Fluorescence Imaging-Activated Microfluidic Particle Sorting Using Optical Tweezers
Abstract
1. Introduction
2. Materials and Methods
2.1. Working Principle of Fluorescence Imaging-Activated Microfluidic Particle Sorting System
2.2. Fabrication and Design of the Microfluidic Chip
2.3. Image Acquisition
2.4. Optical Tweezer Setup
2.5. Selection of Shutter Opening Times
2.6. Sample Preparation
3. Results
3.1. Particle Motion Under Sheath Flow
3.2. Particle Motion Under Optical Tweezer Manipulation
3.3. Detection and Sorting of Fluorescent Particles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhao, J.; Yu, H.; Li, P.; Liang, W.; Liu, Z.; Lee, G.-B.; Liu, L.; Li, W.J.; Wang, Z. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Sci. Adv. 2020, 6, eaba9628. [Google Scholar] [CrossRef] [PubMed]
- Kasai, Y.; Leipe, C.; Saito, M.; Kitagawa, H.; Lauterbach, S.; Brauer, A.; Tarasov, P.E.; Goslar, T.; Arai, F.; Sakuma, S. Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter. Sci. Adv. 2021, 7, eabe7327. [Google Scholar] [CrossRef]
- Bauten, W.; Nöth, M.; Kurkina, T.; Contreras, F.; Ji, Y.; Desmet, C.; Serra, M.-Á.; Gilliland, D.; Schwaneberg, U. Plastibodies multiplexed detection and sorting of microplastic particles in high-throughput. Sci. Total Environ. 2023, 860, 160450. [Google Scholar] [CrossRef] [PubMed]
- Antoniadi, I.; Skalický, V.; Sun, G.; Ma, W.; Galbraith, D.W.; Novak, O.; Ljung, K. Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytom. Part A 2022, 101, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Schulze, P.S.; Schüler, L.M.; Santos, T.; Barreira, L.; Varela, J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res. 2018, 30, 113–120. [Google Scholar] [CrossRef]
- Carter, A.D.; Bonyadi, R.; Gifford, M.L. The use of fluorescence-activated cell sorting in studying plant development and environmental responses. Int. J. Dev. Biol. 2013, 57, 545–552. [Google Scholar] [CrossRef]
- Shen, M.-J.; Olsthoorn, R.C.; Zeng, Y.; Bakkum, T.; Kros, A.; Boyle, A.L. Magnetic-activated cell sorting using coiled-coil peptides: An alternative strategy for isolating cells with high efficiency and specificity. ACS Appl. Mater. Interfaces 2021, 13, 11621–11630. [Google Scholar] [CrossRef]
- Oh, S.; Jung, S.H.; Seo, H.; Min, M.-K.; Kim, B.; Hahn, Y.K.; Kang, J.H.; Choi, S. Magnetic activated cell sorting (MACS) pipette tip for immunomagnetic bacteria separation. Sens. Actuators B Chem. 2018, 272, 324–330. [Google Scholar] [CrossRef]
- Tripathi, H.; Peng, H.; Donahue, R.; Chelvarajan, L.; Gottipati, A.; Levitan, B.; Al-Darraji, A.; Gao, E.; Abdel-Latif, A.; Berron, B.J. Isolation methods for human CD34 subsets using fluorescent and magnetic activated cell sorting: An in vivo comparative study. Stem Cell Rev. Rep. 2020, 16, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Shrirao, A.B.; Fritz, Z.; Novik, E.M.; Yarmush, G.M.; Schloss, R.S.; Zahn, J.D.; Yarmush, M.L. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology 2018, 6, 1–23. [Google Scholar] [CrossRef]
- Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D.; et al. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small 2020, 16, 2000171. [Google Scholar] [CrossRef]
- Yang, R.-J.; Fu, L.-M.; Hou, H.-H. Review and perspectives on microfluidic flow cytometers. Sens. Actuators B Chem. 2018, 266, 26–45. [Google Scholar] [CrossRef]
- Shen, Y.; Yalikun, Y.; Tanaka, Y. Recent advances in microfluidic cell sorting systems. Sens. Actuators B Chem. 2019, 282, 268–281. [Google Scholar] [CrossRef]
- Hossein, F.; Angeli, P. A review of acoustofluidic separation of bioparticles. Biophys. Rev. 2023, 15, 2005–2025. [Google Scholar] [CrossRef]
- Di Toma, A.; Brunetti, G.; Chiriacò, M.S.; Ferrara, F.; Ciminelli, C. A Novel Hybrid Platform for Live/Dead Bacteria Accurate Sorting by On-Chip DEP Device. Int. J. Mol. Sci. 2023, 24, 7077. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Qiang, J.; Yuan, S. Sheathless inertial particle focusing methods within microfluidic devices: A review. Front. Bioeng. Biotechnol. 2024, 11, 1331968. [Google Scholar] [CrossRef]
- Yang, M.; Shi, Y.; Song, Q.; Wei, Z.; Dun, X.; Wang, Z.; Wang, Z.; Qiu, C.-W.; Zhang, H.; Cheng, X. Optical sorting: Past, present and future. Light Sci. Appl. 2025, 14, 103. [Google Scholar] [CrossRef]
- Zheng, B.; Li, C.-Y.; Huang, S.; Zhang, Z.-L.; Wu, Q.-S.; Pang, D.-W.; Tang, H.-W. Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sens. Actuators B Chem. 2022, 368, 132173. [Google Scholar] [CrossRef]
- Zheng, X.; Xing, L.; Zhou, X.; Tang, Y.; Liu, Z.; Zhang, X.; Hu, L.; Yan, Z. A high-performance visual monitoring of trace toxic NO2− and S2− in 100% aqueous based on the superior oxidase-mimic activity of nano CeO2 strengthened by 2D Co3O4 substrate. Sens. Actuators B Chem. 2022, 351, 130887. [Google Scholar] [CrossRef]
- Qi, X.; Carberry, D.M.; Cai, C.; Hu, S.; Yuan, Z.; Dunlop, H.R.; Guo, J. Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea. Biomed. Opt. Express 2017, 8, 934–942. [Google Scholar] [CrossRef]
- Pesce, G.; Jones, P.H.; Maragò, O.M.; Volpe, G. Optical tweezers: Theory and practice. Eur. Phys. J. Plus 2020, 135, 1–38. [Google Scholar] [CrossRef]
- Lee, K.S.; Palatinszky, M.; Pereira, F.C.; Nguyen, J.; Fernandez, V.I.; Mueller, A.J.; Menolascina, F.; Daims, H.; Berry, D.; Wagner, M.; et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 2019, 4, 1035–1048. [Google Scholar] [CrossRef]
- Zhang, J.; Hartman, J.H.; Chen, C.; Yang, S.; Li, Q.; Tian, Z.; Huang, P.H.; Wang, L.; Meyer, J.N.; Huang, T.J. Fluorescence-based sorting of Caenorhabditis elegans via acoustofluidics. Lab A Chip 2020, 20, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Dong, D.; Li, Q.; Si, H.; Pei, H.; Li, L.; Tang, B. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab A Chip 2018, 18, 1151–1173. [Google Scholar] [CrossRef]
- Cho, S.H.; Chen, C.H.; Tsai, F.S.; Godin, J.M.; Lo, Y.H. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (microFACS). Lab A Chip 2010, 10, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liang, M.; Lu, X.; Chow, J.J.M.; Ramachandra, C.J.A.; Ai, Y. Sheathless Acoustic Fluorescence Activated Cell Sorting (aFACS) with High Cell Viability. Anal. Chem. 2019, 91, 15425–15435. [Google Scholar] [CrossRef]
- Kleiber, A.; Kraus, D.; Henkel, T.; Fritzsche, W. Review: Tomographic imaging flow cytometry. Lab A Chip 2021, 21, 3655–3666. [Google Scholar] [CrossRef]
- Labelle, C.A.; Massaro, A.; Cortes-Llanos, B.; Sims, C.E.; Allbritton, N.L. Image-based live cell sorting. Trends Biotechnol. 2020, 39, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Rees, P.; Summers, H.D.; Filby, A.; Carpenter, A.E.; Doan, M. Imaging flow cytometry. Nat. Rev. Methods Primers 2022, 2, 86. [Google Scholar] [CrossRef]
- Ota, S.; Horisaki, R.; Kawamura, Y.; Ugawa, M.; Sato, I.; Hashimoto, K.; Kamesawa, R.; Setoyama, K.; Yamaguchi, S.; Fujiu, K.; et al. Ghost cytometry. Science 2018, 360, 1246–1251. [Google Scholar] [CrossRef]
- Isozaki, A.; Mikami, H.; Tezuka, H.; Matsumura, H.; Huang, K.; Akamine, M.; Hiramatsu, K.; Iino, T.; Ito, T.; Karakawa, H. Intelligent image-activated cell sorting 2.0. Lab A Chip 2020, 20, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Nitta, N.; Sugimura, T.; Isozaki, A.; Mikami, H.; Hiraki, K.; Sakuma, S.; Iino, T.; Arai, F.; Endo, T.; Fujiwaki, Y. Intelligent image-activated cell sorting. Cell 2018, 175, 266–276.e213. [Google Scholar] [CrossRef]
- Schraivogel, D.; Kuhn, T.M.; Rauscher, B.; Rodriguez-Martinez, M.; Paulsen, M.; Owsley, K.; Middlebrook, A.; Tischer, C.; Ramasz, B.; Ordonez-Rueda, D.; et al. High-speed fluorescence image-enabled cell sorting. Science 2022, 375, 315–320. [Google Scholar] [CrossRef]
- Kuhn, T.M.; Paulsen, M.; Cuylen-Haering, S. Accessible high-speed image-activated cell sorting. Trends Cell Biol. 2024, 34, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, X.; Sun, W.; Yang, F.; Yao, X.; Pan, T.; Li, B.; Chu, J. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing. Talanta 2024, 276, 126299. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Wang, X.; Yang, F.; Yao, X.; Pan, T.; Li, B.; Chu, J. Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms. Lab A Chip 2023, 23, 3615–3627. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Pan, T.; Li, B.; Chu, J. Label-free single-cell isolation enabled by microfluidic impact printing and real-time cellular recognition. Lab A Chip 2021, 21, 3695–3706. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Dai, X.; Jiang, Q.; Fan, H.; Li, T.; Xia, X.; Dou, Y.; Mao, Y. Fluorescence Imaging-Activated Microfluidic Particle Sorting Using Optical Tweezers. Biosensors 2025, 15, 541. https://doi.org/10.3390/bios15080541
Wang Y, Dai X, Jiang Q, Fan H, Li T, Xia X, Dou Y, Mao Y. Fluorescence Imaging-Activated Microfluidic Particle Sorting Using Optical Tweezers. Biosensors. 2025; 15(8):541. https://doi.org/10.3390/bios15080541
Chicago/Turabian StyleWang, Yiming, Xinyue Dai, Qingtong Jiang, Hangtian Fan, Tong Li, Xiao Xia, Yipeng Dou, and Yuxin Mao. 2025. "Fluorescence Imaging-Activated Microfluidic Particle Sorting Using Optical Tweezers" Biosensors 15, no. 8: 541. https://doi.org/10.3390/bios15080541
APA StyleWang, Y., Dai, X., Jiang, Q., Fan, H., Li, T., Xia, X., Dou, Y., & Mao, Y. (2025). Fluorescence Imaging-Activated Microfluidic Particle Sorting Using Optical Tweezers. Biosensors, 15(8), 541. https://doi.org/10.3390/bios15080541