Rhizosphere Microbial Community, 4th Edition

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Plant Microbe Interactions".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 329

Special Issue Editor


E-Mail
Guest Editor
Department of Life Science, Dongguk University, Goyang 10326, Republic of Korea
Interests: symbiosis; plant growth promoting rhizobacteria (PGPR); rhizosphere; endophytes; plant-microbe interactions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issues “Rhizosphere Microbial Community”, “Rhizosphere Microbial Community 2.0”, and "Rhizosphere Microbial Community, 3rd Edition".

The bacterial community found in the rhizosphere, known for its colonization around the roots due to the availability of nutrients, plays an important role in plant growth and adaptability both directly and indirectly. Various bacteria promote plant root growth to establish their ecological niche in the rhizosphere. Rhizobacteria are involved in plant-growth promotion and are often utilized to improve crop health and productivity. The rhizosphere microbe community has been the focus of extensive research during recent decades, due to its impact on plant sustainability.

More than 99% of soil bacterial species are assumed to be uncultured bacteria. The development of a next-generation sequencing (NGS) technique has allowed us to explore bacterial diversity, providing additional information about culturable and non-culturable plant-associated bacteria. In recent years, many studies have shown that bacterial populations associated with plants have allowed the identification of a large number of novel genera and species. Moreover, whole-genome sequencing has enhanced our knowledge of the metabolism and relationship between bacteria and their host.

This Special Issue seeks contributions that explore the native bacterial community and diversity in the rhizosphere of plants, with the aim of sharing new findings on microorganisms’ interactions with plants in the rhizosphere environment. Moreover, it will consist of articles that cover the isolation and characterization of microbes, genomic analyses and agronomic applications. Submissions of research articles, review articles or short communications related to the rhizosphere microbial community are all welcome, and will help us to make unexpected new discoveries in this area.

Dr. Taegun Seo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rhizosphere
  • endophytes
  • plant-microbe interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2429 KiB  
Article
Conserved and Specific Root-Associated Microbiome Reveals Close Correlation Between Fungal Community and Growth Traits of Multiple Chinese Fir Genotypes
by Xuan Chen, Zhanling Wang, Wenjun Du, Junhao Zhang, Yuxin Liu, Liang Hong, Qingao Wang, Chuifan Zhou, Pengfei Wu, Xiangqing Ma and Kai Wang
Microorganisms 2025, 13(8), 1741; https://doi.org/10.3390/microorganisms13081741 - 25 Jul 2025
Viewed by 166
Abstract
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and [...] Read more.
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated. Chinese fir (Cunninghamia lanceolata) is an important tree species for both economy and ecosystem in the subtropical regions of Asia. In this study, we investigated the tissue-specific fungal community structure and diversity of nine different Chinese fir genotypes (39 years) grown in the same field. With non-metric multidimensional scaling (NMDS) analysis, we revealed the divergence of the fungal community from rhizosphere soil (RS), fine roots (FRs), and thick roots (TRs). Through analysis with α-diversity metrics (Chao1, Shannon, Pielou, ACE, Good‘s coverage, PD-tree, Simpson, Sob), we confirmed the significant difference of the fungal community in RS, FR, and TR samples. Yet, the overall fungal community difference was not observed among nine genotypes for the same tissues (RS, FR, TR). The most abundant fungal genera were Russula in RS, Scytinostroma in FR, and Subulicystidium in TR. Functional prediction with FUNGuild analysis suggested that ectomycorrhizal fungi were commonly enriched in rhizosphere soil, while saprotroph–parasite and potentially pathogenic fungi were more abundant in root samples. Specifically, genotype N104 holds less ectomycorrhizal and pathogenic fungi in all tissues (RS, FR, TR) compared to other genotypes. Additionally, significant correlations of several endophytic fungal taxa (Scytinostroma, Neonothopanus, Lachnum) with the growth traits (tree height, diameter, stand volume) were observed. This addresses that the interaction between tree roots and the fungal community is a reflection of tree growth, supporting the “trade-off” hypothesis between growth and defense in forest trees. In summary, we revealed tissue-specific, as well as host genotype-specific and genotype-common characters of the structure and functions of their fungal communities. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 4th Edition)
Show Figures

Figure 1

Back to TopTop