ijms-logo

Journal Browser

Journal Browser

Special Issue "Plant Genomics 2019"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 31 October 2019.

Special Issue Editor

Guest Editor
Dr. Frank M. You Website E-Mail
Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
Interests: plant bioinformatics; comparative genomics; genome evolution; quantitative genetics and statistical genomics; genetics and breeding; software tool and database development

Special Issue Information

Dear Colleagues,

Genomics is a fast-evolving field of genetics and molecular biology, focusing on the structure, function, evolution, mapping, editing of genomes, and applications in breeding. Recent development of sequencing technologies and advances in bioinformatics tools have substantially enhanced our ability to analyze and understand genomes and the relationship between genotype and phenotype. The purpose of this Special Issue is to report the recent progress achieved in genomics studies in plants. This includes, but is not limited to, genetic and physical mapping, genome sequencing, genome structure and organization, genome assembly, gene prediction, comparative genomics, genome evolution, gene editing, exome sequencing, RNA sequencing, expression profiling, the functions of specific genes, protein–protein interaction, pathways, epigenomics, SNP discovery, genome-wide association studies, and genomic selection or prediction. The bioinformatics tools and databases assisting genomic data analyses are also welcomed.

Dr. Frank M. You
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural genomics
  • functional genomics
  • epigenomics
  • gene expression
  • mapping
  • genome sequencing
  • genome organization
  • genome evolution
  • marker development
  • quantitative trait loci
  • genome-wide association study
  • genomic selection
  • genomic prediction
  • marker-assisted selection

Published Papers (26 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Genomic Organization of the B3-Domain Transcription Factor Family in Grapevine (Vitis vinifera L.) and Expression during Seed Development in Seedless and Seeded Cultivars
Int. J. Mol. Sci. 2019, 20(18), 4553; https://doi.org/10.3390/ijms20184553 - 14 Sep 2019
Abstract
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 [...] Read more.
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 genes in grapevine (Vitis vinifera L.). In this study, we identified 50 B3 genes in the grapevine genome and analyzed these genes in terms of chromosomal location and syntenic relationships, intron–exon organization, and promoter cis-element content. We also analyzed the presumed proteins in terms of domain structure and phylogenetic relationships. Based on the results, we classified these genes into five subfamilies. The syntenic relationships suggest that approximately half of the genes resulted from genome duplication, contributing to the expansion of the B3 family in grapevine. The analysis of cis-element composition suggested that most of these genes may function in response to hormones, light, and stress. We also analyzed expression of members of the B3 family in various structures of grapevine plants, including the seed during seed development. Many B3 genes were expressed preferentially in one or more structures of the developed plant, suggesting specific roles in growth and development. Furthermore, several of the genes were expressed differentially in early developing seeds from representative seeded and seedless cultivars, suggesting a role in seed development or abortion. The results of this study provide a foundation for functional analysis of B3 genes and new resources for future molecular breeding of grapevine. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Differential Regulation of Anthocyanins in Green and Purple Turnips Revealed by Combined De Novo Transcriptome and Metabolome Analysis
Int. J. Mol. Sci. 2019, 20(18), 4387; https://doi.org/10.3390/ijms20184387 - 06 Sep 2019
Abstract
Purple turnip Brassica rapa ssp. rapa is highly appreciated by consumers but the metabolites and molecular mechanisms underlying the root skin pigmentation remain open to study. Herein, we analyzed the anthocyanin composition in purple turnip (PT) and green turnip (GT) at five developmental [...] Read more.
Purple turnip Brassica rapa ssp. rapa is highly appreciated by consumers but the metabolites and molecular mechanisms underlying the root skin pigmentation remain open to study. Herein, we analyzed the anthocyanin composition in purple turnip (PT) and green turnip (GT) at five developmental stages. A total of 21 anthocyanins were detected and classified into the six major anthocynanin aglycones. Distinctly, PT contains 20 times higher levels of anthocyanins than GT, which explain the difference in the root skin pigmentation. We further sequenced the transcriptomes and analyzed the differentially expressed genes between the two turnips. We found that PT essentially diverts dihydroflavonols to the biosynthesis of anthocyanins over flavonols biosynthesis by strongly down-regulating one flavonol synthase gene, while strikingly up-regulating dihydroflavonol 4-reductase (DFR), anthocyanidin synthase and UDP-glucose: flavonoid-3-O-glucosyltransferase genes as compared to GT. Moreover, a nonsense mutation identified in the coding sequence of the DFR gene may lead to a nonfunctional protein, adding another hurdle to the accumulation of anthocyanin in GT. We also uncovered several key members of MYB, bHLH and WRKY families as the putative main drivers of transcriptional changes between the two turnips. Overall, this study provides new tools for modifying anthocyanin content and improving turnip nutritional quality. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado (Persea americana)
Int. J. Mol. Sci. 2019, 20(17), 4117; https://doi.org/10.3390/ijms20174117 - 23 Aug 2019
Cited by 1
Abstract
Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads [...] Read more.
Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads as well as 109.13 and 104.10 Gb of sequencing data for avocado mesocarp and seed, respectively, during five developmental stages. High-quality reads were assembled into 100,837 unigenes with an average length of 847.40 bp (N50 = 1725 bp). Additionally, 16,903 differentially expressed genes (DEGs) were detected, 17 of which were related to carotenoid biosynthesis. The expression levels of most of these 17 DEGs were higher in the mesocarp than in the seed during five developmental stages. In this study, the avocado mesocarp and seed transcriptome were also sequenced using single-molecule long-read sequencing to acquired 25.79 and 17.67 Gb clean data, respectively. We identified 233,014 and 238,219 consensus isoforms in avocado mesocarp and seed, respectively. Furthermore, 104 and 59 isoforms were found to correspond to the putative 11 carotenoid biosynthetic-related genes in the avocado mesocarp and seed, respectively. The isoform numbers of 10 out of the putative 11 genes involved in the carotenoid biosynthetic pathway were higher in the mesocarp than those in the seed. Besides, alpha- and beta-carotene contents in the avocado mesocarp and seed during five developmental stages were also measured, and they were higher in the mesocarp than in the seed, which validated the results of transcriptome profiling. Gene expression changes and the associated variations in gene dosage could influence carotenoid biosynthesis. These results will help to further elucidate carotenoid biosynthesis in avocado. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Transgenerational Perpetuation of CHS Gene Expression and DNA Methylation Status Induced by Short Oligodeoxynucleotides in Flax (Linum usitatissimum)
Int. J. Mol. Sci. 2019, 20(16), 3983; https://doi.org/10.3390/ijms20163983 - 16 Aug 2019
Abstract
Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax [...] Read more.
Over two decades ago, short oligodeoxynucleotides (ODNs) were proven to be an effective and rapid technique for analysis of gene function without interference in the plant genome. Our previous research has shown the successful regulation of chalcone synthase (CHS) gene expression in flax by ODN technology. The CHS gene encodes a pivotal enzyme in flavonoid biosynthesis. The manipulation of its transcript level was the result of the specific methylation status developed after treatment with ODNs. In further analysis of the application of oligodeoxynucleotides in plants, we will focus on maintaining the methylation status induced originally by ODNs homologous to the regulatory regions of the CHS gene in flax. This article reports the latest investigation applied to stabilization and inheritance of the epigenetic marks induced by plants’ treatment with ODNs. The methylation status was analyzed in the particular CCGG motifs located in the CHS gene sequence. Individual plants were able to maintain alterations induced by ODNs. In order to confirm the impact of methylation marks on the nucleosome rearrangement, chromatin accessibility assay was performed. The perpetuation of targeted plant modulation induced by ODNs exhibits strong potential for improving crops and intensified application for medicine, nutrition and industry. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Agrobacterium-Mediated Gene Transient Overexpression and Tobacco Rattle Virus (TRV)-Based Gene Silencing in Cassava
Int. J. Mol. Sci. 2019, 20(16), 3976; https://doi.org/10.3390/ijms20163976 - 15 Aug 2019
Abstract
Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used [...] Read more.
Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Depicting the Core Transcriptome Modulating Multiple Abiotic Stresses Responses in Sesame (Sesamum indicum L.)
Int. J. Mol. Sci. 2019, 20(16), 3930; https://doi.org/10.3390/ijms20163930 - 13 Aug 2019
Abstract
Sesame is a source of a healthy vegetable oil, attracting a growing interest worldwide. Abiotic stresses have devastating effects on sesame yield; hence, studies have been performed to understand sesame molecular responses to abiotic stresses, but the core abiotic stress-responsive genes (CARG) that [...] Read more.
Sesame is a source of a healthy vegetable oil, attracting a growing interest worldwide. Abiotic stresses have devastating effects on sesame yield; hence, studies have been performed to understand sesame molecular responses to abiotic stresses, but the core abiotic stress-responsive genes (CARG) that the plant reuses in response to an array of environmental stresses are unknown. We performed a meta-analysis of 72 RNA-Seq datasets from drought, waterlogging, salt and osmotic stresses and identified 543 genes constantly and differentially expressed in response to all stresses, representing the sesame CARG. Weighted gene co-expression network analysis of the CARG revealed three functional modules controlled by key transcription factors. Except for salt stress, the modules were positively correlated with the abiotic stresses. Network topology of the modules showed several hub genes predicted to play prominent functions. As proof of concept, we generated over-expressing Arabidopsis lines with hub and non-hub genes. Transgenic plants performed better under drought, waterlogging, and osmotic stresses than the wild-type plants but did not tolerate the salt treatment. As expected, the hub gene was significantly more potent than the non-hub gene. Overall, we discovered several novel candidate genes, which will fuel investigations on plant responses to multiple abiotic stresses. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Intergeneric Relationships within the Family Salicaceae s.l. Based on Plastid Phylogenomics
Int. J. Mol. Sci. 2019, 20(15), 3788; https://doi.org/10.3390/ijms20153788 - 02 Aug 2019
Abstract
Many Salicaceae s.l. plants are recognized for their important role in the production of products such as wood, oils, and medicines, and as a model organism in life studies. However, the difference in plastid sequence, phylogenetic relationships, and lineage diversification of the family [...] Read more.
Many Salicaceae s.l. plants are recognized for their important role in the production of products such as wood, oils, and medicines, and as a model organism in life studies. However, the difference in plastid sequence, phylogenetic relationships, and lineage diversification of the family Salicaceae s.l. remain poorly understood. In this study, we compare 24 species representing 18 genera of the family. Simple sequence repeats (SSRs) are considered effective molecular markers for plant species identification and population genetics. Among them, a total of 1798 SSRs were identified, among which mononucleotide repeat was the most common with 1455 accounts representing 80.92% of the total. Most of the SSRs are located in the non-coding region. We also identified five other types of repeats, including 1750 tandems, 434 forward, 407 palindromic, 86 reverse, and 30 complementary repeats. The species in Salicaceae s.l. have a conserved plastid genome. Each plastome presented a typical quadripartite structure and varied in size due to the expansion and contraction of the inverted repeat (IR) boundary, lacking major structural variations, but we identified six divergence hotspot regions. We obtained phylogenetic relationships of 18 genera in Salicaceae s.l. and the 24 species formed a highly supported lineage. Casearia was identified as the basal clade. The divergence time between Salicaceae s.l. and the outgroup was estimated as ~93 Mya; Salix, and Populus diverged around 34 Mya, consistent with the previously reported time. Our research will contribute to a better understanding of the phylogenetic relationships among the members of the Salicaceae s.l. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Gene-Wide Analysis of Aquaporin Gene Family in Malus domestica and Heterologous Expression of the Gene MpPIP2;1 Confers Drought and Salinity Tolerance in Arabidposis thaliana
Int. J. Mol. Sci. 2019, 20(15), 3710; https://doi.org/10.3390/ijms20153710 - 29 Jul 2019
Abstract
The aquaporins (AQPs) are a family of integral membrane proteins involved in the transcellular membrane transport of water and other small molecules. A scan of the apple (Malus domestica) genome revealed the presence of 42 genes encoding putative AQPs. Based on [...] Read more.
The aquaporins (AQPs) are a family of integral membrane proteins involved in the transcellular membrane transport of water and other small molecules. A scan of the apple (Malus domestica) genome revealed the presence of 42 genes encoding putative AQPs. Based on a phylogenetic analysis of the deduced peptide sequences of the AQPs generated by Arabidopsis thaliana, poplar (Populus trichocarpa), and rubber (Hevea brasiliensis), the apple AQPs were each assigned membership of the five established AQP subfamilies, namely the PIPs (eleven members), the TIPs (thirteen members), the NIPs (eleven members), the SIPs (five members), and the XIPs (two members). The apple AQPs included asparagine-proline-alanine (NPA) motifs, an aromatic/arginine (ar/R) selectivity filter, and the Froger’s positions. The heterologous expression of MpPIP2;1 in A. thaliana was shown to enhance the level of tolerance exhibited against both drought and salinity. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
NB-LRRs Not Responding Consecutively to Fusarium oxysporum Proliferation Caused Replant Disease Formation of Rehmannia glutinosa
Int. J. Mol. Sci. 2019, 20(13), 3203; https://doi.org/10.3390/ijms20133203 - 29 Jun 2019
Abstract
Consecutive monoculture practice facilitates enrichment of rhizosphere pathogenic microorganisms and eventually leads to the emergence of replant disease. However, little is known about the interaction relationship among pathogens enriched in rhizosphere soils, Nucleotide binding-leucine-rich repeats (NB-LRR) receptors that specifically recognize pathogens in effector-triggered [...] Read more.
Consecutive monoculture practice facilitates enrichment of rhizosphere pathogenic microorganisms and eventually leads to the emergence of replant disease. However, little is known about the interaction relationship among pathogens enriched in rhizosphere soils, Nucleotide binding-leucine-rich repeats (NB-LRR) receptors that specifically recognize pathogens in effector-triggered immunity (ETI) and physiological indicators under replant disease stress in Rehmannia glutinosa. In this study, a controlled experiment was performed using different kinds of soils from sites never planted R. glutinosa (NP), replanted R. glutinosa (TP) and mixed by different ration of TP soils (1/3TP and 2/3TP), respectively. As a result, different levels of TP significantly promoted the proliferation of Fusarium oxysporum f.sp. R. glutinosa (FO). Simultaneously, a comparison between FO numbers and NB-LRR expressions indicated that NB-LRRs were not consecutively responsive to the FO proliferation at transcriptional levels. Further analysis found that NB-LRRs responded to FO invasion with a typical phenomenon of “promotion in low concentration and suppression in high concentration”, and 6 NB-LRRs were identified as candidates for responding R. glutinosa replant disease. Furthermore, four critical hormones of salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) had higher levels in 1/3TP, 2/3TP and TP than those in NP. Additionally, increasing extents of SA contents have significantly negative trends with FO changes, which implied that SA might be inhibited by FO in replanted R. glutinosa. Concomitantly, the physiological indexes reacted alters of cellular process regulated by NB-LRR were affected by complex replant disease stresses and exhibited strong fluctuations, leading to the death of R. glutinosa. These findings provide important insights and clues into further revealing the mechanism of R. glutinosa replant disease. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Identification and Expression Profiling of the Polygalacturonase (PG) and Pectin Methylesterase (PME) Genes in Grapevine (Vitis vinifera L.)
Int. J. Mol. Sci. 2019, 20(13), 3180; https://doi.org/10.3390/ijms20133180 - 28 Jun 2019
Abstract
In pectin regulation, polygalacturonases (PGs) and pectin methylesterases (PMEs) are critical components in the transformation, disassembly network, and remodeling of plant primary cell walls. In the current study, we identified 36 PG and 47 PME genes using the available genomic resources of grapevine. [...] Read more.
In pectin regulation, polygalacturonases (PGs) and pectin methylesterases (PMEs) are critical components in the transformation, disassembly network, and remodeling of plant primary cell walls. In the current study, we identified 36 PG and 47 PME genes using the available genomic resources of grapevine. Herein, we provide a comprehensive overview of PGs and PMEs, including phylogenetic and collinearity relationships, motif and gene structure compositions, gene duplications, principal component analysis, and expression profiling during developmental stages. Phylogenetic analysis of PGs and PMEs revealed similar domain composition patterns with Arabidopsis. The collinearity analysis showed high conservation and gene duplications with purifying selection. The type of duplications also varied in terms of gene numbers in PGs (10 dispersed, 1 proximal, 12 tandem, and 13 segmental, respectively) and PMEs (23 dispersed, 1 proximal, 16 tandem, and 7 segmental, respectively). The tissue-specific response of PG and PME genes based on the reported transcriptomic data exhibited diverged expression patterns in various organs during different developmental stages. Among PGs, VvPG8, VvPG10, VvPG13, VvPG17, VvPG18, VvPG19, VvPG20, VvPG22, and VvPG23 showed tissue- or organ-specific expression in majority of the tissues during development. Similarly, in PMEs, VvPME3, VvPME4, VvPME5, VvPME6, VvPME19, VvPME21, VvPME23, VvPME29, VvPME31, and VvPME32 suggested high tissue-specific response. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment, and cis-elements prediction analysis also suggested the putative functions of PGs and PMEs in plant development, such as pectin and carbohydrate metabolism, and stress activities. Moreover, qRT-PCR validation of 32 PG and PME genes revealed their role in various organs of grapevines (i.e., root, stem, tendril, inflorescence, flesh, skins, and leaves). Therefore, these findings will lead to novel insights and encourage cutting-edge research on functional characterization of PGs and PMEs in fruit crop species. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum
Int. J. Mol. Sci. 2019, 20(12), 2961; https://doi.org/10.3390/ijms20122961 - 18 Jun 2019
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit [...] Read more.
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
The Complete Chloroplast Genomes of Punica granatum and a Comparison with Other Species in Lythraceae
Int. J. Mol. Sci. 2019, 20(12), 2886; https://doi.org/10.3390/ijms20122886 - 13 Jun 2019
Abstract
Pomegranates (Punica granatum L.) are one of the most popular fruit trees cultivated in arid and semi-arid tropics and subtropics. In this study, we determined and characterized three complete chloroplast (cp) genomes of P. granatum cultivars with different phenotypes using the genome [...] Read more.
Pomegranates (Punica granatum L.) are one of the most popular fruit trees cultivated in arid and semi-arid tropics and subtropics. In this study, we determined and characterized three complete chloroplast (cp) genomes of P. granatum cultivars with different phenotypes using the genome skimming approach. The complete cp genomes of three pomegranate cultivars displayed the typical quadripartite structure of angiosperms, and their length ranged from 156,638 to 156,639 bp. They encoded 113 unique genes and 17 are duplicated in the inverted regions. We analyzed the sequence diversity of pomegranate cp genomes coupled with two previous reports. The results showed that the sequence diversity is extremely low and no informative sites were detected, which suggests that cp genome sequences may be not be suitable for investigating the genetic diversity of pomegranate genotypes. Further, we analyzed the codon usage pattern and identified the potential RNA editing sites. A comparative cp genome analysis with other species within Lythraceae revealed that the gene content and organization are highly conserved. Based on a site-specific model, 11 genes with positively selected sites were detected, and most of them were photosynthesis-related genes and genetic system-related genes. Together with previously released cp genomes of the order Myrtales, we determined the taxonomic position of P. granatum based on the complete chloroplast genomes. Phylogenetic analysis suggested that P. granatum form a single clade with other species from Lythraceae with a high support value. The complete cp genomes provides valuable information for understanding the phylogenetic position of P. gramatum in the order Myrtales. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Isolation and Characterization of CsWRKY7, a Subgroup IId WRKY Transcription Factor from Camellia sinensis, Linked to Development in Arabidopsis
Int. J. Mol. Sci. 2019, 20(11), 2815; https://doi.org/10.3390/ijms20112815 - 09 Jun 2019
Abstract
WRKY transcription factors (TFs) containing one or two WRKY domains are a class of plant TFs that respond to diverse abiotic stresses and are associated with developmental processes. However, little has been known about the function of WRKY gene in tea plant. In [...] Read more.
WRKY transcription factors (TFs) containing one or two WRKY domains are a class of plant TFs that respond to diverse abiotic stresses and are associated with developmental processes. However, little has been known about the function of WRKY gene in tea plant. In this study, a subgroup IId WRKY gene CsWRKY7 was isolated from Camellia sinensis, which displayed amino acid sequence homology with Arabidopsis AtWRKY7 and AtWRKY15. Subcellular localization prediction indicated that CsWRKY7 localized to nucleus. Cis-acting elements detected in the promotor region of CsWRKY7 are mainly involved in plant response to environmental stress and growth. Consistently, expression analysis showed that CsWRKY7 transcripts responded to NaCl, mannitol, PEG, and diverse hormones treatments. Additionally, CsWRKY7 exhibited a higher accumulation both in old leaves and roots compared to bud. Seed germination and root growth assay indicated that overexpressed CsWRKY7 in transgenic Arabidopsis was not sensitive to NaCl, mannitol, PEG, and low concentration of ABA treatments. CsWRKY7 overexpressing Arabidopsis showed a late-flowering phenotype under normal conditions compared to wild type. Furthermore, gene expression analysis showed that the transcription levels of the flowering time integrator gene FLOWERING LOCUS T (FT) and the floral meristem identity genes APETALA1 (AP1) and LEAFY (LFY) were lower in WRKY7-OE than in the WT. Taken together, these findings indicate that CsWRKY7 TF may participate in plant growth. This study provides a potential strategy to breed late-blooming tea cultivar. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Analysis of TCP Family Genes in Zea mays L. Identified a Role for ZmTCP42 in Drought Tolerance
Int. J. Mol. Sci. 2019, 20(11), 2762; https://doi.org/10.3390/ijms20112762 - 05 Jun 2019
Cited by 1
Abstract
The Teosinte-branched 1/Cycloidea/Proliferating (TCP) plant-specific transcription factors (TFs) have been demonstrated to play a fundamental role in plant development and organ patterning. However, it remains unknown whether or not the TCP gene family plays a role in conferring a tolerance to drought stress [...] Read more.
The Teosinte-branched 1/Cycloidea/Proliferating (TCP) plant-specific transcription factors (TFs) have been demonstrated to play a fundamental role in plant development and organ patterning. However, it remains unknown whether or not the TCP gene family plays a role in conferring a tolerance to drought stress in maize, which is a major constraint to maize production. In this study, we identified 46 ZmTCP genes in the maize genome and systematically analyzed their phylogenetic relationships and synteny with rice, sorghum, and Arabidopsis TCP genes. Expression analysis of the 46 ZmTCP genes in different tissues and under drought conditions, suggests their involvement in maize response to drought stress. Importantly, genetic variations in ZmTCP32 and ZmTCP42 are significantly associated with drought tolerance at the seedling stage. RT-qPCR results suggest that ZmTCP32 and ZmTCP42 RNA levels are both induced by ABA, drought, and polyethylene glycol treatments. Based on the significant association between the genetic variation of ZmTCP42 and drought tolerance, and the inducible expression of ZmTCP42 by drought stress, we selected ZmTCP42, to investigate its function in drought response. We found that overexpression of ZmTCP42 in Arabidopsis led to a hypersensitivity to ABA in seed germination and enhanced drought tolerance, validating its function in drought tolerance. These results suggested that ZmTCP42 functions as an important TCP TF in maize, which plays a positive role in drought tolerance. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
The Class III Peroxidase (POD) Gene Family in Cassava: Identification, Phylogeny, Duplication, and Expression
Int. J. Mol. Sci. 2019, 20(11), 2730; https://doi.org/10.3390/ijms20112730 - 03 Jun 2019
Abstract
The class III peroxidase (POD) enzymes participate in plant development, hormone signaling, and stress responses. However, little is known about the POD family in cassava. Here, we identified 91 cassava POD genes (MePODs) and classified them into six subgroups using phylogenetic [...] Read more.
The class III peroxidase (POD) enzymes participate in plant development, hormone signaling, and stress responses. However, little is known about the POD family in cassava. Here, we identified 91 cassava POD genes (MePODs) and classified them into six subgroups using phylogenetic analysis. Conserved motif analysis demonstrated that all MePOD proteins have typical peroxidase domains, and gene structure analysis showed that MePOD genes have between one and nine exons. Duplication pattern analysis suggests that tandem duplication has played a role in MePOD gene expansion. Comprehensive transcriptomic analysis revealed that MePOD genes in cassava are involved in the drought response and postharvest physiological deterioration. Several MePODs underwent transcriptional changes after various stresses and related signaling treatments were applied. In sum, we characterized the POD family in cassava and uncovered the transcriptional control of POD genes in response to various stresses and postharvest physiological deterioration conditions. These results can be used to identify potential target genes for improving the stress tolerance of cassava crops. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Graphical abstract

Open AccessArticle
Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding
Int. J. Mol. Sci. 2019, 20(10), 2585; https://doi.org/10.3390/ijms20102585 - 26 May 2019
Cited by 1
Abstract
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the [...] Read more.
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from “Kaijin” into high-yielding “Yukinko-mai” (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named “YNU31-2-4”, in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that “YNU31-2-4” plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. “YNU31-2-4” seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that “YNU31-2-4” seedlings avoided Na+ accumulation in shoots under salt stress. The “YNU31-2-4” plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. “YNU31-2-4” is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Graphical abstract

Open AccessArticle
Comparative Analysis of Calcium-Dependent Protein Kinase in Cucurbitaceae and Expression Studies in Watermelon
Int. J. Mol. Sci. 2019, 20(10), 2527; https://doi.org/10.3390/ijms20102527 - 23 May 2019
Abstract
Both the calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play numerous roles in plant growth, development, and stress response. Despite genome-wide identification of both families in Cucumis, comparative evolutionary and functional analysis of both CDPKs and CRKs in Cucurbitaceae remain unclear. [...] Read more.
Both the calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play numerous roles in plant growth, development, and stress response. Despite genome-wide identification of both families in Cucumis, comparative evolutionary and functional analysis of both CDPKs and CRKs in Cucurbitaceae remain unclear. In this study, we identified 128 CDPK and 56 CRK genes in total in six Cucurbitaceae species (C. lanatus, C. sativus, C. moschata, C. maxima, C. pepo, and L. siceraria). Dot plot analysis indicated that self-duplication of conserved domains contributed to the structural variations of two CDPKs (CpCDPK19 and CpCDPK27) in C. pepo. Using watermelon genome as reference, an integrated map containing 25 loci (16 CDPK and nine CRK loci) was obtained, 16 of which (12 CDPK and four CRK) were shared by all seven Cucurbitaceae species. Combined with exon-intron organizations, topological analyses indicated an ancient origination of groups CDPK IV and CRK. Moreover, the evolutionary scenario of seven modern Cucurbitaceae species could also be reflected on the phylogenetic trees. Expression patterns of ClCDPKs and ClCRKs were studied under different abiotic stresses. Some valuable genes were uncovered for future gene function exploration. For instance, both ClCDPK6 and its ortholog CsCDPK14 in cucumber could be induced by salinity, while ClCDPK6 and ClCDPK16, as well as their orthologs in Cucumis, maintained high expression levels in male flowers. Collectively, these results provide insights into the evolutionary history of two gene families in Cucurbitaceae, and indicate a subset of candidate genes for functional characterizations in the future. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Characterization, Evolution, and Expression Profiling of VQ Gene Family in Response to Phytohormone Treatments and Abiotic Stress in Eucalyptus grandis
Int. J. Mol. Sci. 2019, 20(7), 1765; https://doi.org/10.3390/ijms20071765 - 10 Apr 2019
Abstract
VQ genes play important roles in plant development, growth, and stress responses. However, little information regarding the functions of VQ genes is available for Eucalyptus grandis. In our study, genome-wide characterization and identification of VQ genes were performed in E. grandis. [...] Read more.
VQ genes play important roles in plant development, growth, and stress responses. However, little information regarding the functions of VQ genes is available for Eucalyptus grandis. In our study, genome-wide characterization and identification of VQ genes were performed in E. grandis. Results showed that 27 VQ genes, which divided into seven sub-families (I–VII), were found, and all but two VQ genes showed no intron by gene structure and conserved motif analysis. To further identify the function of EgrVQ proteins, gene expression analyses were also developed under hormone treatments (brassinosteroids, methyl jasmonate, salicylic acid, and abscisic acid) and abiotic conditions (salt stress, cold 4 °C, and heat 42 °C). The results of a quantitative real-time PCR analysis indicated that the EgrVQs were variously expressed under different hormone treatments and abiotic stressors. Our study provides a comprehensive overview of VQ genes in E. grandis, which will be beneficial in the molecular breeding of E. grandis to promote its resistance to abiotic stressors; the results also provide a basis from which to conduct further investigation into the functions of VQ genes in E. grandis. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Analysis of Glycoside Hydrolase Family 1 β-glucosidase Genes in Brassica rapa and Their Potential Role in Pollen Development
Int. J. Mol. Sci. 2019, 20(7), 1663; https://doi.org/10.3390/ijms20071663 - 03 Apr 2019
Abstract
Glycoside hydrolase family 1 (GH1) β-glucosidases (BGLUs) are encoded by a large number of genes, and are involved in many developmental processes and stress responses in plants. Due to their importance in plant growth and development, genome-wide analyses have been conducted in model [...] Read more.
Glycoside hydrolase family 1 (GH1) β-glucosidases (BGLUs) are encoded by a large number of genes, and are involved in many developmental processes and stress responses in plants. Due to their importance in plant growth and development, genome-wide analyses have been conducted in model plants (Arabidopsis and rice) and maize, but not in Brassica species, which are important vegetable crops. In this study, we systematically analyzed B. rapa BGLUs (BrBGLUs), and demonstrated the involvement of several genes in pollen development. Sixty-four BrBGLUs were identified in Brassica databases, which were anchored onto 10 chromosomes, with 10 tandem duplications. Phylogenetic analysis revealed that 64 genes were classified into 10 subgroups, and each subgroup had relatively conserved intron/exon structures. Clustering with Arabidopsis BGLUs (AtBGLUs) facilitated the identification of several important subgroups for flavonoid metabolism, the production of glucosinolates, the regulation of abscisic acid (ABA) levels, and other defense-related compounds. At least six BrBGLUs might be involved in pollen development. The expression of BrBGLU10/AtBGLU20, the analysis of co-expressed genes, and the examination of knocked down Arabidopsis plants strongly suggests that BrBGLU10/AtBGLU20 has an indispensable function in pollen development. The results that are obtained from this study may provide valuable information for the further understanding of β-glucosidase function and Brassica breeding, for nutraceuticals-rich Brassica crops. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Analysis of Multiple Organellar RNA Editing Factor Family in Poplar Reveals Evolution and Roles in Drought Stress
Int. J. Mol. Sci. 2019, 20(6), 1425; https://doi.org/10.3390/ijms20061425 - 21 Mar 2019
Cited by 1
Abstract
Poplar (Populus) is one of the most important woody plants worldwide. Drought, a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are indispensable for the [...] Read more.
Poplar (Populus) is one of the most important woody plants worldwide. Drought, a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are indispensable for the regulation of various physiological processes, including organelle C-to-U RNA editing and plasmid development, as well as in the response to stresses. Although the poplar genome sequence has been released, little is known about MORF genes in poplar, especially those involved in the response to drought stress at the genome-wide level. In this study, we identified nine MORF genes in the Populus genome. Based on the structural features of MORF proteins and the topology of the phylogenetic tree, the P. trichocarpa (Ptr) MORF family members were classified into six groups (Groups I–VI). A microsynteny analysis indicated that two (22.2%) PtrMORF genes were tandemly duplicated and seven genes (77.8%) were segmentally duplicated. Based on the dN/dS ratios, purifying selection likely played a major role in the evolution of this family and contributed to functional divergence among PtrMORF genes. Moreover, analysis of qRT-PCR data revealed that PtrMORFs exhibited tissue- and treatment-specific expression patterns. PtrMORF genes in all group were involved in the stress response. These results provide a solid foundation for further analyses of the functions and molecular evolution of MORF genes in poplar, and, in particular, for improving the drought resistance of poplar by genetics manipulation. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Identification and Expression Profiling of Protein Phosphatases (PP2C) Gene Family in Gossypium hirsutum L.
Int. J. Mol. Sci. 2019, 20(6), 1395; https://doi.org/10.3390/ijms20061395 - 20 Mar 2019
Cited by 1
Abstract
The protein phosphatase (PP2C) gene family, known to participate in cellular processes, is one of the momentous and conserved plant-specific gene families that regulate signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and various other crop species, but [...] Read more.
The protein phosphatase (PP2C) gene family, known to participate in cellular processes, is one of the momentous and conserved plant-specific gene families that regulate signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and various other crop species, but analysis of PP2C in cotton is yet to be reported. In the current research, we found 87 (Gossypium arboreum), 147 (Gossypium barbadense), 181 (Gossypium hirsutum), and 99 (Gossypium raimondii) PP2C-encoding genes in total from the cotton genome. Herein, we provide a comprehensive analysis of the PP2C gene family in cotton, such as gene structure organization, gene duplications, expression profiling, chromosomal mapping, protein motif organization, and phylogenetic relationships of each species. Phylogenetic analysis further categorized PP2C genes into 12 subgroups based on conserved domain composition analysis. Moreover, we observed a strong signature of purifying selection among duplicated pairs (i.e., segmental and dispersed) of Gossypium hirsutum. We also observed the tissue-specific response of GhPP2C genes in organ and fiber development by comparing the RNA-sequence (RNA-seq) data reported on different organs. The qRT-PCR validation of 30 GhPP2C genes suggested their critical role in cotton by exposure to heat, cold, drought, and salt stress treatments. Hence, our findings provide an overview of the PP2C gene family in cotton based on various bioinformatic tools that demonstrated their critical role in organ and fiber development, and abiotic stress tolerance, thereby contributing to the genetic improvement of cotton for the resistant cultivar. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Genome-Wide Analysis of LIM Family Genes in Foxtail Millet (Setaria italica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance
Int. J. Mol. Sci. 2019, 20(6), 1303; https://doi.org/10.3390/ijms20061303 - 15 Mar 2019
Abstract
LIM proteins have been found to play important roles in many life activities, including the regulation of gene expression, construction of the cytoskeleton, signal transduction and metabolic regulation. Because of their important roles in many aspects of plant development, LIM genes have been [...] Read more.
LIM proteins have been found to play important roles in many life activities, including the regulation of gene expression, construction of the cytoskeleton, signal transduction and metabolic regulation. Because of their important roles in many aspects of plant development, LIM genes have been studied in many plant species. However, the LIM gene family has not yet been characterized in foxtail millet. In this study, we analyzed the whole genome of foxtail millet and identified 10 LIM genes. All LIM gene promoters contain MYB and MYC cis-acting elements that are related to drought stress. Based on the presence of multiple abiotic stress-related cis-elements in the promoter of SiWLIM2b, we chose this gene for further study. We analyzed SiWLIM2b expression under abiotic stress and hormone treatments using qRT-PCR. We found that SiWLIM2b was induced by various abiotic stresses and hormones. Under drought conditions, transgenic rice of SiWLIM2b-overexpression had a higher survival rate, higher relative water content and less cell damage than wild type (WT) rice. These results indicate that overexpression of the foxtail millet SiWLIM2b gene enhances drought tolerance in transgenic rice, and the SiWLIM2b gene can potentially be used for molecular breeding of crops with increased resistance to abiotic stress. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Graphical abstract

Open AccessArticle
Genome-Wide Identification, Expression Profile, and Alternative Splicing Analysis of the Brassinosteroid-Signaling Kinase (BSK) Family Genes in Arabidopsis
Int. J. Mol. Sci. 2019, 20(5), 1138; https://doi.org/10.3390/ijms20051138 - 06 Mar 2019
Abstract
Brassinosteroids (BRs) are steroid hormones essential for different biological processes, ranging from growth to environmental adaptation in plants. The plant brassinosteroid-signaling kinase (BSK) proteins belong to a family of receptor-like cytoplasmic kinases, which have been reported to play an important role in BR [...] Read more.
Brassinosteroids (BRs) are steroid hormones essential for different biological processes, ranging from growth to environmental adaptation in plants. The plant brassinosteroid-signaling kinase (BSK) proteins belong to a family of receptor-like cytoplasmic kinases, which have been reported to play an important role in BR signal transduction. However, the knowledge of BSK genes in plants is still quite limited. In the present study, a total of 143 BSK proteins were identified by a genome-wide search in 17 plant species. A phylogenetic analysis showed that the BSK gene originated in embryophytes, with no BSK found in green algae, and these BSK genes were divided into six groups by comparison with orthologs/paralogs. A further study using comparative analyses of gene structure, expression patterns and alternative splicing of BSK genes in Arabidopsis revealed that all BSK proteins shared similar protein structure with some exception and post-translation modifications including sumolyation and ubiquitination. An expression profile analysis showed that most Arabidopsis BSK genes were constitutively expressed in different tissues; of these, several BSK genes were significantly expressed in response to some hormones or abiotic stresses. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) assays showed that BSK5, BSK7, and BSK9 underwent alternative splicing in specific stress induced and tissue-dependent patterns. Collectively, these results lay the foundation for further functional analyses of these genes in plants. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessArticle
Complete Chloroplast Genomes and Comparative Analysis of Sequences Evolution among Seven Aristolochia (Aristolochiaceae) Medicinal Species
Int. J. Mol. Sci. 2019, 20(5), 1045; https://doi.org/10.3390/ijms20051045 - 28 Feb 2019
Cited by 1
Abstract
Aristolochiaceae, comprising about 600 species, is a unique plant family containing aristolochic acids (AAs). In this study, we sequenced seven species of Aristolochia, and retrieved eleven chloroplast (cp) genomes published for comparative genomics analysis and phylogenetic constructions. The results show that the [...] Read more.
Aristolochiaceae, comprising about 600 species, is a unique plant family containing aristolochic acids (AAs). In this study, we sequenced seven species of Aristolochia, and retrieved eleven chloroplast (cp) genomes published for comparative genomics analysis and phylogenetic constructions. The results show that the cp genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The cp genomes range from 159,308 bp to 160,520 bp in length and have a similar GC content of 38.5%–38.9%. A total number of 113 genes were identified, including 79 protein-coding genes, 30 tRNAs and four rRNAs. Although genomic structure and size were highly conserved, the IR-SC boundary regions were variable between these seven cp genomes. The trnH-GUG genes, are one of major differences between the plastomes of the two subgenera Siphisia and Aristolochia. We analyzed the features of nucleotide substitutions, distribution of repeat sequences and simple sequences repeats (SSRs), positive selections in the cp genomes, and identified 16 hotspot regions for genomes divergence that could be utilized as potential markers for phylogeny reconstruction. Phylogenetic relationships of the family Aristolochiaceae inferred from the 18 cp genome sequences were consistent and robust, using maximum parsimony (MP), maximum likelihood (ML), and Bayesian analysis (BI) methods. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox
Int. J. Mol. Sci. 2019, 20(16), 4045; https://doi.org/10.3390/ijms20164045 - 19 Aug 2019
Abstract
Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with [...] Read more.
Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Open AccessReview
Genetic and Molecular Control of Floral Organ Identity in Cereals
Int. J. Mol. Sci. 2019, 20(11), 2743; https://doi.org/10.3390/ijms20112743 - 04 Jun 2019
Cited by 1
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for [...] Read more.
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

Back to TopTop