Advanced Fluorescence Biosensors

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Optical and Photonic Biosensors".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 6115

Special Issue Editors


E-Mail Website
Guest Editor
“Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, I-50019 Firenze, Italy
Interests: optical bio-chip; fluorescence detection of biomarkers; lab-on-chip and point-of-care devices

E-Mail Website
Guest Editor
“Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, I-50019 Firenze, Italy
Interests: optics; optical sensors; fibre optic sensors; point of care testing (POCT)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the context of the technological development of sensors, the advent of biosensors has represented the keystone towards the creation of integrated, low-cost, user-friendly, and high-performance devices, capable of detecting the presence of chemical/biochemical agents in a wide range of matrices (i.e., from biological samples to environmental ones to food). This has allowed for a reduction in both costs and response times linked to the use of conventional analysis centers. When compared with similar integrated devices based on other transduction mechanisms, optical biosensors present a higher value of the signal-to-noise ratio by virtue of their complete immunity to any electro-magnetic interference coming from the external environment and high intrinsic safety thanks to the dielectric nature of the measurement probe.

Among the approaches used by optical biosensors, those that make use of fluorescent markers have acquired progressive and growing interest over the last few decades thanks to the possibility of obtaining operationally simple devices, capable of providing a fast response and high performance. In the race towards ever greater sensitivity and lower detection limits, different strategies—based on the amplification and optimization of the fluorescence signal collection and the mitigation of noise—are becoming progressivey more established.

The aim of this Special Issue is to host innovative and perspective contributions regarding these advanced strategies for the development of increasingly high-performance fluorescence biosensors.

Original research and review papers in this wide field will be considered, including but not limited to:

  • Surface Plasmon Resonance (SPR)-based fluorescence biosensors;
  • Förster resonance energy transfer (FRET)-based biosensors;
  • Metal enhanced fluorescence (MEF)-based biosensors;
  • Optical biosensors based on nanomaterials for fluorophores/quenchers;
  • Upconversion-based fluorescence biosensors;
  • Fluorescence-based Point of Care Testing (POCT) and Lab on Chip (LoC) devices for biosensing;
  • Total Internal Reflection Fluorescence (TIRF) phenomenon for improving fluorescence signal collection in optical biosensors;
  • Optical/optofluidic microcavities for fluorescence biosensing;
  • Optical fiber-based fluorescence biosensors.

Dr. Simone Berneschi
Dr. Cosimo Trono
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fluorescence
  • biosensors
  • label-based biosensors
  • förster resonance energy transfer (FRET)
  • metal-enhanced fluorescence (MEF)
  • total internal reflection fluorescence (TIRF)
  • nanomaterials
  • upconversion
  • optical microcavities
  • optical fibers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 10507 KiB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Viewed by 202
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

12 pages, 2657 KiB  
Article
A Compact Fluorescence System for Tumor Detection: Performance and Integration Potential
by Jean Pierre Ndabakuranye, John Raschke, Preston Avagiannis and Arman Ahnood
Biosensors 2025, 15(2), 95; https://doi.org/10.3390/bios15020095 - 7 Feb 2025
Viewed by 782
Abstract
Fluorescence-guided surgery (FGS) is an innovative technique for accurately localizing tumors during surgery, particularly valuable in brain tumor detection. FGS uses advanced spectral and imaging tools to provide precise, quantitative fluorescence measurements that enhance surgical accuracy. However, the current challenge with these advanced [...] Read more.
Fluorescence-guided surgery (FGS) is an innovative technique for accurately localizing tumors during surgery, particularly valuable in brain tumor detection. FGS uses advanced spectral and imaging tools to provide precise, quantitative fluorescence measurements that enhance surgical accuracy. However, the current challenge with these advanced tools lies in their lack of miniaturization, which limits their practicality in complex surgical environments. In this study, we present a miniaturized fluorescence detection system, developed using state-of-the-art CMOS color sensors, to overcome this challenge and improve brain tumor localization. Our 3.1 × 3 mm multispectral sensor platform measures fluorescence intensity ratios at 635 nm and 514 nm, producing a high-resolution fluorescence distribution map for a 16 mm × 16 mm area. This device shows a high correlation (R2 > 0.98) with standard benchtop spectrometers, confirming its accuracy for real-time, on-chip fluorescence detection. With its compact size, our system has strong potential for integration with existing handheld surgical tools, aiming to improve outcomes in tumor resection and enhance intraoperative tumor visualization. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

20 pages, 9319 KiB  
Article
Exploring Imaging Applications of a Red-Emitting π-Acceptor (π-A) Pyrene-Benzothiazolium Dye
by Chathura S. Abeywickrama, Enya Huang, Wenhui Yan, Michael A. Vrionides, Paaramitha Warushavithana, Kristen A. Johnson, Robert V. Stahelin, Yi Pang, Tomoyasu Mani and Kaveesha J. Wijesinghe
Biosensors 2024, 14(12), 612; https://doi.org/10.3390/bios14120612 - 13 Dec 2024
Viewed by 985
Abstract
Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene–benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene–benzothiazolium [...] Read more.
Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene–benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene–benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy. The optical properties of BTP are studied in intracellular environments through advanced fluorescence microscopy techniques, with BTP exhibiting a noticeable shift toward blue (λem ≈ 590 nm) emissions in cellular lysosomes. The averaged photon arrival time (AAT)-based studies exhibit two different emissive populations of photons, indicating the probe’s dynamic equilibrium between two distinctively different lysosomal microenvironments. Here, BTP is successfully utilized for time-lapse fluorescence microscopy imaging in real-time as a ‘wash-free’ imaging dye with no observed background interference. BTP exhibits an excellent ability to highlight microorganisms (i.e., bacteria) such as Bacillus megaterium through fluorescence microscopy. BTP is found to be a promising candidate for two-photon fluorescence microscopy imaging. The two-photon excitability of BTP in COS-7 cells is studied, with the probe exhibiting an excitation maximum at λTP ≈ 905 nm. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay
by Sireethorn Tungsirisurp and Nunzianda Frascione
Biosensors 2024, 14(10), 509; https://doi.org/10.3390/bios14100509 - 17 Oct 2024
Cited by 2 | Viewed by 1494
Abstract
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA [...] Read more.
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements. Here, the use of complementary ‘antisense’ strands is proposed to enable fluorescence measurement through strand displacement upon target binding. Using a published target-specific DNA aptamer against the receptor binding domain of SARS-CoV-2, we designed a streptavidin-aptamer bead complex as a fluorescence displacement assay for target detection. The developed assay demonstrates a linear range from 50 to 800 nanomolar (nM) with a limit of detection calculated at 67.5 nM and a limit of quantification calculated at 204.5 nM. This provides a ‘fit-for-purpose’ model assay for the detection and quantification of any target of interest by adapting and functionalising a suitable target-specific DNA aptamer and its complementary antisense strand. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Graphical abstract

17 pages, 4503 KiB  
Article
Fluorescence Multi-Detection Device Using a Lensless Matrix Addressable microLED Array
by Victor Moro, Joan Canals, Sergio Moreno, Steffen Higgins-Wood, Oscar Alonso, Andreas Waag, J. Daniel Prades and Angel Dieguez
Biosensors 2024, 14(6), 264; https://doi.org/10.3390/bios14060264 - 22 May 2024
Viewed by 1904
Abstract
A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable [...] Read more.
A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix addressable GaN microLED array, with square LEDs of 50 µm edge length and 100 µm pitch, with an underneath wire bonded custom chip integrating their drivers and placed face-to-face to an array of 16 × 16 single-photon avalanche diodes (SPADs) CMOS. This approach replaces instrumentation based on lasers, bulky optical components, and discrete electronics with a full hybrid micro-system, enabling measurements on 32 × 32 spots. The reported system is suitable for long lifetime (>10 ns) fluorophores with a limit of detection ~1/4 µM. Proof-of-concept measurements of streptavidin conjugate Qdot™ 605 and Amino PEG Qdot™ 705 are demonstrated, along with the device ability to detect both fluorophores in the same measurement. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

Back to TopTop