Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings
Abstract
:1. Introduction
2. Experimental Section
2.1. Steel Substrate and Coating
2.2. Microstructural, Nanomechanical, and Adhesion Characterizations
2.3. Tribological Characterization
2.3.1. Reciprocating Sliding Test
2.3.2. Ball-on-Disk Rolling/Sliding Tests
3. Results and Discussion
3.1. Morphology
3.2. Mechanical Properties
3.3. Adhesion Characterization
3.4. Reciprocal Sliding Tribological Tests
3.5. Rolling-Sliding Tribological Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bussy, J.D. Revêtements de Chrome. France Patent 3564, 1848. [Google Scholar]
- Sargent, G.J. Electrolytic Chromiun. Trans. Electrochem. Soc. 1920, 37, 479–496. [Google Scholar]
- Dennis, J.K.; Such, T.E. Chapter 1—Introduction and Historical Review. In Nickel and Chromiun Plating; Woodhead Publishing: Cambridge, UK, 1993; pp. 1–12. [Google Scholar]
- Nagrale, P. Global Chrome Plating Market Overview; Market Research Future: New York, NY, USA, 2024. [Google Scholar]
- Bejbl, J. Thin, Dense, Chromium Coatings Protects Parts. Adv. Mater. Process. 2002, 6, 1–2. [Google Scholar]
- Waskiewicz, W.P. Extending Bearing Life in Off-Highway Equipment. In International Off-Highway & Powerplant Congress & Exposition; Milwaukee: Brookfield, WI, USA, 1984. [Google Scholar]
- Maurer, R. Friction, wear, and corrosion control in rolling bearings through coatings and surface. J. Vac. Sci. Technol. A 1986, 4, 3002–3006. [Google Scholar] [CrossRef]
- Bamberger, E.N.; Averbach, B.L.; Pearson, P.K. Improved Fatigue Life Bearing Development—Report AFWAL-TR-89-2012; Wright Research and Development Center: Wright Patterson AFB, OH, USA, 1989. [Google Scholar]
- Hirvonen, J.K. Ion Beam Assisted Thin Film Deposition: Fundamentals and Applications of IBAD Processing. In Proceedings of the Nato Advance Study on Materials and Processes for Surface and Interface Engineering, Chateau de Bonas, Gers, France, 18–29 July 1995. [Google Scholar]
- Pearson, P.K. The history and future of aircraft turbine engine bearing steels. In Bearing Steels: Into the 21st Century; ASTM International: West Conshohocken, PA, USA, 1998; pp. 335–353. [Google Scholar] [CrossRef]
- Beswick, J.; Voskamp, A.; Sanden, J.v.D.; Verburgh, M.; Horton, S. Bearing Material/Treatment Developments at the SKF Engineering and Research Centre. In Creative Use of Bearing Steels, ASTM STP 1195; Hoo, J.J.C., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1993; pp. 222–234. [Google Scholar]
- Armoloy Corporation. Nodular Thin Dense Chrome. Available online: https://armoloy.com/coatings/thin-dense-chrome/ (accessed on 21 October 2024).
- U. S. Chrome. Thin Dense Chrome. Available online: https://www.uschrome.com/thin-dense-chrome/ (accessed on 21 October 2024).
- Duro-Chrome. Thin Dense Hard Chrome. Available online: https://duro-chrome.com/thin-dense-hard-chrome/ (accessed on 21 October 2024).
- ATC Technology Coatings. Thin Dense Chromiun Technology. Available online: https://www.atc-armoloy.com/en/general-information/chromium.html (accessed on 21 October 2024).
- Pinedo, B.; López, G.A.; Zubizarreta, C.; Mendizabal, L.; Fraile, S.; Ionescu, L. Tribological Investigation on WC/C Coatings Applied on Bearings Subjected to Fretting Wear. Tribol. Lett. 2024, 72, 87. [Google Scholar] [CrossRef]
- The Armoloy Corporation. The Electrolizing Thin, Dense, Chromium Process. In Coatings Technology Handbook; CRC Press: Boca Raton, FL, USA, 2005; p. 28. [Google Scholar]
- Broitman, E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017, 65, 23. [Google Scholar] [CrossRef]
- ASTM B578-21; Standard Test Method for Microindentation Hardness of Electroplated Coatings. ASTM International: West Conshohocken, PA, USA, 2021.
- Broitman, E. Coatings to Improve Bearing Perfomance. Evolution 2022, 1–7. Available online: https://evolution.skf.com/coatings-to-improve-bearing-performance/ (accessed on 21 October 2024).
- SKF Coatings Catalogue. Available online: https://cdn.skfmediahub.skf.com/api/public/0901d19680a4e17f/pdf_preview_medium/0901d19680a4e17f_pdf_preview_medium.pdf (accessed on 21 October 2024).
- SKF. Kaydon Endurakote®—Plated Bearings. Kaydon Bearing Solutions—SKF. Available online: https://www.kaydonbearings.com/Endurakote_bearings.htm&r=1 (accessed on 21 October 2024).
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Bull, S.J.; Berasetegui, E.G. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 2006, 39, 99–114. [Google Scholar] [CrossRef]
- Broitman, E.; Ruellan, A.; Meeuwenoord, R.; Nijboer, D.; Brizme, V. Comparison of Various Conversion Layers for Improved Friction Performance of Railway Wheel-End Bearings. Coatings 2023, 13, 1980. [Google Scholar] [CrossRef]
- ISO-14577-1; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. International Organization for Standardization: Geneve, Switzerland, 2015.
- Fischer-Cripps, A.C. Nanoindentation; Springer: New York, NY, USA, 2011. [Google Scholar]
- Dezzani, M.M.; Pearson, P.K. Hybrid Ceramic Bearings for Difficult Applications. J. Eng. Gas Turbines Power 1996, 118, 449–452. [Google Scholar] [CrossRef]
- Mohn, J.H.; Munson, H.E.; Poole, W.E.; Hodgens, H.M., II. Improvement of the Corrosion Resistance of Turbine Engine Bearings (Report AFWAL-TR-84-2014); AF Wright Aeronautical Laboratories: Wright-Patterson, OH, USA, 1984. [Google Scholar]
- AMS2438F; Plating, Chromium Thin, Hard, Dense Deposit. Society of Automotive Engineers: Warrendale, PA, USA, 2021.
- Jones, A.; Sugawara, S.; Enloe, J. Adhesion Testing of Hard Chromium Electrodeposits. In AESF SUR/FIN; American Electroplaters & Surface Finishers Society: Chicago, IL, USA, 2000. [Google Scholar]
- Stallard, J.; Poulat, S.; Teer, D.G. The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester. Tribol. Int. 2006, 39, 159–166. [Google Scholar] [CrossRef]
- Broitman, E.; Czigány, Z.; Greczynski, G.; Böhlmark, J.; Cremer, R.; Hultman, L. Industrial-scale deposition of highly adherent CNx films on steel substrates. Surf. Coat. Technol. 2010, 204, 3349–3357. [Google Scholar] [CrossRef]
- Armoloy of Illinois. Thin Dense Chrome Plating Performance Characteristics. Available online: https://armoloy-il.com/armoloy-tdc-thin-dense-chrome/ (accessed on 27 October 2024).
- ATC. Thin, Dense, Chromium Coating Technology. ATC Technology Coatings GMBH & CO. Available online: https://www.solidcomponents.com/files/company/SCCNS20DW/companyfiles/doc/atc-armoloy-general-information_engelsk_version.pdf (accessed on 27 October 2024).
- Braza, J.F. Sliding wear evaluation of various coating processes on AISI 52100 and M 50 steels. Mater. Sci. Technol. 1992, 8, 582–588. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Ball Diameter | 12.7 mm |
Initial Hertzian Contact Pressure | 1.25 GPa |
Reciprocal stroke | 100 µm |
Frequency | 20 Hz |
Temperature | Room Temperature |
Number of Cycles | 72,000 |
Total Distance | 7.2 m |
Test Duration | 1 h |
Lubricant | Grease (PAO base oil ISO VG100) |
Setup | Ball-on-Disk |
---|---|
Initial Contact Pressure PH | 1.5 GPa |
Entrainment Speed | 0.8 m/s (Stribeck: 0 to 2.5 m/s) |
SRR (slide-to-rolling ratio) | 5%; −15% to +15% |
Lubricant | Mineral oil of 32 cSt at 100 °C with no EP/AW additives |
Temperature | 100 °C |
Lubrication Parameter λ | λ = 0.3 |
Test duration | 70 h |
Micrograph | Profile | |
---|---|---|
Steel | ||
TDC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broitman, E.; Jahagirdar, A.; Rahimi, E.; Meeuwenoord, R.; Mol, J.M.C. Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings. Coatings 2024, 14, 1597. https://doi.org/10.3390/coatings14121597
Broitman E, Jahagirdar A, Rahimi E, Meeuwenoord R, Mol JMC. Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings. Coatings. 2024; 14(12):1597. https://doi.org/10.3390/coatings14121597
Chicago/Turabian StyleBroitman, E., A. Jahagirdar, E. Rahimi, R. Meeuwenoord, and J. M. C. Mol. 2024. "Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings" Coatings 14, no. 12: 1597. https://doi.org/10.3390/coatings14121597
APA StyleBroitman, E., Jahagirdar, A., Rahimi, E., Meeuwenoord, R., & Mol, J. M. C. (2024). Microstructural, Nanomechanical, and Tribological Properties of Thin Dense Chromium Coatings. Coatings, 14(12), 1597. https://doi.org/10.3390/coatings14121597