Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making
Abstract
1. Introduction
- Maximize metal removal rate ↔ Minimize surface roughness
- Maximize efficiency ↔ Minimize cost
- Maximize hardness ↔ Minimize energy consumption
- Maximize width ↔ Maximize hardness ↔ Minimize substrate distortion ↔ Minimize interlayer waiting time, etc.
- To establish that effective optimization techniques can be developed without relying on metaphor-based analogies.
- To present two straightforward, metaphor-independent, and parameter-free optimization algorithms—BWR and BMR—along with their multi-objective extensions.
- To assess the convergence behavior and solution precision of the proposed algorithms across single-, multi-, and many-objective optimization problems related to various manufacturing processes, with the aim of identifying potential improvements in outcomes.
- To apply the recently introduced BHARAT (Best Holistic Adaptable Ranking of Attributes Technique) for identifying the most appropriate compromise solution from a Pareto-optimal set in manufacturing process optimization.
2. Materials and Methods: BWR and BMR Algorithms
2.1. Proposed Algorithms for Solving Single-Objective Constrained Optimization Problems
2.1.1. Best–Worst–Random (BWR) Algorithm
- M(x) = f(x) + ∑pj(x) for minimization
- M(x) = f(x) − ∑pj(x) for maximization
2.1.2. Best–Mean–Random (BMR) Algorithm
2.1.3. Demonstration of the BWR and BMR Algorithms on a Constrained Benchmark Function
Demonstration of the BWR Algorithm
Demonstration of BMR Algorithm
Algorithm 1. Generalized pseudocodes of the BWR and BMR algorithms. |
1: Begin BWR/BMR Algorithm 2: Initialize: 3: -Number of variables: m 4: -Population size: c 5: -Maximum iterations: max_iter 6: -Variable bounds: Lv and Hv for v = 1 to m 7: -Algorithm mode: “BWR” or “BMR” 8: -Optimization goal: “min” or “max” 9: Generate initial population: 10: For k = 1 to c: 11: For v = 1 to m: 12: Sv,k,0 ← random value in [Lv, Hv] 13: Evaluate initial population: 14: For each individual k: 15: Compute objective f(x_k) 16: For each violated constraint gj(x_k): 17: Compute penalty pj(x_k) = gj(x_k)^2 18: Compute penalized objective M(x_k): 19: If goal = “min”: M(x_k) = f(x_k) + ∑ pj(x_k) 20: If goal = “max”: M(x_k) = f(x_k) − ∑ pj(x_k) 21: Set iteration i = 0 22: Repeat until i = max_iter: 23: Identify: 24: - Best solution Sv,b,i: 25: If goal = “min”: lowest M(x) 26: If goal = “max”: highest M(x) 27: - Worst solution Sv,w,i: 28: If goal = “min”: highest M(x) 29: If goal = “max”: lowest M(x) 30: - Mean vector Sv,m,i (mean of each variable across population) 31: - Random solution Sv,r,i (randomly selected from population) 32: For each individual k = 1 to c: 33: For each variable v = 1 to m: 34: Generate random numbers: n1, n2, n3, n4 ∈ [0, 1], F ∈ {1, 2} 35: If n4 > 0.5: 36: If mode = “BWR”: 37: S'v,k,i = Sv,k,i + n1 * (Sv,b,i − F * Sv,r,i) 38: - n2 * (Sv,w,i - Sv,r,i) 39: Else if mode = “BMR”: 40: S'v,k,i = Sv,k,i + n1 * (Sv,b,i − F * Sv,m,i) 41: + n2 * (Sv,b,i - Sv,r,i) 42: Else: 43: S'v,k,i = Hv − (Hv − Lv) * n3 44: Enforce bounds: 45: If S'v,k,i < Lv then S'v,k,i = Lv 46: If S'v,k,i > Hv then S'v,k,i = Hv 47: Evaluate new solution S'_k: 48: Compute f(S'_k) 49: For each violated constraint gj(S'_k): 50: Compute pj(S'_k) = gj(S'_k)^2 51: Compute M(S'_k): 52: If goal = “min”: M(S'_k) = f(S'_k) + ∑ pj(S'_k) 53: If goal = “max”: M(S'_k) = f(S'_k) − ∑ pj(S'_k) 54: Compare with previous M(x_k): 55: If (goal = “min” and M(S'_k) < M(x_k)) or 56: (goal = “max” and M(S'_k) > M(x_k)): 57: Accept S'_k as new solution 58: Increment i ← i + 1 59: Return best solution and its objective value 60: End Algorithm |
3. Materials and Methods: MO-BWR and MO-BMR Algorithms
3.1. Multi-Objective and Many-Objective Optimization Using BWR and BMR Algorithms
Algorithm 2. The generalized pseudocodes of the MO-BWR and MO-BMR algorithms. |
1: Begin MO-BWR/MO-BMR Algorithm 2: Step 1: Initialization 3: -Define: 4: •Design variables and bounds Lv, Hv (for v = 1 to m) 5: •Objective functions f1(x), f2(x),…, fM(x) 6: •Constraints gj(x) ≤ 0 (inequality), hj(x) = 0 (equality) 7: •Algorithm-specific mode: “MO-BWR” or “MO-BMR” 8: •Optimization goal: “min” or "max" for each objective 9: •Population size: c 10: •Max iterations: max_iter 11: Step 2: Initialize Population 12: -Generate c random candidate solutions x_k ∈ [Lv, Hv] 13: Step 3: Elite Seeding 14: -Add elite solutions (extremes or known good solutions) to population 15: Step 4: Fast Non-dominated Sorting 16: -For each solution p: 17: Sp ← ∅, np ← 0 18: For each q ≠ p: 19: If p < q: Sp ← Sp ∪ {q} 20: If q < p: np ← np + 1 21: -First front F0 ← {p|np = 0}; assign rank = 0 22: -Repeat for subsequent fronts: 23: For p ∈ Fi: For q ∈ Sp: 24: nq ← nq − 1; if nq = 0 → Fi+1 ← Fi+1 ∪ {q} 25: -Assign Pareto ranks to all individuals 26: Crowding Distance Assignment (per front): 27: -For each objective m: 28: •Sort individuals in front by fm 29: •Set di = ∞ for boundaries 30: •For interior i = 2 to N−1: 31: di += (fm(i+1) − fm(i−1)) / (fm_max − fm_min) 32: Step 5: Constraint Repair 33: -For each solution x: 34: •Clip variables: x_v ← min(max(x_v, Lv), Hv) 35: •Apply inequality repair (resample, projection, etc.) 36: •Apply equality repair (tolerance, solver, projection) 37: •If still infeasible → proceed to penalty 38: Step 6: Apply Penalties 39: -For infeasible solutions: 40: •Compute penalty pj(x) = gj(x)^2 or |hj(x)|^2 41: •Modify objectives: 42: If goal = “min”: f’(x) = f(x) + ∑ pj(x) 43: If goal = “max”: f’(x) = f(x) − ∑ pj(x) 44: Step 7: Objective Function Evaluation 45: -Compute f1(x), f2(x),…, fM(x) for all individuals 46: Step 8: Edge Boosting 47: -Identify edge solutions Xmin,j and Xmax,j for each objective j 48: -Filter non-dominated edge solutions 49: -Perturb each: x’ = x + δ ⋅ sign(r) ⋅ (Hv − Lv) 50: where δ ∈ [0.01, 0.1], r ∼ U(−1, 1) 51: -Insert boosted solutions into population 52: Step 9: Local Exploration 53: -For elite/promising solutions: 54: •Apply small perturbations to explore neighborhood 55: •Add refined candidates to the population 56: Step 10: Population Update (MO-BWR / MO-BMR) 57: -For each individual k and each variable v: 58: Generate n1, n2, n3, n4 ∈ [0, 1], F ∈ {1, 2} 59: If n4 > 0.5: 60: If mode = "MO-BWR": 61: S’_v,k = S_v,k + n1*(S_v,b − F*S_v,r) − n2*(S_v,w − S_v,r) 62: If mode = "MO-BMR": 63: S’_v,k = S_v,k + n1*(S_v,b − F*S_v,m) + n2*(S_v,b − S_v,r) 64: Else: 65: S’_v,k = Hv − (Hv − Lv) * n3 66: Enforce bounds: S’_v,k = min(max(S’_v,k, Lv), Hv) 67: Step 11: Check Termination Criterion 68: -If i ≥ max_iter or other stopping criteria met: 69: Go to Step 13 70: Step 12: Loop 71: -Replace population with selected next-generation candidates 72: -i ← i + 1 73: -Go to Step 5 74: Step 13: Report Pareto-optimal Set 75: -Return non-dominated front with associated objective vectors 76: End MO-BWR/MO-BMR Algorithm |
Validation of the MO-BWR and MO-BMR Algorithms for ZDT Functions
- GD (generational distance): The average distance from the obtained front to the reference Pareto front (ideal value = 0).
- IGD (inverted GD): The average distance from the reference front to the obtained front (ideal value = 0).
- Spacing: Standard deviation of distances between consecutive solutions; measures uniformity of solution distribution (the lower the better).
- Hypervolume: Volume (area in 2D) dominated by the front up to a reference point; combines convergence and diversity (the higher the better).
- GD: NSGA-III is best in GD.
- IGD: MO-BMR is best in 3 cases (ZDT1–ZDT3); MO-BWR is best in ZDT4 and ZDT6.
- Spacing: MO-BWR is best in ZDT1 and ZDT2. MO-BMR is best in ZDT3 and ZDT4. NSGA-III is best in ZDT6.
- Hypervolume: MO-BMR is best in ZDT1–ZDT3; MO-BWR is best in ZDT4 and ZDT6.
3.2. Selection of Best Compromise Pareto-Optimal Solution Using BHARAT for Decision-Making
- Identify the alternative Pareto-optimal solutions.
- Specify which objectives are beneficial (higher is better) or non-beneficial (lower is better).
- Rank the objectives based on importance.
- Convert ranks into weights using R-method.
- For beneficial objectives (Equation (23)):
- For non-beneficial objectives (Equation (24)):
- For each alternative, compute
4. Results and Discussion on Application of Proposed Algorithms for the Optimization of Manufacturing Processes
4.1. Single-Objective Optimization of Manufacturing Processes Using the BWR and BMR Algorithms
4.1.1. Optimization of a Friction Stir Processing (FSP) Process
−1.32800 × TAF + 0.000057 × TRS × TTS + 0.000316 × TRS × TAF − 0.001725 ×
TTS × TAF + 0.000011 × TRS2 + 0.000245 × TTS2 + 0.04551 × TAF2
TAF ≤ 16 kN.
4.1.2. Optimization of an Ultra-Precision Turning Process
+ 49.20 × f × f + 40.8 × ap × ap + 0.0129 × vc × f + 0.0164 × vc × ap + 82.5 × f × ap −0.425
× vc × f × ap
262 × f × f − 1667 × ap × ap − 1.77 × vc × f −1.77 × vc × ap + 2141 × f × ap + 19.6 × vc ×
f × ap
4.2. Multi-Objective Optimization of Manufacturing Processes Using MO-BWR and MO-BMR Algorithms
4.2.1. Multi-Objective Optimization of an Ultra-Precision Turning Process with 2 Objectives
- The parameter vc’s effect on Ra is moderate, slight on Fc, and optimal for both the objectives.
- The effect of f on Ra is very strong, and it is strong on Fc and to be kept low to minimize both the objectives.
- The effect of ap on Ra is moderate, and very strong on Fc, and low ap is optimal for Fc and moderate ap is optimal for Ra.
Choosing the Best Compromise Pareto-Optimal Solution from the Non-Dominated Solutions for the Ultra-Precision Turning Process
4.2.2. Multi-Objective Optimization of a Laser Powder Bed Fusion (LPBF) Process with 3-Objectives
0.345833LP × HS + 0.399375SS × HS − 0.000322LP2 + 0.000028SS2 + 4557.88999HS2
0.836188SS × HS + 0.001058LP2 + 0.000046SS2 + 14605.925994HS2
0.20625SS × HS + 0.000108LP2 − 0.000006SS2 − 2601.997516HS2
Choosing the Best Compromise Pareto-Optimal Solution from the Non-Dominated Solutions for the LPBF Process
4.3. Many-Objective Optimization of Wire Arc Additive Manufacturing (WAAM) Process with 9 Objectives Using MO-BWR and MO-BMR Algorithms
0.000057417ν2 − 0.000517589I2 + 0.0433333wI − 0.000151111vI + 0.0000861904νT
0.0000322826ν2 + 0.0000910714I2 + 0.0000306958νI − 0.0000154689νT
0.0000472198ν2 + 0.0000640758νT
0.621667w2 + 0.0000117917v2 + 0.000262963I2 + 0.0114286wT − 0.0000991667νI
0.0000144833ν2 + 0.00005νI
0.256667w2 − 0.000103241I2 + 0.0000330782T2 − 0.0063333wI − 0.00642857wT−
0.0000625vI
0.000997212T2 − 0.00202897IT
0.000227847I2 + 0.00336028wv + 0.0152783wI
0.00737986I2 − 0.00101366T2 + 0.475wI + 0.130357wT + 0.00141667vI − 0.00376983IT
Choosing the Best Compromise Pareto-Optimal Solution from the Non-Dominated Solutions for the WAAM Process
5. Conclusions
- The BWR and BMR algorithms are applied to single-objective optimization scenarios involving friction stir processing and ultra-precision turning. The BWR and BMR algorithms demonstrated faster convergence and higher-quality solutions with fewer function evaluations—indicating computational efficiency.
- The multi- and many-objective versions—MO-BWR and MO-BMR—are tested on two- and three-objective optimization problems in the ultra-precision turning and laser powder bed fusion process. The many-objective capabilities of these algorithms are also assessed through a nine-objective problem based on the wire arc additive manufacturing process. When compared with prominent algorithms like GA, PSO, etc., the proposed methods demonstrated excellent solution diversity and convergence behavior.
- The BWR and BMR algorithms and their multi-objective variants show that competitive performance can be achieved without added complexity, offering transparent, interpretable, robust, and versatile tools for optimizing manufacturing processes.
- A key aspect of this study is the integration of BHARAT, a structured MADM tool that, along with the R-method, identifies the most suitable compromise solution from the Pareto-optimal set. This becomes particularly valuable in many-objective problems, where visual interpretation becomes infeasible.
- The results suggest broad applicability of these algorithms to real-world, high-dimensional, and constrained/unconstrained manufacturing challenges. Their potential extends to process optimization in additive manufacturing, tool path planning, welding parameter tuning, multi-axis machining, and thermal processing, as well as their possible integration with machine learning models for data-driven manufacturing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelaoui, F.Z.E.; Jabri, A.; Barkany, A.E. Optimization techniques for energy efficiency in machining processes—A review. Int. J. Adv. Manuf. Technol. 2023, 125, 2967–3001. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Singh, S.; Basak, A.; Davim, J.P. (Eds.) Numerical Modelling and Optimization in Advanced Manufacturing Processes; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Soori, M.; Asmael, M. A review of the recent development in machining parameter optimization. Jordan J. Mech. Ind. Eng. 2022, 16, 205–223. [Google Scholar]
- Ullrich, K.; von Elling, M.; Gutzeit, K.; Dix, M.; Weigold, M.; Aurich, J.C.; Wertheim, R.; Jawahir, I.S.; Ghadbeigi, H. AI-based optimisation of total machining performance: A review. CIRP J. Manuf. Sci. Technol. 2024, 50, 40–54. [Google Scholar] [CrossRef]
- Tura, A.D.; Isaya, E.O.; Adizue, U.L.; Farkas, B.Z.; Takács, M. Optimization of ultra-precision CBN turning of AISI D2 using hybrid GA-RSM and Taguchi-GRA statistic tools. Heliyon 2024, 10, e31849. [Google Scholar] [CrossRef] [PubMed]
- Sureban, R.; Kulkarni, V.N.; Gaitonde, V. Modern Optimization Techniques for Advanced Machining Processes—A Review. Mater. Today Proc. 2019, 18, 3034–3042. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Li, A.; Cao, Y.; Zhao, Y.; Ming, W. Parameters optimization of electrical discharge machining process using swarm intelligence: A review. Metals 2023, 13, 839. [Google Scholar] [CrossRef]
- Ciccone, F.; Bacciaglia, A.; Ceruti, A. Optimization with artificial intelligence in additive manufacturing: A systematic review. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 303. [Google Scholar] [CrossRef]
- Chia, H.Y.; Wu, J.; Wang, X.; Yan, W. Process parameter optimization of metal additive manufacturing: A review and outlook. J. Mater. Inform. 2022, 2, 16. [Google Scholar] [CrossRef]
- Rehman, R.U.; Zaman, U.K.U.; Aziz, S.; Jabbar, H.; Shujah, A.; Khaleequzzaman, S.; Hamza, A.; Qamar, U.; Jung, D.W. Process parameter optimization of additively manufactured parts using intelligent manufacturing. Sustainability 2022, 14, 15475. [Google Scholar] [CrossRef]
- Ali, H.M.A.; Abdi, M. Multi-objective parametric shape optimisation of BCC lattice structures for AM—Maximizing stiffness and minimizing von Mises stress via MOGA. J. Manuf. Mater. Process. 2023, 7, 156. [Google Scholar]
- Zeng, Q.; Wang, K.; Lu, S.; Lu, C.; Li, X. Modeling and optimization of energy consumption, surface quality and relative density in GH3625 superalloy by laser powder bed melting via RSM, MOPSO and CRITIC-TOPSIS. Opt. Laser Technol. 2025, 184, 112411. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, X.; Zhang, M.; Zhou, X.; Li, R.; Bai, X.; Wang, G. Optimization of shape and performance for wire and arc additive manufacturing with in-situ rolling of Ti–6Al–4V ELI alloy. J. Mater. Res. Technol. 2025, 35, 4833–4847. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Fuhlbrigge, T. Welding process optimization methods: A review. In Transactions on Intelligent Welding Manufacturing; Chen, S., Zhang, Y., Feng, Z., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Palanikumar, K.; Natarajan, E.; Suresh, S.; Mohan, D.G.; Prakash, C.; Kaur, K. Prospects of friction stir processed Mg alloys and composites—Reviews and suggestions. J. Mater. Res. Technol. 2024, 31, 971–997. [Google Scholar] [CrossRef]
- Mohankumar, A.; Packkirisamy, V.; Sagar, P.; Thirugnanasambandam, A. Multi-fidelity machine learning-driven metaheuristic optimization of friction stir processing for enhanced performance in hybrid surface composites. Mater. Today Commun. 2025, 46, 112778. [Google Scholar] [CrossRef]
- Červeňanská, Z.; Kotianová, J.; Važan, P.; Juhásová, B.; Juhás, M. Multi-Objective Optimization of Production Objectives Based on Surrogate Modeling. Appl. Sci. 2020, 10, 7870. [Google Scholar] [CrossRef]
- Kizhakkinan, U.; Duong, P.L.T.; Laskowski, R.; Vastola, G.; Rosen, D.W.; Raghavan, N. Development of a surrogate model for high-fidelity laser powder-bed fusion using tensor train and gaussian process regression. J. Intell. Manuf. 2023, 34, 369–385. [Google Scholar] [CrossRef]
- Simon, D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Benmamoun, Z.; Fethallah, W.; Ahlaqqach, M.; Jebbor, I.; Benmamoun, M.; Elkhechafi, M. Butterfly Algorithm for Sustainable Lot Size Optimization. Sustainability 2023, 15, 11761. [Google Scholar] [CrossRef]
- Salgotra, R.; Sharma, P.; Raju, S.; Gandomi, A.H. A contemporary systematic review on meta-heuristic optimization algorithms with their MATLAB and Python code reference. Arch. Comput. Methods Eng. 2024, 31, 1749–1822. [Google Scholar] [CrossRef]
- Rajwar, K.; Deep, K.; Das, S. An exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challenges. Artif. Intell. Rev. 2023, 56, 13187–13257. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.V. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 2020, 11, 107–130. [Google Scholar] [CrossRef]
- Aranha, C.L.C.; Villalón, F.; Dorigo, M.; Ruiz, R.; Sevaux, M.; Sörensen, K.; Stützle, T. Metaphor-based metaheuristics, a call for action: The elephant in the room. Swarm Intell. 2021, 16, 1–6. [Google Scholar] [CrossRef]
- Velasco, L.; Guerrero, H.; Hospitaler, A. A literature review and critical analysis of metaheuristics recently developed. Arch. Comput. Methods Eng. 2024, 31, 125–146. [Google Scholar] [CrossRef]
- Sarhani, M.; Voß, S.; Jovanovic, R. Initialization of metaheuristics: Comprehensive review, critical analysis, and research directions. Int. Trans. Oper. Res. 2023, 30, 3361–3397. [Google Scholar] [CrossRef]
- Ghasemi, M.; Golalipour, K.; Zare, M.; Mirjalili, S.; Trojovsky, P.; Abbuligah, L.; Hemmati, R. Flood Algorithm (FLA): An Efficient Inspired Meta-Heuristic for Engineering Optimization. J. Supercomput. 2024, 80, 22913–23017. [Google Scholar] [CrossRef]
- Rao, R.V.; Shah, R. BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems. arXiv 2024, arXiv:2407.11149v2. [Google Scholar]
- Rao, R.V. BHARAT: A simple and effective multi-criteria decision-making method that does not need fuzzy logic, Part-1: Multi-attribute decision-making applications in the industrial environment. Int. J. Ind. Eng. Comput. 2024, 15, 13–40. [Google Scholar] [CrossRef]
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | 1.05763 | 1.85684 | 70.61647 | 7.009864 | 0 | 13.91264 | 0 | 70.61647 (best) |
2 | 4.46747 | 0.27845 | 91.34434 | 25.63888 | 0 | 1.85167 | 0 | 91.34434 |
3 | 4.82116 | −4.67009 | 442.7301 | 4.158276 | 0 | 5.38545 | 0 | 442.7301 (worst) |
4 | 3.02432 | 3.64295 | 89.60672 | 8.825604 | 0 | 4.25977 | 0 | 89.60672 |
5 | 3.10156 | 4.08945 | 171.8241 | 5.672324 | 0 | 3.50431 | 0 | 171.8241 |
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | −1.43944 | 3.426822 | 41.17727 | −27.2095 | 740.3572 | 22.33094 | 0 | 781.5345 |
2 | 2.009791 | 1.669832 | 32.84193 | 14.27032 | 0 | 10.291 | 0 | 32.84193 |
3 | 1.321077 | −2.38566 | 135.4995 | 6.774131 | 0 | 17.10136 | 0 | 135.4995 |
4 | 1.263256 | 6.558732 | 1397.911 | −30.9802 | 959.7739 | 8.388247 | 0 | 2357.685 |
5 | 1.520877 | 8.984648 | 5661.864 | −66.8282 | 4466.006 | 4.931843 | 0 | 10127.87 |
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | 1.05763 | 1.85684 | 70.61647 | 7.009864 | 0 | 13.91264 | 0 | 70.61647 |
2 | 2.009791 | 1.669832 | 32.84193 | 14.27032 | 0 | 10.291 | 0 | 32.84193 (best) |
3 | 1.321077 | −2.38566 | 135.4995 | 6.774131 | 0 | 17.10136 | 0 | 135.4995 |
4 | 3.02432 | 3.64295 | 89.60672 | 8.825604 | 0 | 4.25977 | 0 | 89.60672 |
5 | 3.10156 | 4.08945 | 171.8241 | 5.672324 | 0 | 3.50431 | 0 | 171.8241 (worst) |
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | 3.584428 | −1.848126 | 0 | 20.580586 | 0 | 7.510414 | 0 | 0 |
2 | 3.584428 | −1.848126 | 0 | 20.580586 | 0 | 7.510414 | 0 | 0 |
3 | 3.584428 | −1.848126 | 0 | 20.580586 | 0 | 7.510414 | 0 | 0 |
4 | 3.584428 | −1.848126 | 0 | 20.580586 | 0 | 7.510414 | 0 | 0 |
5 | 3.584428 | −1.848126 | 0 | 20.580586 | 0 | 7.510414 | 0 | 0 |
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | −1.71085 | 1.844692 | 66.96631 | −22.4384 | 503.4797 | 24.9987 | 0 | 570.446 |
2 | 1.62716 | 0.110027 | 96.67338 | 14.61184 | 0 | 13.38133 | 0 | 96.67338 |
3 | 3.881705 | −4.0571 | 178.0028 | 8.289356 | 0 | 8.530281 | 0 | 178.0028 |
4 | −1.08629 | 4.808377 | 251.1433 | −34.1634 | 1167.136 | 19.53677 | 0 | 1418.279 |
5 | −1.33798 | 6.986866 | 1643.435 | −62.9863 | 3967.268 | 18.36505 | 0 | 5610.704 |
Solution | x1 | x2 | f(x) | g1(x) | p1 | g2(x) | p2 | M(x) |
---|---|---|---|---|---|---|---|---|
1 | 1.05763 | 1.85684 | 70.61647 | 7.009864 | 0 | 13.91264 | 0 | 70.61647 (best) |
2 | 4.46747 | 0.27845 | 91.34434 | 25.63888 | 0 | 1.85167 | 0 | 91.34434 |
3 | 3.881705 | −4.0571 | 178.0028 | 8.289356 | 0 | 8.530281 | 0 | 178.0028 (worst) |
4 | 3.02432 | 3.64295 | 89.60672 | 8.825604 | 0 | 4.25977 | 0 | 89.60672 |
5 | 3.10156 | 4.08945 | 171.8241 | 5.672324 | 0 | 3.50431 | 0 | 171.8241 |
Statistical Measures | BWR | BMR | FLA [27] | Remarks |
---|---|---|---|---|
1. Welded beam optimization | ||||
Best | 1.6979 | 1.6981 | 1.7248523 | BWR achieved the best result with extremely low variance. |
Mean | 1.6979 | 1.7010 | 1.7248527 | |
Worst | 1.6979 | 1.7032 | 1.7248536 | |
Standard deviation | 2.7043 × 10−10 | 1.5674 × 10−3 | 3.08 × 10−6 | |
2. Three-bar truss optimization | ||||
Best | 1.085211 × 102 | 1.085211 × 102 | 2.6389584 × 102 | BMR and BWR produced identical results, outperforming FLA. |
Mean | 1.085211 × 102 | 1.085211 × 102 | 2.6389584 × 102 | |
Worst | 1.085211 × 102 | 1.085211 × 102 | 2.6389584 × 102 | |
Standard deviation | 1.8346 × 10−14 | 1.4504 × 10−14 | 7.10 × 10−5 | |
3. Cantilever beam optimization | ||||
Best | 1.3351 | 1.3351 | 1.339956 | Both proposed algorithms converged to 1.3351, better than FLA. |
Mean | 1.3351 | 1.3351 | 1.339958 | |
Worst | 1.3351 | 1.3351 | 1.339963 | |
Standard deviation | 1.5367 × 10−14 | 1.9342 × 10−11 | 6.48 × 10−7 | |
4. Gear train optimal design | ||||
Best | 7.3856 × 10−25 | 4.287642 × 10−22 | 2.700857 × 10−12 | BWR achieved a near-zero best result versus FLA. |
Mean | 7.1755 × 10−21 | 3.4497 × 10−18 | 8.7526 × 10−10 | |
Worst | 4.3061 × 10−20 | 3.4131 × 10−17 | 1.4069 × 10−9 | |
Standard deviation | 1.121 × 10−20 | 8.21 × 10−18 | 2.76 × 10−9 | |
5. Tension/compression spring optimization | ||||
Best | 0.012648 | 0.012648 | 0.012665 | All methods achieved similar best values, but BWR and BMR achieved good consistency. |
Mean | 0.012648 | 0.012648 | 0.012666 | |
Worst | 0.012648 | 0.012648 | 0.012667 | |
Standard deviation | 8.0429 × 10−14 | 8.0429 × 10−14 | 6.29 × 10−7 | |
6. Pressure vessel optimization | ||||
Best | 4.840545 × 102 | 4.840545 × 102 | 6.059714 × 103 | BMR/BWR reached values dramatically better than FLA. |
Mean | 4.840545 × 102 | 4.840545 × 102 | 6.06021 × 103 | |
Worst | 4.840545 × 102 | 4.840545 × 102 | 6.09052 × 103 | |
Standard deviation | 1.6409 × 10−13 | 1.6409 × 10−13 | 3.86 | |
7. Speed reducer optimization | ||||
Best | 2.35748 × 103 | 2.35748 × 103 | 2.99447 × 103 | Both proposed methods achieved better results. |
Mean | 2.35748 × 103 | 2.35748 × 103 | 2.994471 × 103 | |
Worst | 2.35748 × 103 | 2.35748 × 103 | 2.994473 × 103 | |
Standard deviation | 9.2825 × 10−13 | 9.2825 × 10−13 | 2.09 × 10−4 | |
8. I-beam vertical deflection | ||||
Best | 0.0016369 | 0.0016369 | 0.013074 | BMR and BWR achieved better results, outperforming FLA. |
Mean | 0.0016369 | 0.0016369 | 0.01307445 | |
Worst | 0.0016369 | 0.0016369 | 0.01307579 | |
Standard deviation | 6.6394 × 10−19 | 6.6394 × 10−19 | 6.91 × 10−06 | |
9. Tubular column optimal design | ||||
Best | 10.3168 | 10.3168 | 26.4995 | BMR and BWR achieved better results, outperforming FLA. |
Mean | 10.3168 | 10.3168 | 26.4995 | |
Worst | 10.3168 | 10.3168 | 26.51003 | |
Standard deviation | 9.2825 × 10−13 | 9.2825 × 10−13 | 1.41 × 10−4 | |
10. Piston lever optimal design | ||||
Best | 7.585 | 7.585 | 8.412698 | BMR and BWR achieved better results, outperforming FLA. |
Mean | 7.585 | 7.585 | 23.821251 | |
Worst | 7.585 | 7.585 | 167.232196 | |
Standard deviation | 2.054 × 10−14 | 2.054 × 10−14 | 47.2 | |
11. Corrugated bulkhead optimal design | ||||
Best | 6.5795 | 6.5795 | 6.842958 | BMR and BWR achieved better results, outperforming FLA. |
Mean | 6.5795 | 6.5795 | 6.8429676 | |
Worst | 6.5795 | 6.5795 | 6.8432916 | |
Standard deviation | 2.7195 × 10−15 | 2.7195 × 10−15 | 1.25 × 10−5 | |
12. Car side impact optimization | ||||
Best | 22.2857 | 22.2857 | 22.84297 | BMR and BWR achieved better results. The results of FLA were less accurate, with more variability. |
Mean | 22.2857 | 22.2857 | 22.88914 | |
Worst | 22.2857 | 22.2857 | 23.17638 | |
Standard deviation | 1.0534 × 10−14 | 1.0534 × 10−14 | 7.38 × 10−3 |
Feature | Jaya | Rao-1/2/3 | BWR | BMR |
---|---|---|---|---|
Search mechanism type | Directional (toward best, away from worst) | Directional arithmetic (best/worst/random) | Hybrid arithmetic with random fallback and flexible direction control | Hybrid arithmetic with best–mean–guided search |
Novel equation logic | Linear directional | Various forms of directional logic | New combination: (best − F × rand), (worst − rand) difference, fallback to random sampling | (Best − F × mean) and (best − rand) combination, fallback to random sampling |
Handling of random influence | Indirect (via coefficients) | Rao-2/3 use random individuals | Direct: random solution is explicitly part of the update rule | Same |
Fallback sampling | None | None | Yes: if n4 ≤ 0.5, fallback to S’v,k,i = Hv − (Hv − Lv)n3 | Same as BWR |
Diversity mechanism | Moderate via random numbers r1, r2 | Rao-2/3 add more diversity via randomness | Very strong, due to combination of best/worst/random directions | Strong, but more controlled than BWR |
Exploration–exploitation balance | Balanced | Rao-3 is most exploratory | Highly exploratory, but still exploits best | More exploitative, smoother convergence via mean-based guidance |
Design simplicity | High (1-line update rule) | High (1-line update rule) | Slightly complex, but still parameter-free and metaphor-free | Same |
Robustness to local optima | Moderate | Moderate | Strong: fallback randomness + direction mix help escape traps | Good, but more conservative due to mean-based bias |
Risk of premature convergence | Moderate | Moderate | Low | Low |
Step No. | Step Title | Description |
---|---|---|
1 | Start | Begin the algorithm. |
2 | Initialize population | Generate initial population of solutions within variable bounds. |
3 | Perform elite seeding | Include high-quality or historically good solutions into initial population. |
4 | Apply fast non-dominated sorting | Rank individuals into fronts based on Pareto dominance and calculate crowding distance. |
5 | Check and repair constraints | Attempt to fix any constraint violations in the individuals (first approach). |
6 | Apply penalties | If violations remain, apply penalties to the objective functions (fallback approach). |
7 | Calculate objective function values | Evaluate all objective functions for each individual. |
8 | Apply edge boosting | Enhance exploration near the Pareto front boundaries (extremes). |
9 | Apply local exploration | Explore small neighborhoods around elite or promising solutions for refinement. |
10 | Update population using MO-BWR or MO-BMR | Generate new solutions using the update rule of MO-BWR or MO-BMR. |
11 | Termination criterion met? | Check if the maximum number of iterations or evaluations has been reached. |
12 | If No, return to Step 5 | If not terminated, repeat the process starting from constraint checking. |
13 | If Yes, report Pareto-optimal solutions | End the algorithm and output the final set of non-dominated solutions. |
Algorithm | GD | IGD | Spacing | Hypervolume | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
MO-BWR | 0.005128 | 1.1805 × 10−4 | 0.000549 | 1.6931 × 10−4 | 0.0005928 | 2.4024 × 10−5 | 0.875832 | 2.7768 × 10−4 |
MO-BMR | 0.005051 | 7.3743 × 10−5 | 0.000435 | 3.2228 × 10−5 | 0.000633 | 1.9272 × 10−5 | 0.876091 | 1.7750 × 10−5 |
NSGA-III | 0.003548 | 5.0038 × 10−5 | 0.003543 | 6.8238 × 10−5 | 0.010218 | 4.3086 × 10−4 | 0.871460 | 5.9923 × 10−5 |
Algorithm | GD | IGD | Spacing | Hypervolume | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
MO-BWR | 0.004021 | 5.1599 × 10−4 | 0.018096 | 9.1079 × 10−2 | 0.000821 | 5.6432 × 10−4 | 0.527392 | 7.5723 × 10−3 |
MO-BMR | 0.004121 | 6.2991 × 10−4 | 0.002203 | 8.3148 × 10−3 | 0.001060 | 7.2644 × 10−4 | 0.539351 | 1.6764 × 10−3 |
NSGA-III | 0.003609 | 1.5771 × 10−5 | 0.003438 | 1.6013 × 10−5 | 0.004172 | 2.9634 × 10−5 | 0.538386 | 2.4044 × 10−5 |
Algorithm | GD | IGD | Spacing | Hypervolume | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
MO-BWR | 0.003869 | 3.2657 × 10−4 | 0.003187 | 2.8226 × 10−3 | 0.0012825 | 3.4899 × 10−4 | 0.72128 | 6.9315 × 10−3 |
MO-BMR | 0.003633 | 2.5603 × 10−4 | 0.001671 | 2.2589 × 10−3 | 0.0008835 | 3.3653 × 10−4 | 0.72463 | 5.4288 × 10−3 |
NSGA-III | 0.002818 | 5.8555 × 10−5 | 0.003709 | 1.0524 × 10−4 | 0.007505 | 1.7482 × 10−4 | 0.724230 | 7.6240 × 10−5 |
Algorithm | GD | IGD | Spacing | Hypervolume | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
MO-BWR | 0.005478 | 1.5433 × 10−4 | 0.002180 | 1.5306 × 10−4 | 0.001852 | 8.3442 × 10−5 | 0.872858 | 2.9916 × 10−4 |
MO-BMR | 0.005676 | 2.9654 × 10−4 | 0.002498 | 3.6697 × 10−4 | 0.001803 | 1.1073 × 10−4 | 0.872257 | 6.4334 × 10−4 |
NSGA-III | 0.004254 | 6.5069 × 10−4 | 0.005634 | 1.3859 × 10−3 | 0.010484 | 4.8832 × 10−4 | 0.867990 | 5.2656 × 10−3 |
Algorithm | GD | IGD | Spacing | Hypervolume | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
MO-BWR | 0.006370 | 4.1160 × 10−3 | 0.000418 | 2.8515 × 10−5 | 0.054858 | 7.5815 × 10−2 | 0.615821 | 1.7178 × 10−5 |
MO-BMR | 0.007295 | 4.1911 × 10−3 | 0.000424 | 2.8036 × 10−5 | 0.068319 | 7.3691 × 10−2 | 0.615820 | 1.8577 × 10−5 |
NSGA-III | 0.004303 | 1.4614 × 10−4 | 0.004245 | 1.3982 × 10−4 | 0.002476 | 1.0359 × 10−4 | 0.607590 | 3.2857 × 10−4 |
S. No. | vc (m/min) | f (mm) | ap (mm) | Cutting Force (Fc) | Surface Roughness (Ra) | Algorithm | Fc Normalized | Ra Normalized | Scores (w1 = w2) | Scores * |
---|---|---|---|---|---|---|---|---|---|---|
1 | 82.5146 | 0.06869 | 0.084941 | 48.77625 | 0.205342 | MO-BWR | 0.584345 | 1 | 0.792173 | 0.833738 |
2 | 87.65448 | 0.043902 | 0.099332 | 47.03139 | 0.206413 | MO-BWR | 0.606025 | 0.994816 | 0.80042 | 0.8393 |
3 | 142.5948 | 0.03732 | 0.078693 | 32.45698 | 0.262183 | MO-BWR | 0.878152 | 0.783204 | 0.830678 | 0.821183 |
4 | 170.4245 | 0.09032 | 0.088298 | 40.95659 | 0.217929 | MO-BWR | 0.695912 | 0.942247 | 0.819079 | 0.843713 |
5 | 95.62711 | 0.087538 | 0.087968 | 30.4742 | 0.282167 | MO-BWR | 0.935289 | 0.727735 | 0.831512 | 0.810757 |
6 | 128.4696 | 0.037554 | 0.066472 | 33.17086 | 0.257288 | MO-BWR | 0.859253 | 0.798105 | 0.828679 | 0.822564 |
7 | 157.7395 | 0.079976 | 0.098504 | 34.72216 | 0.248188 | MO-BWR | 0.820864 | 0.827365 | 0.824115 | 0.824765 |
8 | 150.6527 | 0.037117 | 0.076792 | 31.96358 | 0.265644 | MO-BWR | 0.891708 | 0.773 | 0.832354 | 0.820483 |
9 | 110.2862 | 0.118883 | 0.099391 | 41.71953 | 0.216229 | MO-BWR | 0.683185 | 0.949654 | 0.81642 | 0.843066 |
10 | 106.5982 | 0.066563 | 0.063097 | 29.01916 | 0.30825 | MO-BWR | 0.982185 | 0.666156 | 0.824171 | 0.792568 |
11 | 148.9515 | 0.073364 | 0.074663 | 30.96368 | 0.275678 | MO-BWR | 0.920504 | 0.744863 | 0.832683 | 0.815119 |
12 | 160.7854 | 0.083216 | 0.095444 | 35.27169 | 0.244372 | MO-BWR | 0.808075 | 0.840287 | 0.824181 | 0.827402 |
13 | 123.568 | 0.053707 | 0.092931 | 34.29471 | 0.251533 | MO-BWR | 0.831095 | 0.816364 | 0.82373 | 0.822256 |
14 | 122.3099 | 0.07769 | 0.076815 | 42.29568 | 0.214273 | MO-BWR | 0.673879 | 0.958323 | 0.816101 | 0.844545 |
15 | 171.1275 | 0.051762 | 0.069634 | 36.53362 | 0.237197 | MO-BWR | 0.780163 | 0.865704 | 0.822934 | 0.831488 |
16 | 111.8499 | 0.118245 | 0.069415 | 42.84905 | 0.212657 | MO-BWR | 0.665176 | 0.965606 | 0.815391 | 0.845434 |
17 | 86.4442 | 0.091479 | 0.092805 | 36.09876 | 0.239526 | MO-BWR | 0.789561 | 0.857288 | 0.823424 | 0.830197 |
18 | 150.1235 | 0.027705 | 0.098648 | 36.99275 | 0.235162 | MO-BWR | 0.77048 | 0.873197 | 0.821838 | 0.83211 |
19 | 172.6602 | 0.051346 | 0.099421 | 43.39992 | 0.211171 | MO-BWR | 0.656733 | 0.972398 | 0.814566 | 0.846132 |
20 | 172.7808 | 0.093105 | 0.075713 | 46.0215 | 0.206804 | MO-BWR | 0.619323 | 0.992935 | 0.806129 | 0.84349 |
21 | 97.46171 | 0.077537 | 0.090784 | 31.17589 | 0.273196 | MO-BWR | 0.914238 | 0.751631 | 0.832934 | 0.816674 |
22 | 98.88902 | 0.045924 | 0.064763 | 39.71683 | 0.22343 | MO-BWR | 0.717635 | 0.919046 | 0.81834 | 0.838482 |
23 | 82.77052 | 0.082945 | 0.07797 | 38.52695 | 0.227795 | MO-BWR | 0.739798 | 0.901437 | 0.820618 | 0.836781 |
24 | 168.7994 | 0.122149 | 0.099617 | 28.79286 | 0.313298 | MO-BWR | 0.989904 | 0.655423 | 0.822664 | 0.789215 |
25 | 131.9472 | 0.085684 | 0.060651 | 29.77035 | 0.293457 | MO-BWR | 0.957402 | 0.699735 | 0.828568 | 0.802802 |
26 | 113.9237 | 0.09971 | 0.097957 | 33.96684 | 0.254308 | MO-BWR | 0.839118 | 0.807455 | 0.823286 | 0.82012 |
27 | 139.1268 | 0.040213 | 0.083598 | 29.49237 | 0.298589 | MO-BWR | 0.966425 | 0.68771 | 0.827068 | 0.799196 |
28 | 123.5313 | 0.080344 | 0.080491 | 44.30492 | 0.20906 | MO-BWR | 0.643319 | 0.98222 | 0.812769 | 0.84666 |
29 | 132.5555 | 0.064135 | 0.060767 | 30.23996 | 0.285661 | MO-BWR | 0.942534 | 0.718833 | 0.830684 | 0.808313 |
30 | 92.14646 | 0.054101 | 0.072166 | 37.37609 | 0.232907 | MO-BWR | 0.762578 | 0.881649 | 0.822113 | 0.834021 |
31 | 77.73176 | 0.090404 | 0.099483 | 33.51954 | 0.255033 | MO-BWR | 0.850315 | 0.80516 | 0.827737 | 0.823222 |
32 | 146.0835 | 0.084423 | 0.080193 | 29.44741 | 0.299456 | MO-BWR | 0.967901 | 0.685718 | 0.82681 | 0.798591 |
33 | 83.96344 | 0.061304 | 0.08945 | 37.6698 | 0.231471 | MO-BWR | 0.756632 | 0.887121 | 0.821876 | 0.834925 |
34 | 113.4191 | 0.082938 | 0.071663 | 45.59268 | 0.207014 | MO-BWR | 0.625148 | 0.991925 | 0.808537 | 0.845214 |
35 | 122.4451 | 0.049228 | 0.069718 | 39.14991 | 0.224807 | MO-BWR | 0.728027 | 0.913417 | 0.820722 | 0.839261 |
36 | 172.3149 | 0.042695 | 0.062543 | 31.58076 | 0.268994 | MO-BWR | 0.902517 | 0.763373 | 0.832945 | 0.819031 |
37 | 126.618 | 0.059577 | 0.098903 | 29.20329 | 0.304349 | MO-BWR | 0.975992 | 0.674694 | 0.825343 | 0.795213 |
38 | 135.978 | 0.109039 | 0.064395 | 35.77703 | 0.24201 | MO-BWR | 0.796661 | 0.848489 | 0.822575 | 0.827758 |
39 | 84.92093 | 0.055488 | 0.076715 | 30.11297 | 0.287844 | MO-BWR | 0.946508 | 0.713381 | 0.829945 | 0.806632 |
40 | 141.3104 | 0.025764 | 0.085915 | 31.58811 | 0.268924 | MO-BWR | 0.902307 | 0.763571 | 0.832939 | 0.819065 |
41 | 76.27219 | 0.069146 | 0.095886 | 29.20153 | 0.304385 | MO-BWR | 0.976051 | 0.674614 | 0.825332 | 0.795189 |
42 | 76.61654 | 0.035583 | 0.065652 | 29.82173 | 0.292552 | MO-BWR | 0.955752 | 0.701901 | 0.828827 | 0.803441 |
43 | 128.786 | 0.058334 | 0.089644 | 38.07831 | 0.229507 | MO-BWR | 0.748515 | 0.894711 | 0.821613 | 0.836233 |
44 | 89.92673 | 0.091467 | 0.090632 | 28.50217 | 0.320205 | MO-BMR | 1 | 0.641284 | 0.820642 | 0.78477 |
45 | 93.125 | 0.068078 | 0.073053 | 46.58091 | 0.206564 | MO-BMR | 0.611885 | 0.994086 | 0.802986 | 0.841206 |
46 | 94.59569 | 0.117306 | 0.089165 | 48.49687 | 0.206289 | MO-BMR | 0.587712 | 0.995411 | 0.791561 | 0.832331 |
47 | 169.8609 | 0.027899 | 0.093272 | 44.84957 | 0.20827 | MO-BMR | 0.635506 | 0.985941 | 0.810724 | 0.845767 |
48 | 79.0169 | 0.063944 | 0.07762 | 38.07141 | 0.229637 | MO-BMR | 0.74865 | 0.894203 | 0.821427 | 0.835982 |
49 | 113.324 | 0.114012 | 0.07555 | 29.78578 | 0.293184 | MO-BMR | 0.956905 | 0.700388 | 0.828647 | 0.802995 |
50 | 134.6341 | 0.100428 | 0.094615 | 38.82434 | 0.226513 | MO-BMR | 0.734132 | 0.906536 | 0.820334 | 0.837574 |
51 | 155.097 | 0.055781 | 0.092302 | 31.17347 | 0.273223 | MO-BMR | 0.914309 | 0.751556 | 0.832932 | 0.816657 |
52 | 81.0543 | 0.086283 | 0.094765 | 41.90427 | 0.2158 | MO-BMR | 0.680174 | 0.951542 | 0.815858 | 0.842995 |
53 | 139.0823 | 0.095378 | 0.086477 | 34.30859 | 0.250005 | MO-BMR | 0.830759 | 0.821355 | 0.826057 | 0.825117 |
54 | 83.16833 | 0.083512 | 0.078462 | 42.7116 | 0.213442 | MO-BMR | 0.667317 | 0.962052 | 0.814685 | 0.844158 |
55 | 137.9514 | 0.049391 | 0.078518 | 31.39718 | 0.270814 | MO-BMR | 0.907794 | 0.758243 | 0.833019 | 0.818063 |
56 | 122.6898 | 0.059028 | 0.083245 | 31.83915 | 0.266668 | MO-BMR | 0.895193 | 0.770032 | 0.832612 | 0.820096 |
57 | 141.8947 | 0.119346 | 0.067901 | 34.86518 | 0.247241 | MO-BMR | 0.817497 | 0.830535 | 0.824016 | 0.82532 |
58 | 99.6543 | 0.032536 | 0.075408 | 43.87067 | 0.20992 | MO-BMR | 0.649686 | 0.978196 | 0.813941 | 0.846792 |
59 | 101.6422 | 0.025705 | 0.061126 | 35.6438 | 0.242218 | MO-BMR | 0.799639 | 0.847759 | 0.823699 | 0.828511 |
60 | 168.5812 | 0.091376 | 0.062048 | 30.78513 | 0.27792 | MO-BMR | 0.925842 | 0.738854 | 0.832348 | 0.813649 |
61 | 97.46991 | 0.031347 | 0.084025 | 35.20114 | 0.24499 | MO-BMR | 0.809695 | 0.838167 | 0.823931 | 0.826778 |
62 | 169.12 | 0.117058 | 0.097332 | 32.95827 | 0.259613 | MO-BMR | 0.864796 | 0.790957 | 0.827877 | 0.820493 |
63 | 96.24646 | 0.040264 | 0.086851 | 37.21413 | 0.233675 | MO-BMR | 0.765897 | 0.878754 | 0.822325 | 0.833611 |
64 | 77.2859 | 0.118486 | 0.099235 | 34.07363 | 0.253171 | MO-BMR | 0.836488 | 0.811082 | 0.823785 | 0.821244 |
65 | 76.6078 | 0.123062 | 0.093838 | 30.13665 | 0.287284 | MO-BMR | 0.945764 | 0.714772 | 0.830268 | 0.807169 |
66 | 105.1484 | 0.072012 | 0.080786 | 33.38403 | 0.257032 | MO-BMR | 0.853767 | 0.798899 | 0.826333 | 0.820846 |
67 | 130.8655 | 0.049676 | 0.063571 | 29.1643 | 0.30516 | MO-BMR | 0.977297 | 0.672902 | 0.825099 | 0.79466 |
68 | 145.5078 | 0.101072 | 0.094603 | 32.5434 | 0.261673 | MO-BMR | 0.87582 | 0.78473 | 0.830275 | 0.821166 |
69 | 157.803 | 0.069365 | 0.08797 | 39.95646 | 0.221552 | MO-BMR | 0.713331 | 0.926837 | 0.820084 | 0.841435 |
70 | 83.13232 | 0.098434 | 0.082122 | 29.97337 | 0.289955 | MO-BMR | 0.950917 | 0.708188 | 0.829552 | 0.80528 |
71 | 119.8624 | 0.108749 | 0.071643 | 39.61857 | 0.223674 | MO-BMR | 0.719414 | 0.918043 | 0.818729 | 0.838591 |
72 | 86.86083 | 0.095021 | 0.097429 | 33.58461 | 0.254583 | MO-BMR | 0.848668 | 0.806584 | 0.827626 | 0.823418 |
73 | 163.5401 | 0.088529 | 0.082487 | 29.50355 | 0.298382 | MO-BMR | 0.966059 | 0.688186 | 0.827123 | 0.799335 |
74 | 172.5431 | 0.124975 | 0.085125 | 43.04325 | 0.211849 | MO-BMR | 0.662175 | 0.969288 | 0.815732 | 0.846443 |
75 | 140.3676 | 0.115604 | 0.097518 | 28.98734 | 0.308942 | MO-BMR | 0.983263 | 0.664663 | 0.823963 | 0.792103 |
76 | 141.1801 | 0.106489 | 0.069595 | 36.37571 | 0.238035 | MO-BMR | 0.78355 | 0.862658 | 0.823104 | 0.831015 |
77 | 143.599 | 0.102693 | 0.090062 | 41.49185 | 0.216971 | MO-BMR | 0.686934 | 0.946405 | 0.816669 | 0.842617 |
78 | 84.15055 | 0.122265 | 0.090752 | 43.55305 | 0.210698 | MO-BMR | 0.654424 | 0.974583 | 0.814503 | 0.846519 |
79 | 174.2642 | 0.07437 | 0.095702 | 36.81714 | 0.235944 | MO-BMR | 0.774155 | 0.870303 | 0.822229 | 0.831844 |
80 | 99.59887 | 0.058682 | 0.076477 | 30.37304 | 0.283644 | MO-BMR | 0.938404 | 0.723944 | 0.831174 | 0.809728 |
81 | 108.5955 | 0.056718 | 0.087075 | 40.4103 | 0.220071 | MO-BMR | 0.70532 | 0.933073 | 0.819196 | 0.841972 |
82 | 138.9037 | 0.056048 | 0.092796 | 40.60726 | 0.21916 | MO-BMR | 0.701899 | 0.936953 | 0.819426 | 0.842931 |
83 | 76.38247 | 0.074612 | 0.060667 | 28.72557 | 0.314854 | MO-BMR | 0.992223 | 0.652184 | 0.822203 | 0.7882 |
84 | 158.3087 | 0.076846 | 0.080552 | 28.67459 | 0.318921 | MO-BMR | 0.993987 | 0.643866 | 0.818926 | 0.783914 |
85 | 158.6905 | 0.101805 | 0.084081 | 28.88603 | 0.311185 | MO-BMR | 0.986711 | 0.659873 | 0.823292 | 0.790608 |
86 | 94.60775 | 0.048346 | 0.074215 | 29.46864 | 0.299045 | MO-BMR | 0.967204 | 0.68666 | 0.826932 | 0.798878 |
87 | 78.05427 | 0.046381 | 0.060139 | 32.10442 | 0.264559 | MO-BMR | 0.887796 | 0.776169 | 0.831982 | 0.82082 |
Algorithm | GD | IGD | Coverage | Spacing | Spread | Hypervolume |
---|---|---|---|---|---|---|
MO-BWR | 0.00096 | 0.00548 | 0.4942 | 0.01494 | 0.649423 | 21.361 |
MO-BMR | 0.00113 | 0.00513 | 0.5057 | 0.00816 | 0.614505 | 21.290 |
GA [5] | 0.994 | 0.4707 | 0.1829 | 0.45580 | 0.77200 | 2.4205 |
S. No. | LP (W) | SS (mm/s) | HS (mm) | SEC (MJ/kg) | Ra (µm) | RD (%) | Algorithm |
---|---|---|---|---|---|---|---|
1 | 294.5688 | 1297.126 | 0.084856 | 183.3719 | 7.338862 | 98.48985 | MO-BWR |
2 | 298.0238 | 1392.765 | 0.08746 | 180.2786 | 9.979872 | 97.89908 | MO-BWR |
3 | 310 | 1400 | 0.09 | 179.621 | 11.25476 | 97.77915 | MO-BWR |
4 | 306.2874 | 1375.249 | 0.088762 | 180.4361 | 10.06246 | 97.98463 | MO-BWR |
5 | 291.0662 | 1273.775 | 0.083689 | 184.3564 | 6.831356 | 98.59859 | MO-BWR |
6 | 277.4228 | 1182.818 | 0.079141 | 188.661 | 6.199666 | 98.83672 | MO-BWR |
7 | 273.2119 | 1154.746 | 0.077737 | 190.1405 | 6.437013 | 98.85061 | MO-BWR |
8 | 296.4886 | 1333.049 | 0.085959 | 182.0979 | 8.198046 | 98.29372 | MO-BWR |
9 | 274.6762 | 1164.508 | 0.078225 | 189.618 | 6.331355 | 98.84897 | MO-BWR |
10 | 288.3128 | 1255.418 | 0.082771 | 185.1649 | 6.53145 | 98.67042 | MO-BWR |
11 | 282.499 | 1216.66 | 0.080833 | 186.9721 | 6.184623 | 98.7826 | MO-BWR |
12 | 286.1805 | 1340.507 | 0.084046 | 182.2562 | 8.017168 | 98.28101 | MO-BWR |
13 | 295.4339 | 1400 | 0.087518 | 180.0328 | 10.20202 | 97.81936 | MO-BWR |
14 | 278.6032 | 1190.688 | 0.079534 | 188.2591 | 6.169724 | 98.82778 | MO-BWR |
15 | 280.0524 | 1200.349 | 0.080017 | 187.7732 | 6.154879 | 98.81378 | MO-BWR |
16 | 288.5969 | 1257.312 | 0.082866 | 185.0801 | 6.55836 | 98.66357 | MO-BWR |
17 | 284.971 | 1255.12 | 0.082097 | 185.3203 | 6.506528 | 98.6689 | MO-BWR |
18 | 290.7518 | 1305.013 | 0.084251 | 183.2595 | 7.362046 | 98.45579 | MO-BWR |
19 | 296.2807 | 1333.054 | 0.085917 | 182.1062 | 8.187615 | 98.29425 | MO-BWR |
20 | 297.2659 | 1315.106 | 0.085755 | 182.6473 | 7.825797 | 98.39286 | MO-BWR |
21 | 293.2921 | 1288.614 | 0.084431 | 183.7251 | 7.137522 | 98.53174 | MO-BWR |
22 | 297.599 | 1317.327 | 0.085866 | 182.5599 | 7.891735 | 98.38008 | MO-BWR |
23 | 284.9665 | 1233.11 | 0.081655 | 186.1885 | 6.284345 | 98.74153 | MO-BWR |
24 | 284.1876 | 1321.752 | 0.083272 | 182.9445 | 7.57615 | 98.38481 | MO-BWR |
25 | 303.8837 | 1400 | 0.089688 | 179.5753 | 11.02432 | 97.71626 | MO-BWR |
26 | 280.811 | 1205.406 | 0.08027 | 187.5223 | 6.156738 | 98.80513 | MO-BWR |
27 | 282.8996 | 1309.695 | 0.082774 | 183.4037 | 7.331268 | 98.44564 | MO-BWR |
28 | 286.6495 | 1244.33 | 0.082217 | 185.6681 | 6.392532 | 98.70799 | MO-BWR |
29 | 300.8818 | 1339.212 | 0.086961 | 181.7218 | 8.609867 | 98.24473 | MO-BWR |
30 | 297.9618 | 1319.745 | 0.085987 | 182.4652 | 7.965002 | 98.36597 | MO-BWR |
31 | 302.1182 | 1351.74 | 0.087458 | 181.2885 | 9.029413 | 98.16178 | MO-BWR |
32 | 280.4331 | 1202.888 | 0.080144 | 187.647 | 6.154985 | 98.80955 | MO-BWR |
33 | 275.3356 | 1168.904 | 0.078445 | 189.3855 | 6.291824 | 98.84712 | MO-BWR |
34 | 302.4884 | 1349.922 | 0.087496 | 181.3274 | 9.006495 | 98.17227 | MO-BWR |
35 | 292.7606 | 1285.071 | 0.084254 | 183.874 | 7.059242 | 98.54842 | MO-BWR |
36 | 300.9154 | 1339.436 | 0.086972 | 181.7135 | 8.617856 | 98.24326 | MO-BWR |
37 | 308.7741 | 1400 | 0.09 | 179.5942 | 11.22792 | 97.75902 | MO-BWR |
38 | 289.0799 | 1260.532 | 0.083027 | 184.9366 | 6.606242 | 98.65162 | MO-BWR |
39 | 292.9929 | 1286.619 | 0.084331 | 183.8087 | 7.093061 | 98.54119 | MO-BWR |
40 | 278.8556 | 1192.371 | 0.079619 | 188.1738 | 6.165402 | 98.82558 | MO-BWR |
41 | 273.6923 | 1157.948 | 0.077897 | 189.9682 | 6.399636 | 98.85044 | MO-BMR |
42 | 307.3408 | 1394.759 | 0.089367 | 179.8644 | 10.80376 | 97.83411 | MO-BMR |
43 | 283.2342 | 1221.561 | 0.081078 | 186.7361 | 6.207013 | 98.77137 | MO-BMR |
44 | 295.9056 | 1400 | 0.088471 | 179.7365 | 10.53812 | 97.73029 | MO-BMR |
45 | 289.6617 | 1264.411 | 0.083221 | 184.765 | 6.667482 | 98.63674 | MO-BMR |
46 | 285.8275 | 1238.85 | 0.081943 | 185.9209 | 6.335625 | 98.72493 | MO-BMR |
47 | 277.6427 | 1184.285 | 0.079214 | 188.5857 | 6.192873 | 98.83522 | MO-BMR |
48 | 300.7437 | 1338.291 | 0.086915 | 181.7562 | 8.577159 | 98.25077 | MO-BMR |
49 | 290.9339 | 1272.893 | 0.083645 | 184.3946 | 6.814952 | 98.60232 | MO-BMR |
50 | 308.3067 | 1400 | 0.09 | 179.5838 | 11.21852 | 97.75144 | MO-BMR |
51 | 303.8491 | 1358.994 | 0.08795 | 181.0015 | 9.365628 | 98.10769 | MO-BMR |
52 | 302.3758 | 1400 | 0.089157 | 179.7038 | 10.80006 | 97.75064 | MO-BMR |
53 | 293.3393 | 1288.929 | 0.084446 | 183.7119 | 7.144636 | 98.53024 | MO-BMR |
54 | 285.3878 | 1235.919 | 0.081796 | 186.0572 | 6.308372 | 98.73356 | MO-BMR |
55 | 290.6889 | 1271.259 | 0.083563 | 184.4654 | 6.785097 | 98.60915 | MO-BMR |
56 | 308.1696 | 1387.797 | 0.08939 | 180.016 | 10.64711 | 97.88318 | MO-BMR |
57 | 296.1545 | 1313.792 | 0.085451 | 182.7595 | 7.731362 | 98.40582 | MO-BMR |
58 | 298.3207 | 1322.138 | 0.086107 | 182.3719 | 8.038978 | 98.35179 | MO-BMR |
59 | 294.2428 | 1294.952 | 0.084748 | 183.4614 | 7.285663 | 98.5008 | MO-BMR |
60 | 291.0793 | 1273.862 | 0.083693 | 184.3526 | 6.832987 | 98.59822 | MO-BMR |
61 | 297.8571 | 1319.047 | 0.085952 | 182.4924 | 7.943707 | 98.37006 | MO-BMR |
62 | 307.2901 | 1400 | 0.09 | 179.5605 | 11.19969 | 97.7351 | MO-BMR |
63 | 301.8463 | 1345.642 | 0.087282 | 181.4838 | 8.844421 | 98.20172 | MO-BMR |
64 | 285.6801 | 1237.868 | 0.081893 | 185.9665 | 6.326242 | 98.72786 | MO-BMR |
65 | 303.6311 | 1357.54 | 0.087877 | 181.0532 | 9.306663 | 98.11823 | MO-BMR |
66 | 286.569 | 1243.794 | 0.08219 | 185.6927 | 6.386617 | 98.70969 | MO-BMR |
67 | 296.2964 | 1308.642 | 0.085432 | 182.9044 | 7.641122 | 98.42906 | MO-BMR |
68 | 293.9236 | 1292.824 | 0.084641 | 183.5496 | 7.234764 | 98.51135 | MO-BMR |
69 | 296.3873 | 1309.249 | 0.085462 | 182.8802 | 7.657983 | 98.42572 | MO-BMR |
70 | 290.2456 | 1268.304 | 0.083415 | 184.5942 | 6.732857 | 98.62126 | MO-BMR |
71 | 276.3174 | 1175.449 | 0.078772 | 189.0425 | 6.242234 | 98.84308 | MO-BMR |
72 | 278.015 | 1186.767 | 0.079338 | 188.4587 | 6.18264 | 98.83251 | MO-BMR |
73 | 303.8583 | 1400 | 0.09 | 179.477 | 11.15224 | 97.68159 | MO-BMR |
74 | 276.7127 | 1178.085 | 0.078904 | 188.9055 | 6.225397 | 98.84103 | MO-BMR |
75 | 303.842 | 1358.947 | 0.087947 | 181.0032 | 9.363711 | 98.10803 | MO-BMR |
76 | 302.6819 | 1351.213 | 0.087561 | 181.2806 | 9.056286 | 98.16326 | MO-BMR |
77 | 301.7362 | 1344.908 | 0.087245 | 181.5108 | 8.817109 | 98.2067 | MO-BMR |
78 | 293.2867 | 1400 | 0.087936 | 179.8261 | 10.36886 | 97.74983 | MO-BMR |
79 | 285.1786 | 1400 | 0.084321 | 180.7664 | 9.446672 | 97.97881 | MO-BMR |
80 | 298.7719 | 1325.146 | 0.086257 | 182.2555 | 8.134097 | 98.33368 | MO-BMR |
81 | 287.6646 | 1251.098 | 0.082555 | 185.3597 | 6.473535 | 98.68558 | MO-BMR |
82 | 290.2232 | 1268.155 | 0.083408 | 184.6007 | 6.730279 | 98.62186 | MO-BMR |
83 | 294.4781 | 1394.104 | 0.086866 | 180.3396 | 9.838753 | 97.90036 | MO-BMR |
84 | 304.1035 | 1360.69 | 0.088034 | 180.9414 | 9.435141 | 98.09529 | MO-BMR |
85 | 306.2928 | 1375.285 | 0.088764 | 180.4349 | 10.06407 | 97.98434 | MO-BMR |
86 | 309.431 | 1396.207 | 0.08981 | 179.7424 | 11.06175 | 97.81206 | MO-BMR |
Algorithm | GD | IGD | Coverage | Spacing | Spread | Hypervolume |
---|---|---|---|---|---|---|
MO-BWR | 0 | 0.01975 | 0.465 | 0.02345 | 0.7325 | 0.17313 |
MO-BMR | 0 | 0.01263 | 0.535 | 0.02679 | 0.74999 | 0.14664 |
MOPSO | - | - | - | 0.07981 | - | 0.11745 |
Soln. No. | LP (W) | SS (mm/s) | HS (mm) | SEC Normalized | Ra Normalized | RD Normalized | Scores (Equal Weights) | Scores * |
---|---|---|---|---|---|---|---|---|
1 | 294.5688 | 1297.126 | 0.084856 | 0.97876 | 0.838669 | 0.99635 | 0.937917 | 0.940937 |
2 | 298.0238 | 1392.765 | 0.08746 | 0.995554 | 0.616729 | 0.990374 | 0.867544 | 0.880248 |
3 | 310 | 1400 | 0.09 | 0.999198 | 0.546869 | 0.989161 | 0.845068 | 0.860568 |
4 | 306.2874 | 1375.249 | 0.088762 | 0.994685 | 0.611667 | 0.99124 | 0.865855 | 0.878545 |
5 | 291.0662 | 1273.775 | 0.083689 | 0.973533 | 0.900975 | 0.99745 | 0.95731 | 0.9576 |
6 | 277.4228 | 1182.818 | 0.079141 | 0.95132 | 0.992776 | 0.999859 | 0.981309 | 0.975788 |
7 | 273.2119 | 1154.746 | 0.077737 | 0.943918 | 0.95617 | 1 | 0.966686 | 0.961458 |
8 | 296.4886 | 1333.049 | 0.085959 | 0.985607 | 0.750774 | 0.994366 | 0.91024 | 0.917086 |
9 | 274.6762 | 1164.508 | 0.078225 | 0.946519 | 0.972127 | 0.999983 | 0.972867 | 0.967433 |
10 | 288.3128 | 1255.418 | 0.082771 | 0.969282 | 0.942345 | 0.998177 | 0.969925 | 0.968311 |
11 | 282.499 | 1216.66 | 0.080833 | 0.959913 | 0.995191 | 0.999312 | 0.984795 | 0.980263 |
12 | 286.1805 | 1340.507 | 0.084046 | 0.984751 | 0.767712 | 0.994238 | 0.915558 | 0.921766 |
13 | 295.4339 | 1400 | 0.087518 | 0.996913 | 0.6033 | 0.989568 | 0.863252 | 0.876621 |
14 | 278.6032 | 1190.688 | 0.079534 | 0.953351 | 0.997594 | 0.999769 | 0.983561 | 0.978133 |
15 | 280.0524 | 1200.349 | 0.080017 | 0.955818 | 1 | 0.999627 | 0.985139 | 0.979938 |
16 | 288.5969 | 1257.312 | 0.082866 | 0.969726 | 0.938478 | 0.998108 | 0.968761 | 0.967331 |
17 | 284.971 | 1255.12 | 0.082097 | 0.968469 | 0.945954 | 0.998162 | 0.970852 | 0.969026 |
18 | 290.7518 | 1305.013 | 0.084251 | 0.97936 | 0.836028 | 0.996006 | 0.937122 | 0.940329 |
19 | 296.2807 | 1333.054 | 0.085917 | 0.985562 | 0.75173 | 0.994372 | 0.910546 | 0.917355 |
20 | 297.2659 | 1315.106 | 0.085755 | 0.982643 | 0.786486 | 0.995369 | 0.92149 | 0.926743 |
21 | 293.2921 | 1288.614 | 0.084431 | 0.976878 | 0.862327 | 0.996774 | 0.945317 | 0.947313 |
22 | 297.599 | 1317.327 | 0.085866 | 0.983113 | 0.779915 | 0.99524 | 0.919413 | 0.924946 |
23 | 284.9665 | 1233.11 | 0.081655 | 0.963953 | 0.979399 | 0.998897 | 0.98074 | 0.977233 |
24 | 284.1876 | 1321.752 | 0.083272 | 0.981046 | 0.812402 | 0.995288 | 0.929569 | 0.933802 |
25 | 303.8837 | 1400 | 0.089688 | 0.999453 | 0.5583 | 0.988525 | 0.848751 | 0.863966 |
26 | 280.811 | 1205.406 | 0.08027 | 0.957097 | 0.999698 | 0.99954 | 0.985435 | 0.980403 |
27 | 282.8996 | 1309.695 | 0.082774 | 0.97859 | 0.839538 | 0.995903 | 0.938001 | 0.941012 |
28 | 286.6495 | 1244.33 | 0.082217 | 0.966655 | 0.962823 | 0.998557 | 0.976002 | 0.973382 |
29 | 300.8818 | 1339.212 | 0.086961 | 0.987647 | 0.714863 | 0.993871 | 0.898785 | 0.907076 |
30 | 297.9618 | 1319.745 | 0.085987 | 0.983623 | 0.77274 | 0.995097 | 0.917144 | 0.922982 |
31 | 302.1182 | 1351.74 | 0.087458 | 0.990008 | 0.681648 | 0.993032 | 0.88822 | 0.897938 |
32 | 280.4331 | 1202.888 | 0.080144 | 0.956461 | 0.999983 | 0.999585 | 0.985333 | 0.980213 |
33 | 275.3356 | 1168.904 | 0.078445 | 0.947681 | 0.978234 | 0.999965 | 0.975284 | 0.969792 |
34 | 302.4884 | 1349.922 | 0.087496 | 0.989795 | 0.683382 | 0.993138 | 0.888763 | 0.898391 |
35 | 292.7606 | 1285.071 | 0.084254 | 0.976087 | 0.87189 | 0.996943 | 0.948297 | 0.949875 |
36 | 300.9154 | 1339.436 | 0.086972 | 0.987692 | 0.714201 | 0.993856 | 0.898574 | 0.906894 |
37 | 308.7741 | 1400 | 0.09 | 0.999347 | 0.548176 | 0.988957 | 0.845485 | 0.860979 |
38 | 289.0799 | 1260.532 | 0.083027 | 0.970479 | 0.931676 | 0.997987 | 0.966704 | 0.965594 |
39 | 292.9929 | 1286.619 | 0.084331 | 0.976434 | 0.867732 | 0.99687 | 0.947002 | 0.948762 |
40 | 278.8556 | 1192.371 | 0.079619 | 0.953783 | 0.998293 | 0.999747 | 0.983931 | 0.978534 |
41 | 273.6923 | 1157.948 | 0.077897 | 0.944774 | 0.961755 | 0.999998 | 0.968833 | 0.963526 |
42 | 307.3408 | 1394.759 | 0.089367 | 0.997846 | 0.569698 | 0.989717 | 0.852412 | 0.866966 |
43 | 283.2342 | 1221.561 | 0.081078 | 0.961126 | 0.991601 | 0.999198 | 0.983965 | 0.979703 |
44 | 295.9056 | 1400 | 0.088471 | 0.998556 | 0.584059 | 0.988667 | 0.857085 | 0.87135 |
45 | 289.6617 | 1264.411 | 0.083221 | 0.97138 | 0.923119 | 0.997836 | 0.964102 | 0.963388 |
46 | 285.8275 | 1238.85 | 0.081943 | 0.965341 | 0.971471 | 0.998729 | 0.978504 | 0.975433 |
47 | 277.6427 | 1184.285 | 0.079214 | 0.9517 | 0.993865 | 0.999844 | 0.981793 | 0.976283 |
48 | 300.7437 | 1338.291 | 0.086915 | 0.98746 | 0.717589 | 0.993932 | 0.899651 | 0.907828 |
49 | 290.9339 | 1272.893 | 0.083645 | 0.973331 | 0.903143 | 0.997488 | 0.957978 | 0.958171 |
50 | 308.3067 | 1400 | 0.09 | 0.999405 | 0.548636 | 0.98888 | 0.845632 | 0.861124 |
51 | 303.8491 | 1358.994 | 0.08795 | 0.991577 | 0.657177 | 0.992484 | 0.880404 | 0.891147 |
52 | 302.3758 | 1400 | 0.089157 | 0.998738 | 0.569893 | 0.988872 | 0.852493 | 0.867219 |
53 | 293.3393 | 1288.929 | 0.084446 | 0.976948 | 0.861469 | 0.996759 | 0.945049 | 0.947082 |
54 | 285.3878 | 1235.919 | 0.081796 | 0.964633 | 0.975668 | 0.998816 | 0.979696 | 0.976398 |
55 | 290.6889 | 1271.259 | 0.083563 | 0.972958 | 0.907117 | 0.997557 | 0.959201 | 0.959216 |
56 | 308.1696 | 1387.797 | 0.08939 | 0.997006 | 0.57808 | 0.990213 | 0.855091 | 0.869231 |
57 | 296.1545 | 1313.792 | 0.085451 | 0.982039 | 0.796092 | 0.9955 | 0.924535 | 0.929394 |
58 | 298.3207 | 1322.138 | 0.086107 | 0.984126 | 0.76563 | 0.994954 | 0.914894 | 0.921033 |
59 | 294.2428 | 1294.952 | 0.084748 | 0.978282 | 0.844793 | 0.996461 | 0.939836 | 0.942592 |
60 | 291.0793 | 1273.862 | 0.083693 | 0.973553 | 0.90076 | 0.997447 | 0.957244 | 0.957544 |
61 | 297.8571 | 1319.047 | 0.085952 | 0.983477 | 0.774812 | 0.995139 | 0.9178 | 0.923549 |
62 | 307.2901 | 1400 | 0.09 | 0.999535 | 0.549558 | 0.988715 | 0.845928 | 0.861419 |
63 | 301.8463 | 1345.642 | 0.087282 | 0.988942 | 0.695905 | 0.993436 | 0.892752 | 0.901848 |
64 | 285.6801 | 1237.868 | 0.081893 | 0.965104 | 0.972912 | 0.998758 | 0.978915 | 0.975767 |
65 | 303.6311 | 1357.54 | 0.087877 | 0.991294 | 0.661341 | 0.992591 | 0.881733 | 0.892299 |
66 | 286.569 | 1243.794 | 0.08219 | 0.966527 | 0.963715 | 0.998574 | 0.976262 | 0.973596 |
67 | 296.2964 | 1308.642 | 0.085432 | 0.981261 | 0.805494 | 0.995735 | 0.927488 | 0.93193 |
68 | 293.9236 | 1292.824 | 0.084641 | 0.977812 | 0.850737 | 0.996568 | 0.941696 | 0.944195 |
69 | 296.3873 | 1309.249 | 0.085462 | 0.981391 | 0.803721 | 0.995702 | 0.926929 | 0.931447 |
70 | 290.2456 | 1268.304 | 0.083415 | 0.972279 | 0.914156 | 0.99768 | 0.961362 | 0.961058 |
71 | 276.3174 | 1175.449 | 0.078772 | 0.9494 | 0.986006 | 0.999924 | 0.978434 | 0.972898 |
72 | 278.015 | 1186.767 | 0.079338 | 0.952341 | 0.99551 | 0.999817 | 0.982546 | 0.977061 |
73 | 303.8583 | 1400 | 0.09 | 1 | 0.551896 | 0.988174 | 0.846682 | 0.8622 |
74 | 276.7127 | 1178.085 | 0.078904 | 0.950089 | 0.988673 | 0.999903 | 0.979545 | 0.974007 |
75 | 303.842 | 1358.947 | 0.087947 | 0.991568 | 0.657312 | 0.992488 | 0.880447 | 0.891184 |
76 | 302.6819 | 1351.213 | 0.087561 | 0.990051 | 0.679625 | 0.993047 | 0.887565 | 0.897353 |
77 | 301.7362 | 1344.908 | 0.087245 | 0.988795 | 0.698061 | 0.993486 | 0.893438 | 0.902443 |
78 | 293.2867 | 1400 | 0.087936 | 0.998059 | 0.593593 | 0.988864 | 0.860163 | 0.874043 |
79 | 285.1786 | 1400 | 0.084321 | 0.992867 | 0.651539 | 0.991181 | 0.87852 | 0.889711 |
80 | 298.7719 | 1325.146 | 0.086257 | 0.984755 | 0.756676 | 0.994771 | 0.912058 | 0.918577 |
81 | 287.6646 | 1251.098 | 0.082555 | 0.968263 | 0.950776 | 0.998331 | 0.972447 | 0.970426 |
82 | 290.2232 | 1268.155 | 0.083408 | 0.972244 | 0.914506 | 0.997686 | 0.961469 | 0.961149 |
83 | 294.4781 | 1394.104 | 0.086866 | 0.995217 | 0.625575 | 0.990387 | 0.870384 | 0.882762 |
84 | 304.1035 | 1360.69 | 0.088034 | 0.991907 | 0.652336 | 0.992359 | 0.878858 | 0.889808 |
85 | 306.2928 | 1375.285 | 0.088764 | 0.994691 | 0.61157 | 0.991237 | 0.865824 | 0.878518 |
86 | 309.431 | 1396.207 | 0.08981 | 0.998523 | 0.556411 | 0.989494 | 0.848134 | 0.863217 |
Sol. No. | w (m/min) | v (mm/min) | I (A) | T (°C) | W (mm) | R (mm) | W/R | HD (mm) | P (mm) | WH (mm) | t (min) | WG (mm) | HV | Algorithm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.818703 | 300 | 210 | 180 | 10.36607 | 1.614854 | 6.593775 | 0.970123 | 2.15361 | 1.925674 | 1.507523 | 2.089273 | 310.7585 | MO-BWR |
2 | 3 | 300 | 197.2258 | 177.4123 | 10.08171 | 1.750182 | 5.661189 | 0.98226 | 2.028551 | 1.760866 | 1.918132 | 1.965956 | 317.5822 | MO-BWR |
3 | 2.303987 | 264.5601 | 190.9868 | 114.1133 | 9.38862 | 1.47578 | 6.153255 | 1.046083 | 1.405539 | 2.042564 | 4.735318 | 1.416462 | 317.2538 | MO-BWR |
4 | 2.813185 | 300 | 210 | 129.841 | 10.01133 | 1.696268 | 6.270632 | 1.100614 | 1.857963 | 1.749381 | 4.799513 | 2.084176 | 318.1942 | MO-BWR |
5 | 2.561381 | 219.7272 | 160.8703 | 116.8477 | 8.661273 | 2.053726 | 4.34293 | 1.074895 | 1.012806 | 1.73674 | 2.25096 | 1.510778 | 312.1739 | MO-BWR |
6 | 2.745718 | 235.4119 | 176.1238 | 75.89464 | 9.416863 | 1.962127 | 4.73993 | 1.179217 | 1.026767 | 1.810543 | 8.000353 | 1.511253 | 312.0007 | MO-BWR |
7 | 3 | 300 | 210 | 179.294 | 10.66337 | 1.727427 | 6.32396 | 0.991004 | 2.374163 | 1.712472 | 1.519041 | 2.256737 | 314.6359 | MO-BWR |
8 | 2.748172 | 243.8514 | 165.8206 | 176.3616 | 8.632016 | 1.947594 | 4.477126 | 0.944204 | 1.357402 | 1.946123 | 2.680961 | 1.461855 | 314.1654 | MO-BWR |
9 | 2.314259 | 245.0643 | 162.0716 | 180 | 8.489775 | 1.711166 | 4.934086 | 0.895974 | 0.996726 | 2.221124 | 3.04739 | 1.454875 | 314.2899 | MO-BWR |
10 | 3 | 300 | 210 | 180 | 10.66823 | 1.726233 | 6.328622 | 0.989159 | 2.379743 | 1.715347 | 1.507523 | 2.256737 | 314.5114 | MO-BWR |
11 | 2.762538 | 219.3451 | 154.3542 | 175.0584 | 7.960011 | 2.234424 | 3.80047 | 0.962861 | 1.296453 | 1.793053 | 3.356387 | 1.504007 | 311.0032 | MO-BWR |
12 | 3 | 285.2807 | 210 | 180 | 10.88715 | 1.733516 | 6.367992 | 0.970516 | 2.457489 | 1.751777 | 1.332924 | 2.2167 | 313.8744 | MO-BWR |
13 | 2.31648 | 136.2894 | 172.3182 | 163.2944 | 11.50557 | 2.493257 | 4.76093 | 0.668577 | 1.550795 | 2.212107 | 6.455877 | 1.960963 | 307.8013 | MO-BWR |
14 | 2.511164 | 278.4013 | 172.6575 | 154.3487 | 8.586153 | 1.641734 | 5.059301 | 0.975746 | 1.114287 | 2.036094 | 1.661921 | 1.423823 | 316.362 | MO-BWR |
15 | 2.354565 | 269.065 | 168.4278 | 142.9129 | 8.422783 | 1.61838 | 5.043794 | 0.991699 | 1.021581 | 2.01153 | 1.495046 | 1.393392 | 316.7595 | MO-BWR |
16 | 2.607657 | 299.2594 | 194.4423 | 158.3394 | 9.42465 | 1.549743 | 5.970852 | 0.987715 | 1.478982 | 2.047501 | 2.142764 | 1.641999 | 315.496 | MO-BWR |
17 | 2.091253 | 172.2958 | 203.5145 | 88.91519 | 12.11915 | 1.702644 | 7.131629 | 0.795513 | 2.467079 | 2.228803 | 12.46922 | 1.780678 | 306.5517 | MO-BWR |
18 | 3 | 300 | 210 | 98.39973 | 10.1061 | 1.864194 | 5.789796 | 1.202389 | 1.734709 | 1.601429 | 9.421497 | 2.256737 | 322.206 | MO-BWR |
19 | 2.571429 | 157.2472 | 180.6837 | 54.66237 | 12.16113 | 2.276294 | 5.300512 | 1.004062 | 1.457206 | 1.936768 | 15.73393 | 1.80429 | 306.4403 | MO-BWR |
20 | 3 | 300 | 207.6267 | 167.8229 | 10.49146 | 1.748209 | 6.127389 | 1.018441 | 2.215548 | 1.683316 | 1.866862 | 2.197089 | 317.0997 | MO-BWR |
21 | 2.632026 | 300 | 178.0029 | 180 | 8.822313 | 1.605217 | 5.2378 | 0.916304 | 1.29678 | 2.126548 | 2.586101 | 1.508519 | 314.8213 | MO-BWR |
22 | 3 | 300 | 210 | 153.8647 | 10.48819 | 1.77042 | 6.156045 | 1.057453 | 2.173149 | 1.630911 | 2.596691 | 2.256737 | 318.4453 | MO-BWR |
23 | 2.002385 | 214.3243 | 151.6898 | 159.4164 | 8.434648 | 1.844037 | 4.738226 | 0.929069 | 0.930972 | 1.973806 | 2.35011 | 1.719146 | 316.8136 | MO-BMR |
24 | 2.270291 | 187.5849 | 171.8159 | 103.9534 | 10.32418 | 1.963074 | 5.279564 | 0.983606 | 1.31553 | 1.882708 | 5.386565 | 1.625206 | 314.5496 | MO-BMR |
25 | 2 | 100 | 150 | 59.90768 | 11.99557 | 2.956964 | 4.267669 | 0.943806 | 1.559576 | 1.213567 | 12.4542 | 2.653121 | 303.4715 | MO-BMR |
26 | 2.243395 | 168.3193 | 177.141 | 80.93606 | 11.31095 | 2.032747 | 5.568967 | 0.959941 | 1.550992 | 1.89214 | 9.796241 | 1.730469 | 312.4244 | MO-BMR |
27 | 2 | 100 | 150 | 40 | 12.2016 | 2.929032 | 4.391334 | 0.995826 | 1.629727 | 1.175336 | 15.50487 | 2.653121 | 299.839 | MO-BMR |
28 | 2.843885 | 174.8635 | 189.4094 | 60.26374 | 12.27906 | 2.23426 | 5.360341 | 1.033853 | 1.527296 | 1.962982 | 15.48282 | 1.826076 | 308.752 | MO-BMR |
29 | 2.848919 | 125.5623 | 171.682 | 120.2145 | 12.12586 | 2.911937 | 4.023228 | 0.798299 | 1.671441 | 1.751047 | 7.842215 | 1.918966 | 305.8172 | MO-BMR |
30 | 2 | 100 | 150 | 100.4509 | 11.57598 | 3.01385 | 4.015818 | 0.837862 | 1.41671 | 1.372498 | 8.685364 | 2.653121 | 308.3849 | MO-BMR |
31 | 2 | 100 | 150 | 55.26882 | 12.04358 | 2.950456 | 4.296485 | 0.955927 | 1.575923 | 1.202316 | 13.09443 | 2.653121 | 302.6969 | MO-BMR |
32 | 2.320394 | 179.6348 | 174.5737 | 87.9225 | 10.78323 | 2.02128 | 5.342614 | 0.99711 | 1.386551 | 1.869023 | 7.862378 | 1.662348 | 313.0594 | MO-BMR |
33 | 2.339365 | 206.7433 | 169.2361 | 84.20741 | 9.671962 | 1.909795 | 5.062956 | 1.0924 | 1.165188 | 1.788133 | 6.407877 | 1.540132 | 313.6725 | MO-BMR |
34 | 2.18829 | 135.8313 | 161.3727 | 56.71957 | 11.49776 | 2.474543 | 4.803455 | 1.009953 | 1.418766 | 1.57043 | 12.51199 | 2.060709 | 305.6406 | MO-BMR |
35 | 2.975673 | 176.4709 | 187.4048 | 178.5959 | 11.72321 | 2.346528 | 4.911416 | 0.754542 | 2.34383 | 1.942407 | 4.267159 | 1.814076 | 311.0404 | MO-BMR |
36 | 2.205123 | 243.5285 | 193.7983 | 73.13805 | 9.772465 | 1.487255 | 6.387063 | 1.107686 | 1.648011 | 1.972556 | 11.54153 | 1.423697 | 317.0739 | MO-BMR |
37 | 2.299112 | 192.8962 | 168.8354 | 71.05031 | 10.06287 | 1.976611 | 5.10549 | 1.097726 | 1.2301 | 1.756825 | 8.642141 | 1.606124 | 312.0201 | MO-BMR |
38 | 2.01236 | 131.8126 | 150 | 51.6215 | 10.88743 | 2.578765 | 4.485263 | 1.074471 | 1.460838 | 1.241318 | 11.07411 | 2.323767 | 304.7633 | MO-BMR |
39 | 2 | 196.4328 | 150 | 74.7033 | 8.808041 | 2.010263 | 4.582482 | 1.141404 | 1.243417 | 1.381917 | 4.581912 | 1.843079 | 312.3699 | MO-BMR |
40 | 2.434474 | 191.5794 | 171.0531 | 79.71003 | 10.2227 | 2.043906 | 5.017674 | 1.076872 | 1.198254 | 1.80315 | 7.85314 | 1.600627 | 311.7078 | MO-BMR |
41 | 2.328331 | 178.2878 | 171.2623 | 76.56281 | 10.64912 | 2.070033 | 5.173089 | 1.040482 | 1.313476 | 1.80115 | 8.918504 | 1.674699 | 311.6704 | MO-BMR |
42 | 2.499101 | 256.1821 | 157.8395 | 98.67959 | 7.706554 | 1.900902 | 4.154009 | 1.133597 | 0.88677 | 1.69549 | 2.336214 | 1.462814 | 310.457 | MO-BMR |
43 | 2.472294 | 221.6406 | 164.991 | 112.3709 | 8.972931 | 1.943525 | 4.676072 | 1.067212 | 1.047586 | 1.795778 | 2.835898 | 1.497988 | 314.0251 | MO-BMR |
44 | 2.129402 | 169.3066 | 161.8202 | 72.2414 | 10.34109 | 2.132161 | 4.97373 | 1.057593 | 1.333022 | 1.610003 | 8.260241 | 1.819405 | 311.5544 | MO-BMR |
45 | 2.770009 | 107.4838 | 187.8571 | 55.87982 | 14.80134 | 2.809084 | 5.147828 | 0.739238 | 1.923917 | 2.050337 | 20.61707 | 2.210007 | 299.6161 | MO-BMR |
Algorithm | GD | IGD | Coverage | Spacing | Spread | Hypervolume |
---|---|---|---|---|---|---|
MO-BWR | 0 | 0.288 | 0.485 | 0.248 | 0.676 | 0.457 |
MO-BMR | 0 | 0.273 | 0.515 | 0.233 | 0.676 | 0.457 |
Composite | 0 | 0 | 1 | 0.206 | 0.66 | 0.914 |
Sol. No. | W | R | HD | P | WH | t | WG | HV | Scores (Eq. Wt.) | Scores * |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.700346 | 0.535811 | 0.689167 | 0.41176 | 0.61035 | 0.884182 | 0.666927 | 0.964472 | 0.682877 | 0.783785 |
2 | 0.681135 | 0.580713 | 0.680651 | 0.437144 | 0.667476 | 0.694908 | 0.70876 | 0.98565 | 0.679555 | 0.768411 |
3 | 0.634309 | 0.489666 | 0.639124 | 0.630911 | 0.575422 | 0.281486 | 0.983713 | 0.98463 | 0.652407 | 0.743824 |
4 | 0.67638 | 0.562824 | 0.607458 | 0.477281 | 0.671858 | 0.277721 | 0.668557 | 0.987549 | 0.616204 | 0.725702 |
5 | 0.585168 | 0.681429 | 0.621993 | 0.875558 | 0.676748 | 0.592158 | 0.922301 | 0.968864 | 0.740527 | 0.799747 |
6 | 0.636217 | 0.651037 | 0.566967 | 0.863653 | 0.649162 | 0.166608 | 0.922011 | 0.968327 | 0.677998 | 0.758268 |
7 | 0.720432 | 0.573163 | 0.674646 | 0.373508 | 0.686339 | 0.877477 | 0.617436 | 0.976505 | 0.687438 | 0.786791 |
8 | 0.583191 | 0.646215 | 0.708085 | 0.653284 | 0.603937 | 0.497182 | 0.953167 | 0.975045 | 0.702513 | 0.768717 |
9 | 0.573581 | 0.567768 | 0.746201 | 0.889683 | 0.529163 | 0.437399 | 0.95774 | 0.975432 | 0.709621 | 0.773803 |
10 | 0.720761 | 0.572767 | 0.675904 | 0.372633 | 0.685189 | 0.884182 | 0.617436 | 0.976119 | 0.688124 | 0.787418 |
11 | 0.53779 | 0.741385 | 0.694365 | 0.683997 | 0.655494 | 0.397131 | 0.926453 | 0.965231 | 0.700231 | 0.762433 |
12 | 0.735551 | 0.575183 | 0.688888 | 0.360844 | 0.670939 | 1 | 0.628588 | 0.974142 | 0.704267 | 0.801948 |
13 | 0.777333 | 0.827266 | 1 | 0.571816 | 0.53132 | 0.206467 | 0.710565 | 0.955293 | 0.697508 | 0.798709 |
14 | 0.580093 | 0.54473 | 0.685195 | 0.795818 | 0.57725 | 0.802039 | 0.978627 | 0.981863 | 0.743202 | 0.799676 |
15 | 0.569055 | 0.536981 | 0.674173 | 0.868036 | 0.584299 | 0.891561 | 1 | 0.983096 | 0.7634 | 0.813596 |
16 | 0.636743 | 0.514207 | 0.676892 | 0.599581 | 0.574035 | 0.622058 | 0.848595 | 0.979175 | 0.681411 | 0.766378 |
17 | 0.818787 | 0.56494 | 0.840434 | 0.359441 | 0.52734 | 0.106897 | 0.782506 | 0.951415 | 0.61897 | 0.753871 |
18 | 0.682783 | 0.618542 | 0.55604 | 0.511192 | 0.73393 | 0.141477 | 0.617436 | 1 | 0.607675 | 0.716003 |
19 | 0.821624 | 0.755278 | 0.665872 | 0.608541 | 0.606854 | 0.084717 | 0.772266 | 0.95107 | 0.658278 | 0.773964 |
20 | 0.708818 | 0.580058 | 0.656471 | 0.400248 | 0.698226 | 0.713992 | 0.634199 | 0.984152 | 0.672021 | 0.771074 |
21 | 0.596048 | 0.532614 | 0.729645 | 0.683825 | 0.552697 | 0.515419 | 0.923682 | 0.977081 | 0.688876 | 0.760739 |
22 | 0.708597 | 0.587428 | 0.632252 | 0.408057 | 0.720662 | 0.513317 | 0.617436 | 0.988328 | 0.64701 | 0.752206 |
23 | 0.569857 | 0.611854 | 0.71962 | 0.95252 | 0.595467 | 0.567175 | 0.810514 | 0.983264 | 0.726284 | 0.786323 |
24 | 0.697516 | 0.651351 | 0.67972 | 0.674078 | 0.62428 | 0.247454 | 0.857363 | 0.976238 | 0.676 | 0.767899 |
25 | 0.810438 | 0.981125 | 0.708384 | 0.568597 | 0.968497 | 0.107026 | 0.52519 | 0.941855 | 0.701389 | 0.810322 |
26 | 0.764184 | 0.674468 | 0.696477 | 0.571744 | 0.621168 | 0.136065 | 0.80521 | 0.969642 | 0.65487 | 0.762816 |
27 | 0.824358 | 0.971857 | 0.671379 | 0.544122 | 1 | 0.085968 | 0.52519 | 0.930582 | 0.694182 | 0.807856 |
28 | 0.829591 | 0.741331 | 0.646684 | 0.580614 | 0.59875 | 0.086091 | 0.763052 | 0.958244 | 0.650545 | 0.76764 |
29 | 0.81924 | 0.966185 | 0.837502 | 0.530542 | 0.671219 | 0.169968 | 0.726116 | 0.949136 | 0.708738 | 0.811532 |
30 | 0.78209 | 1 | 0.797956 | 0.625936 | 0.856348 | 0.153468 | 0.52519 | 0.957105 | 0.712261 | 0.813141 |
31 | 0.813682 | 0.978966 | 0.699401 | 0.562699 | 0.97756 | 0.101793 | 0.52519 | 0.939451 | 0.699843 | 0.809829 |
32 | 0.72853 | 0.670664 | 0.670515 | 0.639551 | 0.628851 | 0.169532 | 0.838207 | 0.971613 | 0.664683 | 0.764201 |
33 | 0.653452 | 0.633673 | 0.612026 | 0.761053 | 0.657298 | 0.208013 | 0.904722 | 0.973515 | 0.675469 | 0.760184 |
34 | 0.776805 | 0.821057 | 0.661988 | 0.625029 | 0.748417 | 0.106532 | 0.676171 | 0.948588 | 0.670573 | 0.778553 |
35 | 0.792037 | 0.778582 | 0.88607 | 0.378342 | 0.605093 | 0.312368 | 0.7681 | 0.965346 | 0.685742 | 0.788114 |
36 | 0.660242 | 0.493473 | 0.603579 | 0.538085 | 0.595844 | 0.115489 | 0.978714 | 0.984072 | 0.621187 | 0.725081 |
37 | 0.679862 | 0.655842 | 0.609056 | 0.720893 | 0.669012 | 0.154235 | 0.867549 | 0.968387 | 0.665605 | 0.757251 |
38 | 0.735571 | 0.855638 | 0.622238 | 0.607028 | 0.946845 | 0.120364 | 0.599626 | 0.945865 | 0.679147 | 0.780641 |
39 | 0.595084 | 0.667008 | 0.585749 | 0.713172 | 0.850511 | 0.29091 | 0.756013 | 0.969473 | 0.67849 | 0.754514 |
40 | 0.69066 | 0.678171 | 0.620851 | 0.740051 | 0.651824 | 0.169731 | 0.870528 | 0.967418 | 0.673654 | 0.764873 |
41 | 0.71947 | 0.68684 | 0.642564 | 0.675132 | 0.652548 | 0.149456 | 0.832025 | 0.967302 | 0.665667 | 0.763611 |
42 | 0.520666 | 0.630722 | 0.589784 | 1 | 0.693213 | 0.570549 | 0.952542 | 0.963536 | 0.740126 | 0.788757 |
43 | 0.606224 | 0.644865 | 0.62647 | 0.846489 | 0.6545 | 0.470018 | 0.930175 | 0.97461 | 0.719169 | 0.785998 |
44 | 0.698659 | 0.707454 | 0.632168 | 0.665233 | 0.730021 | 0.161366 | 0.76585 | 0.966941 | 0.665962 | 0.761151 |
45 | 1 | 0.932058 | 0.904413 | 0.460919 | 0.57324 | 0.064652 | 0.630492 | 0.92989 | 0.686958 | 0.822776 |
Solution | W (mm) | R (mm) | HD (mm) | P (mm) | WH (mm) | t (min) | WG (mm) | HV |
---|---|---|---|---|---|---|---|---|
Fu et al. [13] | 10.8 | 2.04 | 0.63 (1.0066) * | 1.37 | 1.9 | 7.4 | 1.01 (1.632) * | 312.95 |
Present work | 8.422783 | 1.61838 | 0.991699 | 1.021581 | 2.01153 | 1.495046 | 1.393392 | 316.7595 |
Criterion | MO-BWR | MO-BMR |
---|---|---|
Computational load | Moderate (dominated by sorting & crowding) | Moderate (same) |
Convergence speed | Fast in early stages | Consistent and stable |
Convergence stability | Moderate to good (depends on worst solution) | Very good (mean guidance is more reliable) |
Exploration ability | Higher | Moderate |
Suitability | Multimodal, constrained, or rugged landscapes | Smooth, continuous, or stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, R.V.; Davim, J.P. Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making. J. Manuf. Mater. Process. 2025, 9, 249. https://doi.org/10.3390/jmmp9080249
Rao RV, Davim JP. Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making. Journal of Manufacturing and Materials Processing. 2025; 9(8):249. https://doi.org/10.3390/jmmp9080249
Chicago/Turabian StyleRao, Ravipudi Venkata, and Joao Paulo Davim. 2025. "Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making" Journal of Manufacturing and Materials Processing 9, no. 8: 249. https://doi.org/10.3390/jmmp9080249
APA StyleRao, R. V., & Davim, J. P. (2025). Single, Multi-, and Many-Objective Optimization of Manufacturing Processes Using Two Novel and Efficient Algorithms with Integrated Decision-Making. Journal of Manufacturing and Materials Processing, 9(8), 249. https://doi.org/10.3390/jmmp9080249