Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Characterization
3.2. Microstructure Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef]
- Gill, P.; Munroe, N. Review on magnesium alloys as biodegradable implant materials. Int. J. Biomed. Eng. Technol. 2012, 10, 383–398. [Google Scholar] [CrossRef]
- Heublein, B.; Rohde, R.; Kaese, V.; Niemeyer, M.; Hartung, W.; Haverich, A. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart 2003, 89, 651–656. [Google Scholar] [CrossRef]
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. J. Magnes. Alloys 2024, 12, 2569–2594. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.; Fajardo, S.; Birbilis, N.; Frankel, G.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef]
- Kaushik, V.; Kumar, N.; Vignesh, M. Magnesium role in additive manufacturing of biomedical implants–challenges and opportunities. Addit. Manuf. 2022, 55, 102802. [Google Scholar]
- Manakari, V.; Parande, G.; Gupta, M. Selective laser melting of magnesium and magnesium alloy powders: A review. Metals 2016, 7, 2. [Google Scholar] [CrossRef]
- Wei, K.; Gao, M.; Wang, Z.; Zeng, X. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater. Sci. Eng. A 2014, 611, 212–222. [Google Scholar] [CrossRef]
- Karunakaran, R.; Ortgies, S.; Tamayol, A.; Bobaru, F.; Sealy, M.P. Additive manufacturing of magnesium alloys. Bioact. Mater. 2020, 5, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Sezer, N.; Evis, Z.; Koc, M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys 2021, 9, 392–415. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Pavanram, P.; Leeflang, M.; Fockaert, L.; Pouran, B.; Tümer, N.; Schröder, K.-U.; Mol, J.; Weinans, H. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018, 67, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Larimian, T.; Kannan, M.; Grzesiak, D.; AlMangour, B.; Borkar, T. Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater. Sci. Eng. A 2020, 770, 138455. [Google Scholar] [CrossRef]
- Long, T.; Zhang, X.; Huang, Q.; Liu, L.; Liu, Y.; Ren, J.; Yin, Y.; Wu, D.; Wu, H. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour. Virtual Phys. Prototyp. 2018, 13, 71–81. [Google Scholar] [CrossRef]
- Ng, C.; Savalani, M.; Man, H.; Gibson, I. Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys. Prototyp. 2010, 5, 13–19. [Google Scholar] [CrossRef]
- Tandon, R.; Wilks, T.; Gieseke, D.I.M.; Noelke, D.I.C.; Kaierle, S.; Palmer, T. Additive manufacturing of electron® 43 alloy using laser powder bed and directed energy deposition. In Proceedings of the International Power Metallurgy Congress and Exhibition, European PM Conference Proceedings, Reims, France, 4–7 October 2015. [Google Scholar]
- Zhang, M.; Chen, C.; Liu, C.; Wang, S. Study on Porous Mg-Zn-Zr ZK61 Alloys Produced by Laser Additive Manufacturing. Metals 2018, 8, 635. [Google Scholar] [CrossRef]
- Tandon, R.; Palmer, T.; Gieseke, M.; Noelke, C.; Kaierle, S. Additive Manufacturing of Magnesium Alloy Powders: Investigations Into Process Development Using Elektron® MAP + 43 Via Laser Powder Bed Fusion and Directed Energy Deposition. In Proceedings of the European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, Hamburg, Germany, 13 October 2016; pp. 1–6. [Google Scholar]
- Gangireddy, S.; Gwalani, B.; Liu, K.; Faierson, E.J.; Mishra, R.S. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy. Addit. Manuf. 2019, 26, 53–64. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, P.; Wang, Q.; Wu, H.; Liu, Y.; Deng, Y.; Zhou, Y.; Shuai, C. The enhancement of Mg corrosion resistance by alloying Mn and laser-melting. Materials 2016, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jahr, H.; Zhang, X.; Leeflang, M.; Li, W.; Pouran, B.; Tichelaar, F.; Weinans, H.; Zhou, J.; Zadpoor, A. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Addit. Manuf. 2019, 28, 299–311. [Google Scholar] [CrossRef]
- Bär, F.; Berger, L.; Jauer, L.; Kurtuldu, G.; Schäublin, R.; Schleifenbaum, J.H.; Löffler, J.F. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis. Acta Biomater. 2019, 98, 36–49. [Google Scholar] [CrossRef]
- Zeng, Z.; Salehi, M.; Kopp, A.; Xu, S.; Esmaily, M.; Birbilis, N. Recent progress and perspectives in additive manufacturing of magnesium alloys. J. Magnes. Alloys 2022, 10, 1511–1541. [Google Scholar] [CrossRef]
- Julmi, S.; Abel, A.; Gerdes, N.; Hoff, C.; Hermsdorf, J.; Overmeyer, L.; Klose, C.; Maier, H.J. Development of a laser powder bed fusion process tailored for the additive manufacturing of high-quality components made of the commercial magnesium alloy WE43. Materials 2021, 14, 887. [Google Scholar] [CrossRef]
- Xu, W.; Li, J.; Zhang, Z.; Yuan, H.; An, G.; Shi, H.; Cai, C.; Jiang, W.; Li, W.; Wei, Q. Laser powder bed fusion of WE43 magnesium alloy with superior balance of strength and ductility. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Motallebi, R.; Savaedi, Z.; Mirzadeh, H. Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: A review. J. Mater. Res. Technol. 2022, 20, 1873–1892. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, H.; Li, Z.; Zheng, D.; Tu, Y. Additive manufactured Mg-Gd-Y-Zr alloys: Effects of Gd content on microstructure evolution and mechanical properties. Addit. Manuf. 2022, 59, 103136. [Google Scholar] [CrossRef]
- Esmaily, M.; Zeng, Z.; Mortazavi, A.; Gullino, A.; Choudhary, S.; Derra, T.; Benn, F.; D’Elia, F.; Müther, M.; Thomas, S. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting. Addit. Manuf. 2020, 35, 101321. [Google Scholar] [CrossRef]
- Sorkhi, L.; Hammell, J.J.; Crawford, G.A. Effect of Interlayer Interval Time on the Microstructure and Mechanical Behavior of Additively Manufactured WE43 Mg Alloy. Metall. Mater. Trans. A 2020, 51, 4390–4405. [Google Scholar] [CrossRef]
- Avedesian, M.M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys, 2nd ed.; ASM International: Almere, The Netherlands, 1999. [Google Scholar]
- ASTM E2109-01; Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM West Conshohocken: West Conshohocken, PA, USA, 2014.
- Voort, V.; George, F. Metallography, Principles and Practice; ASM International: Almere, The Netherlands, 1999; Volume 487. [Google Scholar]
- ASTM E112; Standard Test Methods for Determining Average Grain Size. ASTM West Conshohocken: West Conshohocken, PA, USA, 2004.
- Attar, H.; Bermingham, M.; Ehtemam-Haghighi, S.; Dehghan-Manshadi, A.; Kent, D.; Dargusch, M. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater. Sci. Eng. A 2019, 760, 339–345. [Google Scholar] [CrossRef]
- Tandon, R.; Madan, D. Emerging applications for magnesium alloy powders. Powder Metall. 2014, 57, 236–241. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hillert, M. On the theory of normal and abnormal grain growth. Acta Met. 1965, 13, 227–238. [Google Scholar] [CrossRef]
- Bhattacharyya, J.J.; Agnew, S.; Muralidharan, G. Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater. 2015, 86, 80–94. [Google Scholar] [CrossRef]
- Rollett, A.; Srolovitz, D.J.; Anderson, M. Simulation and theory of abnormal grain growth—Anisotropic grain boundary energies and mobilities. Acta Met. 1989, 37, 1227–1240. [Google Scholar] [CrossRef]
- Beck, P.A.; Sperry, P.R. Efeet of recrystallization texture on grain growth. JOM 1949, 1, 240–241. [Google Scholar] [CrossRef]
- Abrivard, G.; Busso, E.P.; Forest, S.; Appolaire, B. Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: Theory and numerical implementation. Philos. Mag. 2012, 92, 3618–3642. [Google Scholar] [CrossRef]
- Gerber, P.; Tarasiuk, J.; Chauveau, T.; Bacroix, B. A quantitative analysis of the evolution of texture and stored energy during annealing of cold rolled copper. Acta Mater. 2003, 51, 6359–6371. [Google Scholar] [CrossRef]
- Roostaei, M.; Shirdel, M.; Parsa, M.; Mahmudi, R.; Mirzadeh, H. Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Mater. Charact. 2016, 118, 584–592. [Google Scholar] [CrossRef]
- Tammas-Williams, S.; Withers, P.; Todd, I.; Prangnell, P. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 2016, 122, 72–76. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, M.; Qiao, X.; Wu, K.; Peng, Q.; Yang, S.; Yuan, Y.; Luo, J. Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting. Mater. Sci. Eng. A 2017, 684, 158–164. [Google Scholar] [CrossRef]
- Kang, Y.H.; Yan, H.; Chen, R.S. Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg–4Y–2.3 Nd–1Gd–0.6 Zr magnesium alloy. Mater. Sci. Eng. A 2015, 645, 361–368. [Google Scholar] [CrossRef]
- Rzychoń, T.; Kiełbus, A. Microstructure of WE43 casting magnesium alloys. J. Achiev. Mater. Manuf. Eng. 2007, 21, 31–34. [Google Scholar]
- Ning, Z.; Yi, J.; Qian, M.; Sun, H.; Cao, F.; Liu, H.; Sun, J. Microstructure and elevated temperature mechanical and creep properties of Mg–4Y–3Nd–0.5 Zr alloy in the product form of a large structural casting. Mater. Des. 2014, 60, 218–225. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, Q.; Guan, K.; Meng, J.; Cao, Z. Microstructure and mechanical properties of a peak-aged Mg-5Y-2.5 Nd-1.5 Gd-0.5 Zr casting alloy. J. Alloy. Compd. 2018, 731, 704–713. [Google Scholar] [CrossRef]
- Liao, H.; Fu, P.; Peng, L.; Li, J.; Zhang, S.; Hu, G.; Ding, W. Microstructure and mechanical properties of laser melting deposited GW103K Mg-RE alloy. Mater. Sci. Eng. A 2017, 687, 281–287. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Li, H.; Lv, F.; Liang, X.; Qi, Y.; Zhu, Z.; Zhang, K. Effect of heat treatment on microstructures and mechanical properties of a cast Mg-Y-Nd-Zr alloy. Mater. Sci. Eng. A 2016, 667, 409–416. [Google Scholar] [CrossRef]
- Antion, C.; Donnadieu, P.; Perrard, F.; Deschamps, A.; Tassin, C.; Pisch, A. Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater. 2003, 51, 5335–5348. [Google Scholar] [CrossRef]
- Xu, Z.; Weyland, M.; Nie, J. On the strain accommodation of β1 precipitates in magnesium alloy WE54. Acta Mater. 2014, 75, 122–133. [Google Scholar] [CrossRef]
- Nie, J.F.; Muddle, B.C. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater. 2000, 48, 1691–1703. [Google Scholar] [CrossRef]
- Thompson, S.M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62. [Google Scholar] [CrossRef]
- Choudhuri, D.; Meher, S.; Nag, S.; Dendge, N.; Hwang, J.; Banerjee, R. Evolution of a honeycomb network of precipitates in a hot-rolled commercial Mg–Y–Nd–Zr alloy. Philos. Mag. Lett. 2013, 93, 395–404. [Google Scholar] [CrossRef]
- Nie, J.F. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y.; Wang, Y.; Nie, J. Guided self-assembly of nano-precipitates into mesocrystals. Sci. Rep. 2015, 5, 16530. [Google Scholar] [CrossRef]
Laser Power (W) | Contour Traverse Speed (mm/s) | Hatch Traverse Speed (mm/s) | Layer Height (mm) | Powder Feed Rate (rpm) | Hatch Distance (mm) |
---|---|---|---|---|---|
600 | 19.05 | 12.7 | 0.508 | 2.8 | 1.12 |
Sample Condition | Porosity (% by Area) | Grain Diameter (µm) |
---|---|---|
AD | 1.12 ± 0.36 | 10.6 ± 2.2 |
HT | 1.52 ± 0.67 | 12.4 ± 2.0 |
HIP | 0.01 ± 0.01 | 13.4 ± 3.1 |
HIP + HT | 0.02 ± 0.01 | 15.5 ± 3.6 |
Sample Condition | Grain Diameter (µm) |
---|---|
AD | 9.0 ± 6.4 |
HT | 12.2 ± 9.1 |
HIP | 10.3 ± 5.3 |
HIP + HT | 11.4 ± 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorkhi, L.; Madden, N.J.; Crawford, G.A. Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition. J. Manuf. Mater. Process. 2025, 9, 3. https://doi.org/10.3390/jmmp9010003
Sorkhi L, Madden NJ, Crawford GA. Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition. Journal of Manufacturing and Materials Processing. 2025; 9(1):3. https://doi.org/10.3390/jmmp9010003
Chicago/Turabian StyleSorkhi, Leila, Nathan J. Madden, and Grant A. Crawford. 2025. "Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition" Journal of Manufacturing and Materials Processing 9, no. 1: 3. https://doi.org/10.3390/jmmp9010003
APA StyleSorkhi, L., Madden, N. J., & Crawford, G. A. (2025). Effect of Post-Processing on the Microstructure of WE43 Magnesium Alloy Fabricated by Laser Powder Directed Energy Deposition. Journal of Manufacturing and Materials Processing, 9(1), 3. https://doi.org/10.3390/jmmp9010003