Advanced Technology in Environmental Remediation and Resource Utilization, 2nd Edition

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Environmental Aspects in Colloid and Interface Science".

Deadline for manuscript submissions: 10 January 2025 | Viewed by 3524

Special Issue Editors


E-Mail Website
Guest Editor
School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
Interests: advanced oxidation processes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Interests: advanced oxidation processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the development of industrialization, environmental pollution problems are becoming increasingly severe. All forms of pollutants (organics, heavy metals, and microplastics) are discharged into the environment, polluting water bodies, atmosphere, and soil, which results in seriously damaging ecological environments and impacts human life. Various environmental remediation technologies, such as physical, chemical, and biological methods, have been researched and applied for removing contaminants and remediating ecological environment. In addition, recycling substances and energy from pollutants is becoming increasingly important from the point of view of resources.

Previously, we published the Special Issue “https://www.mdpi.com/journal/coatings/special_issues/advanced_technology_environment_remediation” online. The Special Issue has been closed and it was very successful. Building on our successful collaboration, we are keen to launch a second volume of the existing Special Issue. We are pleased to invite you to submit manuscripts in the form of complete research papers, short communications, or reviews. This Special Issue “Advanced Technology in Environmental Remediation and Resource Utilization (Second Volume)” aims to present prominent advances in relation to advanced oxidation processes, environmental catalysis technology, environmental-function materials, and resource reuse in the environment.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Environmental remediation;
  • Resource utilization;
  • Advanced oxidation process;
  • Environmental catalysis;
  • Environmental function material.

We look forward to receiving your contributions.

Dr. Deling Yuan
Prof. Dr. Shoufeng Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental remediation
  • resource utilization
  • advanced oxidation process
  • environmental catalysis
  • environmental function material

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 9227 KiB  
Article
Synergistic Humidification and Chemical Agglomeration to Improve Capturing the Fine Particulate Matter by Electrostatic Precipitator
by Hongrui Chen, Hengtian Li, Shuting Wang, Yingying Han, Xiaoyu Zhai and Lichun Xiao
Coatings 2024, 14(4), 420; https://doi.org/10.3390/coatings14040420 - 31 Mar 2024
Viewed by 646
Abstract
The wet electrostatic precipitator (WESP) overcomes the shortcomings of traditional electrostatic precipitators, such as dust re-entrainment and back corona. It can effectively remove high-specific-resistivity dust, with a good removal effect on PM2.5. It is proposed to adopt chemical agglomeration and humidification [...] Read more.
The wet electrostatic precipitator (WESP) overcomes the shortcomings of traditional electrostatic precipitators, such as dust re-entrainment and back corona. It can effectively remove high-specific-resistivity dust, with a good removal effect on PM2.5. It is proposed to adopt chemical agglomeration and humidification agglomeration technology in the wet electrostatic precipitators to achieve ultra-low dust emissions from coal-fired power plants. The results show that the addition of chemical agglomerates, surfactants, and water vapor all affect the dust diameter of coal-fired power plants. After adding sesbania gum (SG), the D50 of dust particles increases from 28.29 μm to 48.22 μm. And the D50 of dust particles is 36.46 μm when spraying 3.6 kg/h water vapor only. With the cooperation of chemical agglomeration agents and water vapor, the dust agglomeration effect and removal efficiency can be further improved. When 10 mg/L SG is synergistically combined with 2.9 kg/h water vapor, the D50 is 64.75 μm, and the dust removal efficiency reaches 97.88%. On this basis, by adding 5 mg/L of Hexadecyltrimethylammonium bromide (CTAB), the D50 is 83.06 μm, and the dust removal efficiency increases to 98.62%. The synergistic effect of chemical agglomeration and humidification agglomeration promotes the aggregation of dust from coal-fired power plants. It can improve the removal efficiency of WESP for fine particulate matter but has little impact on the operation of existing equipment. The synergistic effects of multiple agglomeration technologies are also the direction for future research on the removal efficiency of fine particulate matter. Full article
Show Figures

Figure 1

11 pages, 2287 KiB  
Article
Enhancing Uptake Capability of Green Carbon Black Recycled from Scrap Tires for Water Purification
by Jiho Choi, Jihyun Kang, Huiseong Yang, Sangin Yoon, Jun-Hyun Kim and Hyun-Ho Park
Coatings 2024, 14(4), 389; https://doi.org/10.3390/coatings14040389 - 27 Mar 2024
Viewed by 853
Abstract
This study reports on the highly simple fabrication of green carbon black (GCB) generated from scrap tires with acetic acid to improve the adsorption efficiency for water purification, which is thoroughly compared with conventional carbon black (CB) obtained from petrochemicals. Unlike traditional modification [...] Read more.
This study reports on the highly simple fabrication of green carbon black (GCB) generated from scrap tires with acetic acid to improve the adsorption efficiency for water purification, which is thoroughly compared with conventional carbon black (CB) obtained from petrochemicals. Unlike traditional modification processes with strong acids or bases, the introduction of a relatively mild acid readily allowed for the effective modification of GCB to increase the uptake capability of metal ions and toxic organic dyes to serve as effective adsorbents. The morphological features and thermal decomposition patterns were examined by electron microscopy and thermogravimetric analysis (TGA). The surface functional groups were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The structural information (ratio of D-defects/G band-graphitic domains) obtained by Raman spectroscopy clearly suggested the successful fabrication of GCB (ID/IG ratio of 0.74), which was distinctively different from typical CB (ID/IG ratio of 0.91). In the modified GCB, the specific surface area (SBET) gradually increased with the reduction of pore size as a function of acetic acid content (52.97 m2/g for CB, 86.64 m2/g for GCB, 102.10-119.50 m2/g for acid-treated GCB). The uptake capability of the modified GCB (312.5 mg/g) for metal ions and organic dyes was greater than that of the unmodified GCB (161.3 mg/g) and typical CB (181.8 mg/g), presumably due to the presence of adsorbed acid. Upon testing them as adsorbents in an aqueous solution, all these carbon materials followed the Langmuir isotherm over the Freundlich model. In addition, the removal rates of cationic species (>70% removal of Cu2+ and crystal violet in 30 min) were much faster and far greater than those of anionic metanil yellow (<40% removal in 3 h), given the strong electrostatic interactions. Thus, this work demonstrates the possibility of recycling waste tires in the powder form of GCB as a cost-effective and green adsorbent that can potentially substitute traditional CB, and the modification strategy provides a proof of concept for developing simple fabrication guidelines of other carbonaceous materials. Full article
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
Application of ANN Weighted by Optimization Algorithms to Predict the Color Coordinates of Cellulosic Fabric in Dyeing with Binary Mix of Natural Dyes
by Morteza Vadood and Aminoddin Haji
Coatings 2022, 12(10), 1519; https://doi.org/10.3390/coatings12101519 - 10 Oct 2022
Cited by 4 | Viewed by 1739
Abstract
Cotton is one of the most important fibers used in the textile industry. The dyeing of cotton with synthetic anionic dyes consumes large amounts of salt and alkali, which makes it a challenge for the environment. Furthermore, the relatively high percentage of synthetic [...] Read more.
Cotton is one of the most important fibers used in the textile industry. The dyeing of cotton with synthetic anionic dyes consumes large amounts of salt and alkali, which makes it a challenge for the environment. Furthermore, the relatively high percentage of synthetic dyes remaining in the dyebath is a potential threat for the environment and human health. The application of plant-derived natural dyes has recently been considered as a promising approach to overcome this problem. Optimization of the dyeing process and prediction of the values of the color coordinates of dyed textiles have always been among the most pronounced challenges in the textile industry, especially when a mixture of dyes or mordants is used. In this study, alum was used for mordanting of cotton and two natural dyes—namely, weld and madder—were used for the dyeing. The samples were dyed with various combinations of mordant, weld, and madder for the weight of the fabric and statistical analysis revealed that all three mentioned parameters were effective in determining the color coordinates. To determine the best model to predict the color coordinates of cotton fabrics, the regression method and ANN models weighted with back-propagation (BP) and optimization algorithms, such as the genetic algorithm, particle swarm optimization, gray wolf optimization, FMINCON (a built-in function of MATLAB software) and a combination of particle swarm optimization and FMINCON (PSO-FMIN), were employed and compared based on the mean squared error (MSE). The obtained results revealed that using the PSO-FMIN algorithm for ANN weighting led to higher accuracy in the prediction of color coordinates. The MSEs obtained for ANN outputs and the corresponding actual values reached 2.02, 1.68 and 1.39 for the l*, a* and b* coordinates, which were 44%, 23% and 26% better than the result obtained with BP, respectively. Full article
Show Figures

Figure 1

Back to TopTop