-
Characterization of the Cultivable Endophytic Bacterial Community of Seeds and Sprouts of Cannabis sativa L. and Perspectives for the Application as Biostimulants
-
Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects?
-
Is There a Universal Endurance Microbiota?
-
Distribution and Characterization of Antimicrobial Resistant Pathogens in a Pig Farm, Slaughterhouse, Meat Processing Plant, and in Retail Stores
Journal Description
Microorganisms
Microorganisms
is a scientific, peer-reviewed, open access journal of microbiology, published monthly online by MDPI. The Hellenic Society Mikrobiokosmos (MBK), the Spanish Society for Nitrogen Fixation (SEFIN) and the Society for Microbial Ecology and Disease (SOMED) are affiliated with the Microorganisms, and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, PubAg, CAPlus / SciFinder, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Microbiology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.1 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about the Microorganisms.
- Companion journal: Applied Microbiology.
Impact Factor:
4.926 (2021);
5-Year Impact Factor:
5.143 (2021)
Latest Articles
The Contribution of the Human Oral Microbiome to Oral Disease: A Review
Microorganisms 2023, 11(2), 318; https://doi.org/10.3390/microorganisms11020318 (registering DOI) - 26 Jan 2023
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent
[...] Read more.
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Full article
(This article belongs to the Special Issue Advances in Periodontal Pathogens)
Open AccessArticle
PeVL1 Novel Elicitor Protein, from Verticillium lecanii 2, Enhances Systemic Resistance against Rice Leaf Roller (Marasmia ruralis Wlk.) in Rice (Oryza sativa L.)
Microorganisms 2023, 11(2), 317; https://doi.org/10.3390/microorganisms11020317 (registering DOI) - 26 Jan 2023
Abstract
The hazardous pest known as rice leaf roller (Marasmia ruralis Wlk.) (Lepidoptera: Pyralidae), which undermines rice (Oryza sativa L.) output globally, folds the leaves of the rice plant. Protein elicitors are thought to be biological elements that causes the rice to
[...] Read more.
The hazardous pest known as rice leaf roller (Marasmia ruralis Wlk.) (Lepidoptera: Pyralidae), which undermines rice (Oryza sativa L.) output globally, folds the leaves of the rice plant. Protein elicitors are thought to be biological elements that causes the rice to become resistant to herbivores. The potential for biocontrol of the emerging elicitor protein evaluated from Verticillium lecanii 2 (PeVL1) was evaluated against M. ruralis. To assess the impact of PeVL1 on immature development, survival, and lifetime, four different PeVL1 concentrations were allocated. Electrical penetration graphs (EPGs) against M. ruralis were used to evaluate adult reproductive efficiency and the interaction between the pest and the pathogen. Furthermore, the characterization of active substances in PeVL1 with multi-acting entomopathogenic effects looked into the direct interactions of PeVL1 with temperature and climatic change in rice (O. sativa) plants. PeVL1 treatments reduced the population increase of second and third generation M. ruralis compared to controls. In a test of host selection, M. ruralis colonized control plants more quickly than PeVL1-treated O. sativa plants. PeVL1 concentrations prolonged the M. ruralis larval stage. Similar to fecundity, PeVL1-treated seedlings produced fewer offspring than control seedlings. On PeVL1-treated leaves, trichomes and wax production created an unfavorable habitat for M. ruralis. PeVL1 changed the surface structure of the leaves, which inhibited colonization and decreased M. ruralis reproduction. The activation of pathways was another aspect of systemic defense activities including jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). Based on these results against M. ruralis, the use of PeVL1 in the agroecosystem with integrated pest management and biocontrol seems appropriate. Our research provides a novel insight into a cutting-edge biocontrol method utilizing V. lecanii 2.
Full article
(This article belongs to the Special Issue Advances in Microbial and Plant Biotechnology)
Open AccessArticle
Exploiting Non-Conventional Yeasts for Low-Alcohol Beer Production
by
, , , , , and
Microorganisms 2023, 11(2), 316; https://doi.org/10.3390/microorganisms11020316 (registering DOI) - 26 Jan 2023
Abstract
Non-Saccharomyces yeasts represent a very appealing alternative to producing beers with zero or low ethanol content. The current study explores the potential of seven non-Saccharomyces yeasts to produce low-alcohol or non-alcoholic beer, in addition to engineered/selected Saccharomyces yeasts for low-alcohol production.
[...] Read more.
Non-Saccharomyces yeasts represent a very appealing alternative to producing beers with zero or low ethanol content. The current study explores the potential of seven non-Saccharomyces yeasts to produce low-alcohol or non-alcoholic beer, in addition to engineered/selected Saccharomyces yeasts for low-alcohol production. The yeasts were first screened for their sugar consumption and ethanol production profiles, leading to the selection of strains with absent or inefficient maltose consumption and consequently with low-to-null ethanol production. The selected yeasts were then used in larger-scale fermentations for volatile and sensory evaluation. Overall, the yeasts produced beers with ethanol concentrations below 1.2% in which fusel alcohols and esters were also detected, making them eligible to produce low-alcohol beers. Among the lager beers produced in this study, beers produced using Saccharomyces yeast demonstrated a higher acceptance by taster panelists. This study demonstrates the suitability of non-conventional yeasts for producing low-alcohol or non-alcoholic beers and opens perspectives for the development of non-conventional beers.
Full article
(This article belongs to the Special Issue Yeasts Biochemistry and Biotechnology)
Open AccessArticle
Antibiotic Susceptibility and Molecular Typing of Invasive Haemophilus influenzae Isolates, with Emergence of Ciprofloxacin Resistance, 2017–2021, Italy
Microorganisms 2023, 11(2), 315; https://doi.org/10.3390/microorganisms11020315 (registering DOI) - 26 Jan 2023
Abstract
Haemophilus influenzae invasive disease is a severe infection that needs rapid antibiotic therapy. The aim of the study was to perform and evaluate the serotype distribution, antibiotic susceptibility and molecular characteristics of 392 H. influenzae invasive isolates collected during 2017–2021 in Italy. The
[...] Read more.
Haemophilus influenzae invasive disease is a severe infection that needs rapid antibiotic therapy. The aim of the study was to perform and evaluate the serotype distribution, antibiotic susceptibility and molecular characteristics of 392 H. influenzae invasive isolates collected during 2017–2021 in Italy. The majority of isolates were NTHi (305/392, 77.8%), followed by Hib (49/392, 12.5%). Ampicillin resistance was frequently detected (85/392, 21.7%): 12.2% were β-lactamase producers (all blaTEM except one blaROB), 9.4% were β-lactamase-negative ampicillin-resistant (BLNAR), with mutations in the ftsI gene. Six isolates were resistant to ciprofloxacin, with substitutions in GyrA and ParC. An MLST analysis revealed the occurrence of international resistant clones, such as ST103 and ST14, highlighting the importance of molecular surveillance.
Full article
(This article belongs to the Special Issue Haemophilus influenzae: New Insights in Epidemiology of Disease)
Open AccessArticle
Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity
by
, , , , , , , , , , , , , , and
Microorganisms 2023, 11(2), 314; https://doi.org/10.3390/microorganisms11020314 - 25 Jan 2023
Abstract
The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids,
[...] Read more.
The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 mg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 mg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.
Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Open AccessArticle
Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to Aerobic Growth: A Proteomic Approach
by
, , , and
Microorganisms 2023, 11(2), 313; https://doi.org/10.3390/microorganisms11020313 - 25 Jan 2023
Abstract
The study describes the effect of aerobic conditions on the proteome of facultative homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as
[...] Read more.
The study describes the effect of aerobic conditions on the proteome of facultative homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5’-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus.
Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Open AccessArticle
Remdesivir Influence on SARS-CoV-2 RNA Viral Load Kinetics in Nasopharyngeal Swab Specimens of COVID-19 Hospitalized Patients: A Real-Life Experience
by
, , , , , , , , , and
Microorganisms 2023, 11(2), 312; https://doi.org/10.3390/microorganisms11020312 - 25 Jan 2023
Abstract
There are still conflicting data on the virological effects of the SARS-CoV-2 direct antivirals used in clinical practice, in spite of the documented clinical efficacy. The aim of this monocentric retrospective study was to compare virologic and laboratory data of patients admitted due
[...] Read more.
There are still conflicting data on the virological effects of the SARS-CoV-2 direct antivirals used in clinical practice, in spite of the documented clinical efficacy. The aim of this monocentric retrospective study was to compare virologic and laboratory data of patients admitted due to SARS-CoV-2 infection from March to December 2020 treated with either remdesivir (R), a protease inhibitor (lopinavir or darunavir/ritonavir (PI)) or no direct antiviral drugs (NT). Viral load variation was indirectly assessed through PCR cycle threshold (Ct) values on the nasopharyngeal swab, analyzing the results from swabs obtained at ward admission and 7 (±2) days later. Overall, 253 patients were included: patients in the R group were significantly older, more frequently males with a significantly higher percentage of severe COVID-19, requiring more often intensive care admission, compared to the other groups. Ct variation over time did not differ amongst the three treatment groups and did not seem to be influenced by corticosteroid use, even after normalization of the treatment groups for disease severity. Non-survivors had lower Ct on admission and showed a significantly slower viral clearance compared to survivors. CD4 T-lymphocytes absolute count assessed at ward admission correlated with a reduced Ct variation over time. In conclusion, viral clearance appears to be slower in COVID-19 non-survivors, while it seems not to be influenced by the antiviral treatment received.
Full article
(This article belongs to the Special Issue SARS-CoV-2/COVID-19: Infection Models, Therapeutics and Vaccines)
Open AccessArticle
Selection, Identification and Functional Performance of Ammonia-Degrading Microbial Communities from an Activated Sludge for Landfill Leachate Treatment
by
, , , , , , and
Microorganisms 2023, 11(2), 311; https://doi.org/10.3390/microorganisms11020311 - 25 Jan 2023
Abstract
The increasing amounts of municipal solid waste and their management in landfills caused an increase in the production of leachate, a liquid formed by the percolation of rainwater through the waste. Leachate creates serious problems to municipal wastewater treatment plants; indeed, its high
[...] Read more.
The increasing amounts of municipal solid waste and their management in landfills caused an increase in the production of leachate, a liquid formed by the percolation of rainwater through the waste. Leachate creates serious problems to municipal wastewater treatment plants; indeed, its high levels of ammonia are toxic for bacterial cells and drastically reduce the biological removal of nitrogen by activated sludge. In the present work, we studied, using a metagenomic approach based on next-generation sequencing (NGS), the microbial composition of sludge in the municipal wastewater treatment plant of Porto Sant’Elpidio (Italy). Through activated sludge enrichment experiments based on the Repetitive Re-Inoculum Assay, we were able to select and identify a minimal bacterial community capable of degrading high concentrations of ammonium (NH4+-N ≅ 350 mg/L) present in a leachate-based medium. The analysis of NGS data suggests that seven families of bacteria (Alcaligenaceae, Nitrosomonadaceae, Caulobacteraceae, Xanthomonadaceae, Rhodanobacteraceae, Comamonadaceae and Chitinophagaceae) are mainly responsible for ammonia oxidation. Furthermore, we isolated from the enriched sludge three genera (Klebsiella sp., Castellaniella sp. and Acinetobacter sp.) capable of heterotrophic nitrification coupled with aerobic denitrification. These bacteria released a trace amount of both nitrite and nitrate possibly transforming ammonia into gaseous nitrogen. Our findings represent the starting point to produce an optimized microorganisms’s mixture for the biological removal of ammonia contained in leachate.
Full article
(This article belongs to the Section Environmental Microbiology)
►▼
Show Figures

Figure 1
Open AccessReview
An Overview on Exploitation of Graphene-Based Membranes: From Water Treatment to Medical Industry, Including Recent Fighting against COVID-19
Microorganisms 2023, 11(2), 310; https://doi.org/10.3390/microorganisms11020310 - 25 Jan 2023
Abstract
Graphene and its derivatives have lately been the subject of increased attention for different environmental applications of membrane technology such as water treatment and air filtration, exploiting their antimicrobial and antiviral activity. They are interesting candidates as membrane materials for their outstanding mechanical
[...] Read more.
Graphene and its derivatives have lately been the subject of increased attention for different environmental applications of membrane technology such as water treatment and air filtration, exploiting their antimicrobial and antiviral activity. They are interesting candidates as membrane materials for their outstanding mechanical and chemical stability and for their thin two-dimensional (2D) nanostructure with potential pore engineering for advanced separation. All these applications have evolved and diversified from discovery to today, and now graphene and graphene derivatives also offer fascinating opportunities for the fight against infective diseases such as COVID-19 thanks to their antimicrobial and antiviral properties. This paper presents an overview of graphene-based 2D materials, their preparation and use as membrane material for applications in water treatment and in respiratory protection devices.
Full article
(This article belongs to the Special Issue The New Advance on Disinfectant of Virus and Microorganisms)
Open AccessSystematic Review
Giardia duodenalis Styles, 1902 Prevalence in Cattle (Bos taurus Linnaeus, 1758) in Europe: A Systematic Review
Microorganisms 2023, 11(2), 309; https://doi.org/10.3390/microorganisms11020309 - 24 Jan 2023
Abstract
Giardia duodenalis Styles, 1902 is an infectious agent which can cause enteritic disease in cattle (Bos taurus Linnaeus, 1758) worldwide. As a zoonotic protozoan, it is important to acknowledge Giardia prevalence and assemblages found in cattle and risk factors associated with the
[...] Read more.
Giardia duodenalis Styles, 1902 is an infectious agent which can cause enteritic disease in cattle (Bos taurus Linnaeus, 1758) worldwide. As a zoonotic protozoan, it is important to acknowledge Giardia prevalence and assemblages found in cattle and risk factors associated with the Giardia infection in herds. This systematic review aims to estimate the prevalence of G. duodenalis and its assemblages in cattle and to identify the risk factors associated with Giardia infection in cattle in Europe. A systematic review was performed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to collect information from published studies in Europe. A total of 1414 studies were identified and 17 relevant studies were included in this review. Mean Giardia prevalence in cattle in Europe was 35.1%, with the highest prevalence found in neonatal animals (39.6%), but mean heard prevalence was 67.0%. Mixed infections of Giardia assemblages A and E were found most frequently (55.6%), while assemblages A and B were found more frequently in animals under 24 months old. Risk factors, such as deep litter with run-out, prolonged calf contact with the dam, and seasonality, such as winter and spring, were found to be potential risk factors for Giardia presence in the herds.
Full article
(This article belongs to the Special Issue Research on Foodborne Pathogens and Disease)
Open AccessCommunication
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes During Thermophilic Composting of Human Excreta
by
, , , , and
Microorganisms 2023, 11(2), 308; https://doi.org/10.3390/microorganisms11020308 - 24 Jan 2023
Abstract
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta,
[...] Read more.
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Full article
(This article belongs to the Special Issue Multidrug-Resistant Bacteria in the Environment, Their Resistance and Transfer Mechanisms)
Open AccessArticle
Luteibacter flocculans sp. nov., Isolated from a Eutrophic Pond and Isolation and Characterization of Luteibacter Phage vB_LflM-Pluto
Microorganisms 2023, 11(2), 307; https://doi.org/10.3390/microorganisms11020307 - 24 Jan 2023
Abstract
Luteibacter is a genus of the Rhodanobacteraceae family. The present study describes a novel species within the genus Luteibacter (EIF3T). The strain was analyzed genomically, morphologically and physiologically. Average nucleotide identity analysis revealed that it is a new species of Luteibacter
[...] Read more.
Luteibacter is a genus of the Rhodanobacteraceae family. The present study describes a novel species within the genus Luteibacter (EIF3T). The strain was analyzed genomically, morphologically and physiologically. Average nucleotide identity analysis revealed that it is a new species of Luteibacter. In silico analysis indicated two putative prophages (one incomplete, one intact). EIF3T cells form an elliptical morphotype with an average length of 2.0 µm and width of 0.7 µm and multiple flagella at one end. The bacterial strain is an aerobic Gram-negative with optimal growth at 30 °C. EIF3T is resistant towards erythromycin, tetracycline and vancomycin. We propose the name Luteibacter flocculans sp. nov. with EIF3T (=DSM 112537T = LMG 32416T) as type strain. Further, we describe the first known Luteibacter-associated bacteriophage called vB_LflM-Pluto.
Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Open AccessBrief Report
Chemical and Microbial Characterization of Fermented Forest Litters Used as Biofertilizers
Microorganisms 2023, 11(2), 306; https://doi.org/10.3390/microorganisms11020306 - 24 Jan 2023
Abstract
The excessive use of chemicals in intensive agriculture has had a negative impact on soil diversity and fertility. A strategy for developing sustainable agriculture could rely on the use of microbial-based fertilizers, known as biofertilizers. An alternative to marketed products could be offered
[...] Read more.
The excessive use of chemicals in intensive agriculture has had a negative impact on soil diversity and fertility. A strategy for developing sustainable agriculture could rely on the use of microbial-based fertilizers, known as biofertilizers. An alternative to marketed products could be offered to small farmers if they could produce their own biofertilizers using forest litters, which harbor one of the highest microbial diversities. The aim of this study is to characterize microbial communities of Fermented Forest Litters (FFL), assuming that the fermentation process will change both their abundance and diversity. We investigated two types of differing in the chemical composition of the initial litters used and the climatic context of the forest where they are originated from. The abundance and diversity of bacterial and fungal communities were assessed using quantitative PCR and molecular genotyping techniques. The litter chemical compositions were compared before and after fermentation using Infrared spectrometry. Results obtained showed that fermentation increased the abundance of bacteria but decreased that of fungi. Low pH and change in organic matter composition observed after fermentation also significantly reduced the α-diversity of both bacterial and fungal communities. The higher proportion of aliphatic molecules and lower C/N of the FFLs compared to initial litters indicate that FFLs should be rapidly decomposed once added into the soil. This preliminary study suggests that the agronomic interest of FFLs used as biofertilizers is probably more related to the contribution of nutrients easily assimilated by plants than to the diversity of microorganisms that compose it. Further studies must be conducted with sequencing techniques to identify precisely the microbial species likely to be beneficial to plant growth.
Full article
(This article belongs to the Special Issue Microbial Communities in a Changing World: Composition, Metabolism, and Environmental Adaptation)
Open AccessArticle
The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence
by
, , , and
Microorganisms 2023, 11(2), 305; https://doi.org/10.3390/microorganisms11020305 - 24 Jan 2023
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S.
[...] Read more.
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.
Full article
(This article belongs to the Special Issue Pathogenic Streptococci: Virulence, Host Response and Therapy)
Open AccessReview
A Review of Biogenic Coalbed Methane Experimental Studies in China
Microorganisms 2023, 11(2), 304; https://doi.org/10.3390/microorganisms11020304 - 24 Jan 2023
Abstract
Biogenic coalbed methane (CBM) is an important alternative energy that can help achieve carbon neutrality. Accordingly, its exploration and development have become a research hotspot in the field of fossil energy. In this review, the latest detection technologies for and experimental research on
[...] Read more.
Biogenic coalbed methane (CBM) is an important alternative energy that can help achieve carbon neutrality. Accordingly, its exploration and development have become a research hotspot in the field of fossil energy. In this review, the latest detection technologies for and experimental research on biogenic CBM in China in recent decades are summarized. The factors influencing the generation of biogenic CBM and the identification method of biogenic CBM are systematically analyzed. The technologies to detect biogas and the research methods to study microbial diversity are summarized. The literature shows that biogenic CBM is easily produced in the presence of highly abundant organic matter of low maturity, and the organic matter reaching a certain thickness can compensate for the limitation of biogenic CBM gas production due to the small abundance of organic matter to a certain extent. Biogenic CBM production could be increased in an environment with low salinity, medium alkalinity, and rich Fe2+ and Ni2+ sources. Furthermore, biogenic CBM can be identified by considering three aspects: (1) the presence of gas composition indicators; (2) the content of heavy hydrocarbon; and (3) variation in the abundance of biomarkers. In recent years, research methods to study the microbial community and diversity of CBM-producing environments in China have mainly included 16S rRNA gene library, fluorescence in situ hybridization, and high-throughput sequencing, and the dominant microorganisms have been determined in various basins in China. The results of numerous studies show that the dominant bacterial phyla are commonly Firmicutes and Proteobacteria, while the archaeal fraction mainly includes Methanoculleus, Methanobacterium, Methanocorpusculum, and Methanothrix. This review summarizes and discusses the advances in biogenic CBM production and the associated microbial community in order to promote further development of coal biotransformation and CO2 bio-utilization to meet energy demands under carbon neutrality.
Full article
(This article belongs to the Special Issue Microbial Advances in a Sustainable Environment: Biological Waste Treatment and Bioconversion Technology)
Open AccessArticle
Changes in Etiology and Clinical Outcomes of Pleural empyema during the COVID-19 Pandemic
by
, , , , and
Microorganisms 2023, 11(2), 303; https://doi.org/10.3390/microorganisms11020303 - 24 Jan 2023
Abstract
Healthcare-seeking behavior changed during the COVID-19 pandemic and might alter the epidemiology of pleural empyema. In this study, the incidence, etiology and outcomes of patients admitted for pleural empyema in Hong Kong in the pre-COVID-19 (January 2015–December 2019) and post-COVID-19 (January 2020–June 2022)
[...] Read more.
Healthcare-seeking behavior changed during the COVID-19 pandemic and might alter the epidemiology of pleural empyema. In this study, the incidence, etiology and outcomes of patients admitted for pleural empyema in Hong Kong in the pre-COVID-19 (January 2015–December 2019) and post-COVID-19 (January 2020–June 2022) periods were compared. Overall, Streptococcus pneumoniae was the predominant organism in <18-year-old patients, while Streptococcus anginosus, anaerobes and polymicrobial infections were more frequent in adults. In the post-COVID-19 period, a marked decline in the incidence of pleural empyema in children was observed (pre-COVID-19, 18.4 ± 4.8 vs. post-COVID-19, 2.0 ± 2.9 cases per year, p = 0.036), while the incidence in adults remained similar (pre-COVID-19, 189.0 ± 17.2 vs. post-COVID-19, 198.4 ± 5.0 cases per year; p = 0.23). In the post-COVID-19 period, polymicrobial etiology increased (OR 11.37, p < 0.0001), while S. pneumoniae etiology decreased (OR 0.073, p < 0.001). In multivariate analysis, clinical outcomes (length of stay, ICU admission, use of intrapleural fibrinolytic therapy, surgical intervention, death) were not significantly different in pre- and post-COVID-19 periods. In conclusion, an increase in polymicrobial pleural empyema was observed during the pandemic. We postulate that this is related to the delayed presentation of pneumonia to hospitals.
Full article
(This article belongs to the Section Medical Microbiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Liver Transaminases in Pediatric Adenovirus Infection—A Five-Year Study in Two Major Reference Centers from Romania
by
, , , , and
Microorganisms 2023, 11(2), 302; https://doi.org/10.3390/microorganisms11020302 - 24 Jan 2023
Abstract
Human adenovirus causes infections with a very heterogeneous clinical picture, and children are often the most frequently affected group. Interest in adenovirus has increased with the 2022 outbreak of severe acute hepatitis of unknown etiology as human adenovirus was considered as one of
[...] Read more.
Human adenovirus causes infections with a very heterogeneous clinical picture, and children are often the most frequently affected group. Interest in adenovirus has increased with the 2022 outbreak of severe acute hepatitis of unknown etiology as human adenovirus was considered as one of the possible etiological agents. We conducted a retrospective study over a 5-year period in two major tertiary hospitals in the Romanian capital with the aim to characterize the clinical picture and the dynamics of liver function tests in children with confirmed adenovirus infection. The study included 1416 children with a median age of 1.1 years (IQR: 0.3, 2.3 years). Digestive symptoms were predominant in 95.2% of children, mainly diarrhea (90.5%) and vomiting (50.5%), and 38.0% had respiratory symptoms. Increased transaminases were identified in 21.5% of patients. Age over 1 year, lethargy, vomiting and dehydration significantly increased the odds of liver cytolysis independent of other risk factors such as chronic conditions or co-infections. Aspartate aminotransferase (AST) was more commonly increased compared to alanine aminotransferase (ALT). Only six children had transaminase increases above 500 U/L, three of which had co-infections with rotavirus, Epstein–Barr virus (EBV), or respiratory syncytial virus (RSV). Liver function tests should be part of routine monitoring for pediatric patients with adenovirus infection. The current study fills a gap in current knowledge related to the frequency and the extent of liver involvement in human adenovirus infection among pediatric patients.
Full article
(This article belongs to the Special Issue Emerging Pathogens Causing Acute Hepatitis)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial and Antibiofilm Effect of Commonly Used Disinfectants on Salmonella Infantis Isolates
Microorganisms 2023, 11(2), 301; https://doi.org/10.3390/microorganisms11020301 - 23 Jan 2023
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar in broilers and broiler meat in the European Union. The aim of our study was to test the biofilm formation and antimicrobial effect of disinfectants on genetically characterized S. Infantis isolates
[...] Read more.
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar in broilers and broiler meat in the European Union. The aim of our study was to test the biofilm formation and antimicrobial effect of disinfectants on genetically characterized S. Infantis isolates from poultry, food, and humans. For the biofilm formation under various temperature conditions (8 °C, 20 °C, and 28 °C) and incubation times (72 h and 168 h), the crystal violet staining method was used. The evaluation of the in vitro antimicrobial effect of Ecocid® S, ethanol, and hydrogen peroxide was determined using the broth microdilution method. The antibiofilm effect of subinhibitory concentration (1/8 MIC) of disinfectants was then tested on S. Infantis 323/19 strain that had the highest biofilm formation potential. Our results showed that the biofilm formation was strain-specific; however, it was higher at 20 °C and prolonged incubation time. Moreover, strains carrying a pESI plasmid showed higher biofilm formation potential. The antibiofilm potential of disinfectants on S. Infantis 323/19 strain at 20 °C was effective after a shorter incubation time. As shown in our study, more effective precautionary measures should be implemented to ensure biofilm prevention and removal in order to control the S. Infantis occurrence.
Full article
(This article belongs to the Special Issue Research on Foodborne Pathogens and Disease)
Open AccessArticle
Harnessing Novel Soil Bacteria for Beneficial Interactions with Soybean
by
, , , , , , and
Microorganisms 2023, 11(2), 300; https://doi.org/10.3390/microorganisms11020300 - 23 Jan 2023
Abstract
It is claimed that one g of soil holds ten billion bacteria representing thousands of distinct species. These bacteria play key roles in the regulation of terrestrial carbon dynamics, nutrient cycles, and plant productivity. Despite the overwhelming diversity of bacteria, most bacterial species
[...] Read more.
It is claimed that one g of soil holds ten billion bacteria representing thousands of distinct species. These bacteria play key roles in the regulation of terrestrial carbon dynamics, nutrient cycles, and plant productivity. Despite the overwhelming diversity of bacteria, most bacterial species remain largely unknown. Here, we used an oligotrophic medium to isolate novel soil bacteria for positive interaction with soybean. Strictly 22 species of bacteria from the soybean rhizosphere were selected. These isolates encompass ten genera (Kosakonia, Microbacterium, Mycobacterium, Methylobacterium, Monashia, Novosphingobium, Pandoraea, Anthrobacter, Stenotrophomonas, and Rhizobium) and have potential as novel species. Furthermore, the novel bacterial species exhibited plant growth-promoting traits in vitro and enhanced soybean growth under drought stress in a greenhouse experiment. We also reported the draft genome sequences of Kosakonia sp. strain SOY2 and Agrobacterium sp. strain SOY23. Along with our analysis of 169 publicly available genomes for the genera reported here, we demonstrated that these bacteria have a repertoire of genes encoding plant growth-promoting proteins and secondary metabolite biosynthetic gene clusters that directly affect plant growth. Taken together, our findings allow the identification novel soil bacteria, paving the way for their application in crop production.
Full article
(This article belongs to the Special Issue Microbial-Based Plant Biostimulants)
►▼
Show Figures

Figure 1
Open AccessArticle
Complete Recovery of Acanthamoeba Motility among Surviving Organisms after Contact Lens Care Disinfection
Microorganisms 2023, 11(2), 299; https://doi.org/10.3390/microorganisms11020299 - 23 Jan 2023
Abstract
Acanthamoeba keratitis is a sight-threatening infection of the cornea which is extremely challenging to treat. Understanding this organism’s responses during contact lens contact and disinfection could enhance our understanding of how Acanthamoebae colonize contact lens cases, better inform us on contact lens care
[...] Read more.
Acanthamoeba keratitis is a sight-threatening infection of the cornea which is extremely challenging to treat. Understanding this organism’s responses during contact lens contact and disinfection could enhance our understanding of how Acanthamoebae colonize contact lens cases, better inform us on contact lens care solution (CLC) efficacy, and help us better understand the efficacy required of CLC products. To explore this gap in knowledge, we used Acanthamoeba ATCC 30461 and ATCC 50370 trophozoites to examine Acanthamoeba behavior during and after CLC disinfection. Amoebae were added to sterile aluminum flow cells and flow cell solutions were changed to Ringer’s solution (control), or one of four CLCs based on biocides (PHMB, PAPB/Polyquad, Polyquad/Aldox, or Polyquad/Alexidine) for 6 h. Each flow cell solution was then changed to axenic culture media (AC6) for 12 h to determine the behavior of amoebae following disinfection. Distance, speed, and displacement were calculated for each organism. As compared to the control of one-quarter Ringer’s solution, each CLC significantly impacted Acanthamoeba motility in both the CLC and AC6 conditions. However, the amoebae challenged with the PHMB CLC traveled a significantly greater total distance than with the other three CLCs, indicating differences in effectiveness between biocides. Furthermore, amoebae regaining motility post-disinfection by CLCs were observed to travel considerable distances and thus could be considered dangerous to ocular health. We determined that while all CLCs produced a substantial or complete cessation of movement vs. the control condition during disinfection, those which relied on the Polyquad biocides were the most effective, and that any amoebae which survived disinfection were able to recover motility. Future examinations of these findings should include direct correlations between motility and viability, and how infectivity and motility may be related.
Full article
(This article belongs to the Special Issue Acanthamoeba spp. as Factors for Severe Infectious Diseases in Humans)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Microorganisms Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Microbiology, Biology, Biomolecules, IJMS, Microorganisms
Application of Probiotics and Their Potential Health Benefits
Topic Editors: Pio Maria Furneri, Virginia FuochiDeadline: 30 March 2023
Topic in
Biomedicines, Pathogens, Viruses, Microorganisms, Microbiology Research
Host, Bacteria and Viruses: A Network of Intestinal Relationships
Topic Editors: Jesús Rodríguez-Díaz, Vicente MonederoDeadline: 31 May 2023
Topic in
Biomolecules, Catalysts, IJMS, Microorganisms, Molecules
Advances in Enzymes and Protein Engineering
Topic Editors: Yung-Chuan Liu, Jose M. Guisan, Antonio ZuorroDeadline: 30 June 2023
Topic in
Antioxidants, Cells, IJMS, JMP, Magnetism, Microorganisms, Symmetry
Magnetobiology and Magnetomedicine
Topic Editors: Xin Zhang, Vitalii ZablotskiiDeadline: 3 August 2023

Conferences
Special Issues
Special Issue in
Microorganisms
Advances in Microbial Biosynthesis
Guest Editor: Iwona GientkaDeadline: 31 January 2023
Special Issue in
Microorganisms
Dickeya and Pectobacterium: Ecology, Pathology and Plant Protection 2.0
Guest Editor: Denis FaureDeadline: 15 February 2023
Special Issue in
Microorganisms
Probiotics and Prebiotics in Animal Health and Food Safety
Guest Editor: Francesca GaggiaDeadline: 1 March 2023
Special Issue in
Microorganisms
Food Fermentations
Guest Editors: Francisc Vasile Dulf, Dan Cristian Vodnar, Lavinia Calinoiu, Laura MitreaDeadline: 15 March 2023
Topical Collections
Topical Collection in
Microorganisms
Advances in Tick-Borne Diseases Research
Collection Editors: Franc Strle, Gerold Stanek
Topical Collection in
Microorganisms
Feature Reviews in Gut Microbiota
Collection Editor: Harsharn Gill
Topical Collection in
Microorganisms
Biodegradation and Environmental Microbiomes
Collection Editors: Shuangjiang Liu, Hongzhi Tang, Jiandong Jiang, Xiaolei Wu
Topical Collection in
Microorganisms
Feature Papers in Environmental Microbiology
Collection Editor: Nico Jehmlich