 2011, 271, 2433–2437. [Google Scholar] [CrossRef]
- Fatima, A.; Mativenga, P.T. Performance of flank face structured cutting tools in machining of AISI/SAE 4140 over a range of cutting speeds. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 3–18. [Google Scholar] [CrossRef]
- Shen, X.; Guo, X.; Deng, D.; Lu, L.; Chen, Y. Study on cutting performance and tool wear of micro-textured tool for milling Ti6Al4V. Funct. Mater. 2017, 24, 501–508. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Fei, Z.; Zhu, D. Preliminary investigation of the effect of dimple size on friction in line contacts. Tribol. Int. 2009, 42, 1118–1123. [Google Scholar] [CrossRef]
- Kovalchenko, A.; Ajayi, O.; Erdemir, A.; Fenske, G. Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 2011, 271, 1719–1725. [Google Scholar] [CrossRef]
- Ramesh, A.; Akram, W.; Mishra, S.P.; Cannon, A.H.; Polycarpou, A.A.; King, W.P. Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. Tribol. Int. 2013, 57, 170–176. [Google Scholar] [CrossRef]
- Ohue, Y.; Tanaka, H. Effect of Surface Texturing on Lubricating Condition under Point Contact Using Numerical Analysis. Engineering 2013, 5, 379–385. [Google Scholar] [CrossRef]
- Etsion, I. State of the Art in Laser Surface Texturing. J. Tribol. 2005, 127, 248–254. [Google Scholar] [CrossRef]
- Kovalchenko, A.M. State of Investigations of surface texturing for tribological characteristics improvement of the friction units (A Review). Probl. Frict. Wear 2011, 55, 13–26. [Google Scholar] [CrossRef]
- Coelho, F.; Koshy, P. Vibration damping capability of electrical discharge machined surfaces: Characteristics, mechanism and application. Int. J. Mach. Tools Manuf. 2022, 177, 103888. [Google Scholar] [CrossRef]
- Haferkamp, H.; Paschko, S.; Alvensleben, F.v.; Lindemann, K. New laser material processing techniques for shape memory alloys. In Proceedings of the MICRO.tec 2000, Applications—Trends—Visions, VDE World Microtechnologies Congress (2000), Hannover, Germany, 25–27 September 2000; Volume 177, pp. 13–17. [Google Scholar]
- Kruth, J.-P.; Stevens, L.; Froyen, L.; Lauwers, B. Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining. CIRP Ann. 1995, 44, 169–172. [Google Scholar] [CrossRef]
- Nespor, D. Randzonenbeeinflussung Durch Die Rekonturierung Komplexer Investitionsgüter Aus Ti-6Al-4V; Leibniz Universität Hannover: Hannover, Gemany, 2015; ISBN 9783959000567. [Google Scholar]
- Ozkirimli, O.; Tunc, L.T.; Budak, E. Generalized model for dynamics and stability of multi-axis milling with complex tool geometries. J. Mater. Process. Technol. 2016, 238, 446–458. [Google Scholar] [CrossRef]
- Semm, T.; Nierlich, M.B.; Zaeh, M.F. Substructure coupling of a machine tool in arbitrary axis positions considering local linear damping models. ASME J. Manuf. Sci. Eng. 2019, 141, 071014. [Google Scholar] [CrossRef]
- Özel, T.; Biermann, D.; Enomoto, T.; Mativenga, P. Structured and textured cutting tool surfaces for machining applications. CIRP Ann. 2021, 70, 495–518. [Google Scholar] [CrossRef]
- Denkena, B.; KG, M.D.K.; Fleischer, A. Höchste Wirtschaftlichkeit bei der Aluminiumbearbeitung. Maschinenbau–Das Schweiz. Ind. 2016, 5, 18–22. [Google Scholar]
- Dornfeld, D.; Lee, D.E. Sensors for precision manufacturing. In Precision Manufacturing; Springer: New York, NY, USA, 2008; pp. 295–423. ISBN 0387324674. [Google Scholar]
- Jaquet, S.; Baumann, J.; Garcia, R.; Biermann, D. Fundamental analysis on the dynamic behavior of tools with structured functional surfaces in cutting operations. MM Sci. J. 2023, 4, 6872–6880. [Google Scholar] [CrossRef]
- Jaquet, S.; Meijer, A.; Baumann, J.; Biermann, D. Fundamental investigation on the time-variance of process stability. Prod. Eng. Res. Devel. 2024, 1–7. [Google Scholar] [CrossRef]
- Altintas, Y.; Eynian, M.; Onozuka, H. Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann. 2008, 57, 371–374. [Google Scholar] [CrossRef]
- Tunç, L.T.; Budak, E. Effect of cutting conditions and tool geometry on process damping in machining. Int. J. Adv. Manuf. Technol. 2012, 57, 10–19. [Google Scholar] [CrossRef]
- Denkena, B.; Biermann, D. Cutting edge geometries. CIRP Ann. 2014, 63, 631–653. [Google Scholar] [CrossRef]
Mechanical Properties | Density [g/cm³] | Young’s Modulus [GPa] | Thermal Conductivity [W/mK] | Shear Modulus [GPa] | Tensile Strength [MPa] | ||||
---|---|---|---|---|---|---|---|---|---|
2.8 | 72 | 130–160 | 27.1 | 540 | |||||
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Others |
min. | 1.2 | 2.1 | 0.18 | 5.1 | |||||
max. | 0.4 | 0.5 | 2.0 | 0.3 | 2.9 | 0.28 | 6.1 | 0.2 | 0.15 |
Tool Holder Type | Tool Diameter | Shank Diameter | Max. Depth of Cut ap | Set Cantilever Length |
---|---|---|---|---|
Hydraulic chuck by Schunk | 8 mm | 10 mm | 19 mm | 37 mm |
(Model: TENDO RLA HSK-A63 Ø10x85) |
Tool Specification (SL = Structured Lengths) | SL1 | SL2 | SL3 | SL4 | SL5 |
---|---|---|---|---|---|
Depth of the chamfer in mm | 0.07 | 0.16 | 0.23 | 0.31 | 0.4 |
Average length of the structured part of the tool | 0.43 | 0.84 | 0.98 | 1.152 | 1.316 |
Tool Specification (SL = Structured Length) (rs = Structure Radius) | Reference | SL3 | SL3 − rs/4 | SL3 + rs/2 | SL3 + 3rs/4 |
---|---|---|---|---|---|
Depth of the chamfer dch in mm | - | 0.23 | 0.23 | 0.23 | 0.23 |
Radial position of the initial structured valley on the HSS tool in mm | - | 3.90 | 3.85 | 4.00 | 4.05 |
Tool Specification (SL = Structured Length) (rs = Structure Radius) | Reference | SL3 | SL3+3rs/4 |
---|---|---|---|
Depth of the chamfer dch in mm | - | 0.23 | 0.23 |
Radial position of the initial structured valley on the HSS tool in mm | - | 3.90 | 4.05 |
Radial Δ-position of the initial structured valley on the HSS tool in mm | - | 0 | +0.15 |
Number of structured elements | - | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönecker, R.I.E.; Baumann, J.; Garcia Carballo, R.; Biermann, D. Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges. J. Manuf. Mater. Process. 2024, 8, 174. https://doi.org/10.3390/jmmp8040174
Schönecker RIE, Baumann J, Garcia Carballo R, Biermann D. Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges. Journal of Manufacturing and Materials Processing. 2024; 8(4):174. https://doi.org/10.3390/jmmp8040174
Chicago/Turabian StyleSchönecker, Raphael Isaak Elias, Jonas Baumann, Rafael Garcia Carballo, and Dirk Biermann. 2024. "Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges" Journal of Manufacturing and Materials Processing 8, no. 4: 174. https://doi.org/10.3390/jmmp8040174
APA StyleSchönecker, R. I. E., Baumann, J., Garcia Carballo, R., & Biermann, D. (2024). Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges. Journal of Manufacturing and Materials Processing, 8(4), 174. https://doi.org/10.3390/jmmp8040174