A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging
Abstract
1. Introduction
2. Experimental Section
2.1. Instruments and Materials
2.2. Synthesis of Compound PPAB-2
2.3. Synthesis of Compound PPAB-OAc
2.4. Synthesis of Compound PPAB-Gal
2.5. Spectroscopic Measurements
2.6. Fabrication of PPAB-Gal-Loaded TLC Plates
2.7. Visual Detection of Shrimp or Tuna Freshness with PPAB-Gal-Loaded TLC Plate
2.8. Determination of TVBN Content in Shrimp or Tuna
2.9. Preparation of PPAB-Gal NPs
2.10. Cell Culture
2.11. Cell Imaging
3. Results and Discussion
3.1. Characterization and Spectra Performance of PPAB-Gal
3.2. Spectral Response of PPAB-Gal Towards 8 BAs
3.3. The Effect of Galactose Group on Sensing Performance of PPAB-Gal
3.4. Sensing Mechanism
3.5. PPAB-Gal-Loaded TLC Plates Toward Put and Cad Vapor
3.6. Visually Monitoring the Freshness of Tuna and Shrimp
3.7. Visually Monitoring Spermine in Living Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Wang, R.; Zhao, D.; Liang, D.; Zhang, C.; Jiao, Y.; Xiao, X.J. Preparation of Fe, Co, P-Codoping Peroxidase-like Green-Emitting Carbon Dots and Its Application in Monitoring the Freshness of Aquatic Products. Agric. Food Chem. 2024, 72, 22883–22892. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Lu, S.; Miao, W.; Chen, M.; Liu, F.; Na, H.; Zhu, J. Cellulose-based fluorescent materials fabricated in CO2 switchable solvent for freshness monitoring. Carbohydr. Polym. 2023, 301, 120346. [Google Scholar] [CrossRef]
- Martin, N.H.; Torres-Frenzel, P.; Wiedmann, M. Invited review: Controlling dairy product spoilage to reduce food loss and waste. J. Dairy Sci. 2021, 104, 1251–1261. [Google Scholar] [CrossRef]
- Koo, P.-L.; Lim, G.-K. A review on analytical techniques for quantitative detection of histamine in fish products. Microchem. J. 2023, 189, 108499. [Google Scholar] [CrossRef]
- Harmoko, H.; Kartasasmita, R.E.; Munawar, H.; Rakhmawati, A.; Budiawan, B. Determination of histamine in different compositions of commercially canned fish in Indonesia by modified QuEChERS and LC-MS/MS. J. Food Compos. Anal. 2022, 105, 104256. [Google Scholar] [CrossRef]
- Altieri, I.; Semeraro, A.; Scalise, F.; Calderari, I.; Stacchini, P. European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method. Food Chem. 2016, 211, 694–699. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, I.R.; Barkdull, A.; Munoz, J.R.; Smith, R.P.; Craddock, T.J.A. A molecular analysis of substituted phenylethylamines as potential microtubule targeting agents through in silico methods and in vitro microtubule-polymerization activity. Sci. Rep. 2023, 13, 14406. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orte, P.; Lapeña, A.C.; Peña-Gallego, A.; Astrain, J.; Baron, C.; Pardo, I.; Polo, L.; Ferrer, S.; Cacho, J.; Ferreira, V. Biogenic amine determination in wine fermented in oak barrels: Factors affecting formation. Food Res. Int. 2008, 41, 697–706. [Google Scholar] [CrossRef]
- Song, L.; Huang, Y.; Gou, M.; Crommen, J.; Jiang, Z.; Feng, Y. Method development and validation for the determination of biogenic amines in soy sauce using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Sep. Sci. 2020, 43, 2728–2736. [Google Scholar] [CrossRef]
- Feng, C.; Teuber, S.; Gershwin, M.E. Histamine (Scombroid) Fish Poisoning: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 50, 64–69. [Google Scholar] [CrossRef]
- Del Rio, B.; Redruello, B.; Linares, D.M.; Ladero, V.; Fernandez, M.; Martin, M.C.; Ruas-Madiedo, P.; Alvarez, M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017, 218, 249–255. [Google Scholar] [CrossRef]
- Rocha, S.M.; Saraiva, T.; Cristóvão, A.C.; Ferreira, R.; Santos, T.; Esteves, M.; Saraiva, C.; Je, G.; Cortes, L.; Valero, J.; et al. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. Neuroinflammation 2016, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Mouri, A.; Nagai, T.; Yoshimi, A.; Ukigai, M.; Tsubai, T.; Hida, H.; Ozaki, N.; Noda, Y. Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells. Toxicol. Appl. Pharmacol. 2016, 306, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Serrano, V.M.; Cardoso, A.R.; Diniz, M.; Sales, M.G.; Sales, G.F. In-situ production of histamine-imprinted polymeric materials for electrochemical monitoring of fish. Sens. Actuators B 2020, 311, 127902. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Fang, G.-Z.; Liu, Y.-Y.; Zhang, D.-D.; Liu, J.-M.; Wang, S. Fluorescent Sensing Probe for the Sensitive Detection of Histamine Based on Molecular Imprinting Ionic Liquid-Modified Quantum Dots. Food Anal. Methods 2017, 10, 2585–2592. [Google Scholar] [CrossRef]
- Müller, D.G.; Oreste, E.; Heinemann, M.; Dias, D.; Kessler, F. Biogenic amine sensors and its building materials: A review. Eur. Polym. J. 2022, 175, 111221. [Google Scholar] [CrossRef]
- Casero, R.A., Jr.; Marton, L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 2007, 6, 373–390. [Google Scholar] [CrossRef]
- Wang, L.; Ran, X.; Tang, H.; Cao, D. Recent advances on reaction-based amine fluorescent probes. Dyes Pigments 2021, 194, 109634. [Google Scholar] [CrossRef]
- Dhara, S.R.; Saha, R.; Baildya, N.; Acharya, K.; Bhattacharya, A.; Ghosh, K. New Cyanostyrylcopillar [5]arene Derivative: Synthesis, Photophysical Study, Chromogenic Detection of Aliphatic Amines, and Biofilm–Antibiofilm Activity. ACS Appl. Mater. Interfaces 2024, 16, 7275–7287. [Google Scholar] [CrossRef]
- Bao, C.; Shao, S.; Zhou, H.; Han, Y. A new ESIPT-based fluorescent probe for the highly sensitive detection of amine vapors. New J. Chem. 2021, 45, 10735–10740. [Google Scholar] [CrossRef]
- Mallick, S.; Chandra, F.; Koner, A.L. A ratiometric fluorescent probe for detection of biogenic primary amines with nanomolar sensitivity. Analyst 2016, 141, 827–831. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zeng, L.; Wang, J. A ratiometric fluorescence platform for on-site screening meat freshness. Food Chem. 2024, 436, 137769. [Google Scholar] [CrossRef]
- Chakraborty, M.; Sivasakthi, P.; Samanta, P.; Chakravarty, M.J. Concentration-tuned diverse response to selective biogenic amines using a reusable fluorophore: Monitoring protein-rich food spoilage. Mater. Chem. B 2024, 12, 2746–2760. [Google Scholar] [CrossRef]
- Unabia, R.B.; Reazo, R.L.D.; Rivera, R.B.P.; Lapening, M.A.; Omping, J.L.; Lumod, R.M.; Ruda, A.G.; Sayson, N.L.B.; Dumancas, G.; Malaluan, R.M.; et al. Dopamine-Functionalized Gold Nanoparticles for Colorimetric Detection of Histamine. ACS Omega 2024, 9, 17238–17246. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, L.; Wang, Y.; Zhang, C.; Satoh, T. Chromaticity sensor for discriminatory identification of aliphatic and aromatic primary amines based on conformational changes of polyacetylene. Talanta 2024, 268, 125361. [Google Scholar] [CrossRef] [PubMed]
- Danchuk, A.I.; Komova, N.S.; Mobarez, S.N.; Doronin, S.Y.; Burmistrova, N.A.; Markin, A.V.; Duerkop, A. Optical sensors for determination of biogenic amines in food. Anal. Bioanal. Chem. 2020, 412, 4023–4036. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Dou, X.; Li, D.; Xu, S.; Zhang, J.; Ding, Z.; Xie, J. Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors 2022, 12, 161. [Google Scholar] [CrossRef]
- Leelasree, T.; Dixit, M.; Aggarwal, H. Cobalt-Based Metal–Organic Frameworks and Its Mixed-Matrix Membranes for Discriminative Sensing of Amines and On-Site Detection of Ammonia. Chem. Mater. 2023, 35, 416–423. [Google Scholar] [CrossRef]
- Li, L.; Ma, Y.; Yang, H.; Niu, J.; Yang, H.; Wang, F.; Hu, C.; Zhang, Y.; Guan, X.; Peng, H.; et al. An Olefin-based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chem. Asian J. 2022, 17, e202200279. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Ran, X.; Wang, L.; Tang, H.; Cao, D. A highly efficient, colorimetric and fluorescent probe for recognition of aliphatic primary amines based on a unique cascade chromophore reaction. Chem. Commun. 2019, 55, 9789–9792. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Wang, L.; Tang, H.; Cao, D.; Ran, X. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sens. Actuators B Chem. 2020, 312, 127953. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Sun, T.; Tang, H.; Bui, B.; Cao, D.; Wang, R.; Chen, W. Characterization of nanoparticles combining polyamine detection with photodynamic therapy. Commun. Biol. 2021, 4, 803. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, L.; Zhang, C.; Ran, X.; Tang, H.; Cao, D.J. Novel butterfly-shaped AIE-active pyrrolopyrrole aza-BODIPYs: Synthesis, bioimaging and diamine/polyamine detection. Mater. Chem. C 2022, 10, 5672–5683. [Google Scholar] [CrossRef]
- Wang, L.; Gan, Y.; Ran, X.; Cao, D. Simultaneous sensing cyanide and fluoride by Lewis acidic atom regulated–chromophore reaction and applications in real samples. Microchem. J. 2024, 207, 111832. [Google Scholar] [CrossRef]
- Percec, V.; Leowanawat, P.; Sun, H.-J.; Kulikov, O.; Nusbaum, C.D.; Tran, T.M.; Bertin, A.; Wilson, D.A.; Peterca, M.; Zhang, S.; et al. Modular Synthesis of Amphiphilic Janus Glycodendrimers and Their Self-Assembly into Glycodendrimersomes and Other Complex Architectures with Bioactivity to Biomedically Relevant Lectins. Am. Chem. Soc. 2013, 135, 9055–9077. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H.-W.; Huan, S.-Y.; Yuan, L.; Zhang, X.-B. Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy. Mater. Chem. Front. 2021, 5, 1076–1089. [Google Scholar] [CrossRef]
- GB 5009.228-2016; National Food Safety Standard—Determination of Volatile Base Nitrogen in Foods. National Health and Family Planning Commission of the People’s Republic of China Publishing: Beijing, China, 2016.
- Han, X.-J.; Yan, Y.-J.; Dou, L.; Peng, Y.-D.; Huang, F.; Dong, W.-K. The investigation on first Co(III) pyridine-including half-salamo-like complexes. J. Mol. Struct. 2022, 1265, 133475. [Google Scholar] [CrossRef]
- Mattsson, L.; Xu, J.; Preininger, C.; Tse Sum Bui, B.; Haupt, K. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix. Talanta 2018, 181, 190–196. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyay, Y.; Bera, R.K.; Sahoo, S.K. Vitamin B6 cofactors guided highly selective fluorescent turn-on sensing of histamine using beta-cyclodextrin stabilized ZnO quantum dots. Food Chem. 2020, 320, 126611. [Google Scholar] [CrossRef]
- Stiufiuc, R.; Iacovita, C.; Nicoara, R.; Stiufiuc, G.; Florea, A.; Achim, M.; Lucaciu, C.M. One-Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge. J. Nanomater. 2013, 2013, 146031. [Google Scholar] [CrossRef]
- Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868–2881. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, C.; Ke, Y.; Qu, H.; Zeng, L. Fluorescent probes for the detection of biogenic amines, nitrite and sulfite in food: Progress, challenges and perspective. Adv. Agrochem 2023, 2, 127–141. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Wu, C.; Li, F.; Zhang, M. Fast and Visual Detection of Biogenic Amines and Food Freshness Based on ICT-Induced Ratiometric Fluorescent Probes. Adv. Funct. Mater. 2023, 33, 2212980. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, B.; Shao, Y.; Ye, H.; Hu, X.; Min, D. High-performance fluorescence platform for real-time non-destructive and visual screening of meat freshness. Dyes Pigments 2023, 220, 111771. [Google Scholar] [CrossRef]
- Guo, L.; Wang, T.; Wu, Z.; Wang, J.; Wang, M.; Cui, Z.; Ji, S.; Cai, J.; Xu, C.; Chen, X. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv. Mater. 2020, 32, 2004805. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Chen, L.-J.; Zhao, X.; Yan, X.-P. Silk fibroin-based colorimetric microneedle patch for rapid detection of spoilage in packaged salmon samples. Food Chem. 2023, 406, 135039. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Y.; Lu, B.; Zhong, J.; Ran, X.; Cao, D.; Wang, L. A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging. Biosensors 2025, 15, 542. https://doi.org/10.3390/bios15080542
Gan Y, Lu B, Zhong J, Ran X, Cao D, Wang L. A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging. Biosensors. 2025; 15(8):542. https://doi.org/10.3390/bios15080542
Chicago/Turabian StyleGan, Yujing, Bingli Lu, Jintian Zhong, Xueguagn Ran, Derong Cao, and Lingyun Wang. 2025. "A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging" Biosensors 15, no. 8: 542. https://doi.org/10.3390/bios15080542
APA StyleGan, Y., Lu, B., Zhong, J., Ran, X., Cao, D., & Wang, L. (2025). A Galactose-Functionalized Pyrrolopyrrole Aza-BODIPY for Highly Efficient Detection of Eight Aliphatic and Aromatic Biogenic Amines: Monitoring Food Freshness and Bioimaging. Biosensors, 15(8), 542. https://doi.org/10.3390/bios15080542