Comparison of QIIME1 and QIIME2 for Analyzing Fungal Samples from Various Built Environments
Abstract
1. Introduction
- (1)
- Indoor fungal communities differ depending on building type and variations in air conditioning and ventilation systems.
- (2)
- The composition of fungal communities differs between indoor and outdoor environments.
- (3)
- Differences are observed in the analysis results obtained using QIIME1 and QIIME2.
2. Materials and Methods
2.1. Data Acquisition Source
2.2. DNA Extraction—ITS Sequencing
2.3. OTU Sequence Assignment
2.4. ASV Sequence Determination
2.5. Statistical Analysis Methods
3. Results
3.1. Microbial Community α and β Diversity
3.2. Taxonomic Differences Related to the Pipeline
3.3. Relative Composition Ratios
4. Discussion
5. Conclusions
- (1)
- There are differences between OTU analysis and ASV analysis. Since OTU analysis involves OTU clustering at 97% similarity, sequence errors and clustering-induced partitioning can increase the apparent number of taxa, particularly affecting rare fungi. Therefore, when performing diversity analyses, OTU analysis tends to yield higher diversity values.
- (2)
- Regarding abundantly detected fungi, OTU analysis detects a greater number thereof; however, caution is warranted, as this study also suggested the possibility of false positives.
- (3)
- Aspergillus was predominantly detected across all groups, irrespective of pipeline or building application.
- (4)
- The α diversity index was higher in outdoor air than in office interiors, and the air conditioning filters exhibited greater α diversity than coils. These findings indicate an environment conducive to the growth of numerous fungi.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, 17. [Google Scholar] [CrossRef]
- Blackwell, M. The Fungi: 1, 2, 3... 5.1 Million Species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging Fungal Threats to Animal, Plant and Ecosystem Health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef]
- Denning, D.W.; Pashley, C.; Hartl, D.; Wardlaw, A.; Godet, C.; Del Giacco, S.; Delhaes, L.; Sergejeva, S. Fungal Allergy in Asthma–State of the Art and Research Needs. Clin. Transl. Allergy 2014, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Šunić, I.; Havaš Auguštin, D.; Šarac, J.; Michl, K.; Cernava, T.; Jakobsen, R.R.; Mešić, A.; Novokmet, N.; Lovrić, M. Associations Between Indoor Fungal Community Structures and Environmental Factors: Insights from the Evidence-Driven Indoor Air-Quality Improvement Study. J. Fungi 2025, 11, 261. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Op De Beeck, M.; Lievens, B.; Busschaert, P.; Declerck, S.; Vangronsveld, J.; Colpaert, J.V. Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies. PLoS ONE 2014, 9, e97629. [Google Scholar] [CrossRef]
- Procopio, N.; Ghignone, S.; Voyron, S.; Chiapello, M.; Williams, A.; Chamberlain, A.; Mello, A.; Buckley, M. Soil Fungal Communities Investigated by Metabarcoding Within Simulated Forensic Burial Contexts. Front. Microbiol. 2020, 11, 1686. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Han, S.; Lv, L.; Li, L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022, 10, 1882. [Google Scholar] [CrossRef]
- Chawla, H.; Anand, P.; Garg, K.; Bhagat, N.; Varmani, S.G.; Bansal, T.; McBain, A.J.; Marwah, R.G. A Comprehensive Review of Microbial Contamination in the Indoor Environment: Sources, Sampling, Health Risks, and Mitigation Strategies. Front. Public Health 2023, 11, 1285393. [Google Scholar] [CrossRef]
- Méheust, D.; Le Cann, P.; Reboux, G.; Millon, L.; Gangneux, J.-P. Indoor Fungal Contamination: Health Risks and Measurement Methods in Hospitals, Homes and Workplaces. Crit. Rev. Microbiol. 2014, 40, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Indoor Fungal Diversity and Asthma: A Meta-Analysis and Systematic Review of Risk Factors—Journal of Allergy and Clinical Immunology. Available online: https://www.jacionline.org/article/S0091-6749(14)00952-X/fulltext (accessed on 15 August 2025).
- Portnoy, J.M.; Kwak, K.; Dowling, P.; VanOsdol, T.; Barnes, C. Health Effects of Indoor Fungi. Ann. Allergy Asthma Immunol. 2005, 94, 313–319; quiz 319–322, 390. [Google Scholar] [CrossRef] [PubMed]
- Osborne, N.J.; Thornton, C.R.; Sharpe, R.A. Indoor Fungal Exposure and Allergic Respiratory Disease. Curr. Allergy Asthma Rep. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Amend, A.S.; Seifert, K.A.; Samson, R.; Bruns, T.D. Indoor Fungal Composition Is Geographically Patterned and More Diverse in Temperate Zones than in the Tropics. Proc. Natl. Acad. Sci. USA 2025, 107, 13748–13753. [Google Scholar] [CrossRef]
- Niculita-Hirzel, H.; Wild, P.; Hirzel, A.H. Season, Vegetation Proximity and Building Age Shape the Indoor Fungal Communities’ Composition at City-Scale. J. Fungi 2022, 8, 1045. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, X.; Ye, J.; Sun, Z.; Chen, Z.; Cao, G.; Zhang, Y.; Shen, F.; Gao, C.X.; Qian, H. Impact of Climate Zones and Seasons on Indoor Airborne Microbial Communities: Insights from a Comprehensive Analysis. Sci. Total Environ. 2024, 926, 171879. [Google Scholar] [CrossRef]
- Sharpe, R.; Thornton, C.R.; Osborne, N.J. Modifiable Factors Governing Indoor Fungal Diversity and Risk of Asthma. Clin. Exp. Allergy 2014, 44, 631–641. [Google Scholar] [CrossRef]
- Weikl, F.; Tischer, C.; Probst, A.J.; Heinrich, J.; Markevych, I.; Jochner, S.; Pritsch, K. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants. PLoS ONE 2016, 11, e0154131. [Google Scholar] [CrossRef]
- Efthymiopoulos, S.; Aktas, Y.D.; Altamirano, H. A Critical Review of Analysis Techniques for the Assessment of the Indoor Fungal Burden; ScienceOpen: Berlin, Germany, 2023. [Google Scholar]
- Rittenour, W.R.; Ciaccio, C.E.; Barnes, C.S.; Kashon, M.L.; Lemons, A.R.; Beezhold, D.H.; Green, B.J. Internal Transcribed Spacer rRNA Gene Sequencing Analysis of Fungal Diversity in Kansas City Indoor Environments. Environ. Sci. Process. Impacts 2013, 16, 33–43. [Google Scholar] [CrossRef]
- Green, B.J.; Lemons, A.R.; Park, Y.; Cox-Ganser, J.M.; Park, J.-H. Assessment of Fungal Diversity in a Water-Damaged Office Building. J. Occup. Environ. Hyg. 2017, 14, 285–293. [Google Scholar] [CrossRef] [PubMed]
- WHO Guidelines for Indoor Air Quality: Dampness and Mould. Available online: https://www.who.int/publications/i/item/9789289041683 (accessed on 1 November 2025).
- U.S. Environmental Protection Agency. Biological Pollutants’ Impact on Indoor Air Quality. Available online: https://www.epa.gov/indoor-air-quality-iaq/biological-pollutants-impact-indoor-air-quality (accessed on 1 November 2025).
- Okinaga, T.; Masago, A.; Nambu, T.; Mashimo, C.; Okinaga, T. Amplicon Sequence Variant-Based Oral Microbiome Analysis Using QIIME 2. J. Osaka Dent. Univ. 2020, 54, 273–281. [Google Scholar] [CrossRef]
- Thompson, L.R.; Anderson, S.R.; Uyl, P.A.D.; Patin, N.V.; Lim, S.J.; Sanderson, G.; Goodwin, K.D. Tourmaline: A Containerized Workflow for Rapid and Iterable Amplicon Sequence Analysis Using QIIME 2 and Snakemake. GigaScience 2022, 11, giac066. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.L.; Houston, S. A Bioinformatics Pipeline for Sequence-Based Analyses of Fungal Biodiversity. In Fungal Genomics: Methods and Protocols; Xu, J.-R., Bluhm, B.H., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 141–155. ISBN 978-1-61779-040-9. [Google Scholar]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a Unified Paradigm for Sequence-Based Identification of Fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- Blaalid, R.; Kumar, S.; Nilsson, R.H.; Abarenkov, K.; Kirk, P.M.; Kauserud, H. ITS1 Versus ITS2 as DNA Metabarcodes for Fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef]
- Straub, D.; Blackwell, N.; Langarica-Fuentes, A.; Peltzer, A.; Nahnsen, S.; Kleindienst, S. Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. Front. Microbiol. 2020, 11, 550420. [Google Scholar] [CrossRef] [PubMed]
- Colabella, C.; Corte, L.; Roscini, L.; Bassetti, M.; Tascini, C.; Mellor, J.C.; Meyer, W.; Robert, V.; Vu, D.; Cardinali, G. NGS Barcode Sequencing in Taxonomy and Diagnostics, an Application in “Candida” Pathogenic Yeasts with a Metagenomic Perspective. IMA Fungus 2018, 9, 91–105. [Google Scholar] [CrossRef]
- Shamim, M.; Kumar, M.; Kumar, R.R.; Pandey, P.; Srivastava, D.; Kumar, D.; Khan, N.A.; Kumar, R.R.; Singh, K.N. Understanding the Diversity of Aspergillus by Next-Generation Sequencing. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 29–40. ISBN 978-0-444-63505-1. [Google Scholar]
- McTaggart, L.R.; Copeland, J.K.; Surendra, A.; Wang, P.W.; Husain, S.; Coburn, B.; Guttman, D.S.; Kus, J.V. Mycobiome Sequencing and Analysis Applied to Fungal Community Profiling of the Lower Respiratory Tract During Fungal Pathogenesis. Front. Microbiol. 2019, 10, 512. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Liu, G.; Li, T.; Zhu, X.; Zhang, X.; Wang, J. An Independent Evaluation in a CRC Patient Cohort of Microbiome 16S rRNA Sequence Analysis Methods: OTU Clustering, DADA2, and Deblur. Front. Microbiol. 2023, 14, 1178744. [Google Scholar] [CrossRef]
- Rolling, T.; Zhai, B.; Frame, J.V.; Hohl, T.M.; Taur, Y. Customization of a Dada2-Based Pipeline for Fungal Internal Transcribed Spacer 1 (ITS 1) Amplicon Datasets. JCI Insight 2021, 7, e151663. [Google Scholar] [CrossRef] [PubMed]
- Nearing, J.T.; Douglas, G.M.; Comeau, A.M.; Langille, M.G.I. Denoising the Denoisers: An Independent Evaluation of Microbiome Sequence Error-Correction Approaches. PeerJ 2018, 6, e5364. [Google Scholar] [CrossRef]
- Maki, K.A.; Wolff, B.; Varuzza, L.; Green, S.J.; Barb, J.J. Multi-Amplicon Microbiome Data Analysis Pipelines for Mixed Orientation Sequences Using QIIME2: Assessing Reference Database, Variable Region and Pre-Processing Bias in Classification of Mock Bacterial Community Samples. PLoS ONE 2023, 18, e0280293. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, L.; Zhang, Q.; Wen, C.; Van Nostrand, J.D.; Ning, D.; Raskin, L.; Pinto, A.; Zhou, J. Effects of Error, Chimera, Bias, and GC Content on the Accuracy of Amplicon Sequencing. mSystems 2023, 8, e01025-23. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Needham, D.M.; Sieradzki, E.T.; Fuhrman, J.A. Taxon Disappearance from Microbiome Analysis Indicates Need for Mock Communities as a Standard in Every Sequencing Run. mSystems 2017, 3, e00023-18. [Google Scholar] [CrossRef]
- Baer, M.; Höppe, L.; Seel, W.; Lipski, A. Impact of DNA Extraction, PCR Amplification, Sequencing, and Bioinformatic Analysis on Food-Associated Mock Communities Using PacBio Long-Read Amplicon Sequencing. BMC Microbiol. 2024, 24, 521. [Google Scholar] [CrossRef]
- Bakker, M.G. A Fungal Mock Community Control for Amplicon Sequencing Experiments. Mol. Ecol. Resour. 2018, 18, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.M.; Jusino, M.A.; Banik, M.T.; Lindner, D.L. Non-Biological Synthetic Spike-in Controls and the AMPtk Software Pipeline Improve Mycobiome Data. PeerJ 2018, 6, e4925. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-H.; Su, J.-H.; Shang, J.-J.; Wu, Y.-Y.; Li, Y.; Bao, D.-P.; Yao, Y.-J. Evaluation of the Ribosomal DNA Internal Transcribed Spacer (ITS), Specifically ITS1 and ITS2, for the Analysis of Fungal Diversity by Deep Sequencing. PLoS ONE 2018, 13, e0206428. [Google Scholar] [CrossRef]
- De Filippis, F.; Laiola, M.; Blaiotta, G.; Ercolini, D. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity|Applied and Environmental Microbiology. Appl. Environ. Microbiol. 2017, 83, e00905-17. [Google Scholar] [CrossRef]
- Porras-Alfaro, A.; Liu, K.-L.; Kuske, C.R.; Xie, G. From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition. Appl. Environ. Microbiol. 2014, 80, 829–840. [Google Scholar] [CrossRef]
- Li, S.; Deng, Y.; Wang, Z.; Zhang, Z.; Kong, X.; Zhou, W.; Yi, Y.; Qu, Y. Exploring the Accuracy of Amplicon-Based Internal Transcribed Spacer Markers for a Fungal Community. Mol. Ecol. Resour. 2020, 20, 170–184. [Google Scholar] [CrossRef]
- Abarenkov, K.; Somervuo, P.; Nilsson, R.H.; Kirk, P.M.; Huotari, T.; Abrego, N.; Ovaskainen, O. Protax-Fungi: A Web-Based Tool for Probabilistic Taxonomic Placement of Fungal Internal Transcribed Spacer Sequences. New Phytol. 2018, 220, 517–525. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Tedersoo, L.; Ryberg, M.; Kristiansson, E.; Hartmann, M.; Unterseher, M.; Porter, T.M.; Bengtsson-Palme, J.; Walker, D.M.; de Sousa, F.; et al. A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts. Microbes Environ. 2015, 30, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; May, T.W.; Frøslev, T.G.; Pawlowska, J.; Lindahl, B.; Põldmaa, K.; Truong, C.; et al. The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications Reconsidered. Nucleic Acids Res. 2024, 52, D791–D797. [Google Scholar] [CrossRef] [PubMed]
- Prodan, A.; Tremaroli, V.; Brolin, H.; Zwinderman, A.H.; Nieuwdorp, M.; Levin, E. Comparing Bioinformatic Pipelines for Microbial 16S rRNA Amplicon Sequencing. PLoS ONE 2020, 15, e0227434. [Google Scholar] [CrossRef]
- Almeida, A.; Mitchell, A.L.; Tarkowska, A.; Finn, R.D. Benchmarking Taxonomic Assignments Based on 16S rRNA Gene Profiling of the Microbiota from Commonly Sampled Environments. Gigascience 2018, 7, giy054. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Chiarello, M.; McCauley, M.; Villéger, S.; Jackson, C.R. Ranking the Biases: The Choice of OTUs vs. ASVs in 16S rRNA Amplicon Data Analysis Has Stronger Effects on Diversity Measures than Rarefaction and OTU Identity Threshold. PLoS ONE 2022, 17, e0264443. [Google Scholar] [CrossRef] [PubMed]
- Gweon, H.S.; Oliver, A.; Taylor, J.; Booth, T.; Gibbs, M.; Read, D.S.; Griffiths, R.I.; Schonrogge, K. PIPITS: An Automated Pipeline for Analyses of Fungal Internal Transcribed Spacer Sequences from the Illumina Sequencing Platform. Methods Ecol. Evol. 2015, 6, 973–980. [Google Scholar] [CrossRef] [PubMed]
- White, J.R.; Maddox, C.; White, O.; Angiuoli, S.V.; Fricke, W.F. CloVR-ITS: Automated Internal Transcribed Spacer Amplicon Sequence Analysis Pipeline for the Characterization of Fungal Microbiota. Microbiome 2013, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Mlaga, K.D.; Mathieu, A.; Beauparlant, C.J.; Ott, A.; Khodr, A.; Perin, O.; Droit, A. HCK and ABAA: A Newly Designed Pipeline to Improve Fungi Metabarcoding Analysis. Front. Microbiol. 2021, 12, 640693. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K.-H. Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evol. Bioinform. Online 2008, 4, EBO.S653. [Google Scholar] [CrossRef]
- Verreault, D.; Rousseau, G.M.; Gendron, L.; Massé, D.; Moineau, S.; Duchaine, C. Comparison of Polycarbonate and Polytetrafluoroethylene Filters for Sampling of Airborne Bacteriophages. Aerosol Sci. Technol. 2010, 44, 197–201. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Moossavi, S.; Atakora, F.; Fehr, K.; Khafipour, E. Biological Observations in Microbiota Analysis Are Robust to the Choice of 16S rRNA Gene Sequencing Processing Algorithm: Case Study on Human Milk Microbiota. BMC Microbiol. 2020, 20, 290. [Google Scholar] [CrossRef]
- Kameoka, S.; Motooka, D.; Watanabe, S.; Kubo, R.; Jung, N.; Midorikawa, Y.; Shinozaki, N.O.; Sawai, Y.; Takeda, A.K.; Nakamura, S. Benchmark of 16S rRNA Gene Amplicon Sequencing Using Japanese gut Microbiome Data from the V1–V2 and V3–V4 Primer Sets. BMC Genom. 2021, 22, 527. [Google Scholar] [CrossRef]
- Theresa, R.; Praeg, N.; Galla, G.; Seeber, J.; Hauffe, H.C.; Illmer, P. Comparison of Commonly Used Software Pipelines for Analyzing Fungal Metabarcoding Data. BMC Genom. 2024, 25, 1085. [Google Scholar] [CrossRef]
- Fares, M.; Tharwat, E.K.; Cleenwerck, I.; Monsieurs, P.; Van Houdt, R.; Vandamme, P.; El-Hadidi, M.; Mysara, M. The Unresolved Struggle of 16S rRNA Amplicon Sequencing: A Benchmarking Analysis of Clustering and Denoising Methods. Environ. Microbiome 2025, 20, 51. [Google Scholar] [CrossRef]
- Pauvert, C.; Buée, M.; Laval, V.; Edel-Hermann, V.; Fauchery, L.; Gautier, A.; Lesur, I.; Vallance, J.; Vacher, C. Bioinformatics Matters: The Accuracy of Plant and Soil Fungal Community Data is Highly Dependent on the Metabarcoding Pipeline. Fungal Ecol. 2019, 41, 23–33. [Google Scholar] [CrossRef]
- Joos, L.; Beirinckx, S.; Haegeman, A.; Debode, J.; Vandecasteele, B.; Baeyen, S.; Goormachtig, S.; Clement, L.; De Tender, C. Daring to Be Differential: Metabarcoding Analysis of Soil and Plant-Related Microbial Communities Using Amplicon Sequence Variants and Operational Taxonomical Units. BMC Genom. 2020, 21, 733. [Google Scholar] [CrossRef]
- Watanabe, K.; Yanagi, U.; Shiraishi, Y.; Harada, K.; Ogino, F.; Asano, K. Bacterial Communities in Various Parts of Air-Conditioning Units in 17 Japanese Houses. Microorganisms 2022, 10, 2246. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.; Park, J.; Chen, Y.-A.; Kawashima, H.; Mizuguchi, K. Impact of Quality Trimming on the Efficiency of Reads Joining and Diversity Analysis of Illumina Paired-End Reads in the Context of QIIME1 and QIIME2 Microbiome Analysis Frameworks. BMC Bioinform. 2019, 20, 581. [Google Scholar] [CrossRef] [PubMed]












| Sample Type | Sample ID | Number of Samples | Year | Way | Time Until Sequence (Month) |
|---|---|---|---|---|---|
| outdoors in summer | Outside_S | 5 (Tokyo), 3 (Aichi prefecture) | 2019 | Air sample 3 L/min (60 min) | 3 |
| outdoors in winter | Outside_W | 5 (Tokyo), 3 (Aichi prefecture) | 2020 | Air sample 3 L/min (60 min) | 8 |
| office in summer | Office_S | 5 (Tokyo), 3 (Aichi prefecture) | 2019 | Air sample 3 L/min (60 min) | 3 |
| office in winter | Office_W | 5 (Tokyo), 3 (Aichi prefecture) | 2020 | Air sample 3 L/min (60 min) | 8 |
| movie theater | Theater | 18 | 2023 | Swab 100 cm2 | 3 |
| air conditioner filter | AC_Filter | 17 | 2021 | Swab 50 cm2 | 4 |
| air conditioner coil | AC_Coil | 17 | 2021 | Swab 50 cm2 | 4 |
| Pipeline | QIIME1 | QIIME2 | ||
|---|---|---|---|---|
| Primer trimming | cutadapt | qiime cutadapt trim-paired | ||
| --errors | 0.2 | --p-error-rate | 0.2 | |
| --trimmed-only | TRUE | --p-discard-untrimmed | TRUE | |
| Quality filtering | cutadapt | dada2 --p-max-ee-f/ --p-max-ee-r | ||
| --quality-cutoff | 20 | |||
| --minimum-length | 2 | |||
| Pooling mode | NGmerge | qiime dada2 denoise-paired | ||
| -m: Minimum overlap of the paired-end reads | 20 | --p-trunc-len-f | 190 | |
| -e: Minimum overlap of dovetailed alignments | 100 | --p-trunc-len-r | 180 | |
| --p-trim-left-f | 0 | |||
| --p-trim-left-r | 0 | |||
| --p-max-ee-f | 2 | |||
| --p-max-ee-r | 2 | |||
| --p-pooling-method | default ‘independent’ | |||
| Chimera handling | usearch | --p-chimera-method | default ‘consensus’ | |
| -strand | plus | |||
| Classifier training | pick_de_novo_otus.py | qiime feature-classifier classify-sklearn | ||
| default | default | |||
| Rarefaction depth | alpha_rarefaction.py | qiime diversity alpha-rarefaction | ||
| --parameter_fp | Minimum lead count | --p-sampling-depth | Minimum lead count | |
| beta_diversity_through_plots.py | qiime diversity core-metrics-phylogenetic | |||
| default | --p-max-depth | Maximum number of leads | ||
| Outside_S | Outside_W | Office_S | Office_W | Theater | AC_Filter | AC_Coil | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| QIIME1 | QIIME2 | QIIME1 | QIIME2 | QIIME1 | QIIME2 | QIIME1 | QIIME2 | QIIME1 | QIIME2 | QIIME1 | QIIME2 | QIIME1 | QIIME2 | |
| Raw | 130,977 ± 18,076 | 76,097 ± 8832 | 125,850 ± 20,762 | 76,714 ± 10,179 | 96,637 ± 18,260 | 28,824 ± 7229 | 27,349 ± 5948 | |||||||
| Filtered | 130,527 ± 18,037 | 127,603 ± 18,531 | 75,499 ± 8759 | 74,641 ± 8592 | 125,412 ± 20,590 | 122,370 ± 21,141 | 76,100 ± 10,145 | 74,525 ± 9761 | 95,644 ± 18,017 | 94,877 ± 17,812 | 28,710 ± 7203 | 28,634 ± 7190 | 27,241 ± 5936 | 27,121 ± 5913 |
| Merged | 108,774 ± 17,679 | 106,199 ± 21,042 | 69,738 ± 8283 | 60,153 ± 11,767 | 107,636 ± 15,354 | 106,290 ± 20,538 | 69,894 ± 9428 | 59,943 ± 11,884 | 87,468 ± 15,495 | 84,744 ± 14,300 | 27,410 ± 6933 | 25,586 ± 6488 | 25,895 ± 5658 | 24,088 ± 5848 |
| Mean OUT/ASV | 108,774 ± 17,679 | 104,562 ± 21,262 | 69,738 ± 8283 | 59,925 ± 11,608 | 107,636 ± 15,354 | 105,564 ± 20,463 | 69,894 ± 9428 | 59,498 ± 11,848 | 87,468 ± 15,495 | 84,313 ± 14,067 | 27,410 ± 6933 | 25,453 ± 6396 | 25,895 ± 5658 | 23,924 ± 5800 |
| Minimum Library | 74,762 | 61,411 | 59,937 | 38,563 | 89,194 | 81,401 | 57,013 | 36,259 | 52,511 | 53,995 | 15,782 | 15,900 | 18,870 | 15,684 |
| Minimum Library/Raw | 0.75 | 0.62 | 0.90 | 0.50 | 0.81 | 0.76 | 0.90 | 0.42 | 0.87 | 0.79 | 0.92 | 0.80 | 0.93 | 0.77 |
| Maximum Library | 130,655 | 124,430 | 86,034 | 76,782 | 138,066 | 143,534 | 87,207 | 80,318 | 113,400 | 110,937 | 47,233 | 44,327 | 39,295 | 36,755 |
| Maximum Library/Raw | 0.87 | 0.87 | 0.93 | 0.88 | 0.89 | 0.90 | 0.93 | 0.88 | 0.93 | 0.94 | 0.96 | 0.97 | 0.97 | 0.95 |
| Mean OUTs/ASVs | 1371 ± 353 | 82 ± 73 | 706 ± 165 | 211 ± 116 | 1195 ± 280 | 58 ± 14 | 707 ± 203 | 158 ± 18 | 751 ± 249 | 77 ± 71 | 620 ± 447 | 243 ± 162 | 311 ± 72 | 104 ± 48 |
| Minimum OUTs/ASVs | 857 | 28 | 564 | 124 | 962 | 38 | 466 | 118 | 317 | 24 | 199 | 44 | 184 | 46 |
| Maximum OUTs/ASVs | 2103 | 271 | 1107 | 505 | 1837 | 78 | 1205 | 179 | 1359 | 321 | 1805 | 555 | 459 | 201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, K.; Yanagi, U. Comparison of QIIME1 and QIIME2 for Analyzing Fungal Samples from Various Built Environments. Microorganisms 2025, 13, 2545. https://doi.org/10.3390/microorganisms13112545
Watanabe K, Yanagi U. Comparison of QIIME1 and QIIME2 for Analyzing Fungal Samples from Various Built Environments. Microorganisms. 2025; 13(11):2545. https://doi.org/10.3390/microorganisms13112545
Chicago/Turabian StyleWatanabe, Kensuke, and U Yanagi. 2025. "Comparison of QIIME1 and QIIME2 for Analyzing Fungal Samples from Various Built Environments" Microorganisms 13, no. 11: 2545. https://doi.org/10.3390/microorganisms13112545
APA StyleWatanabe, K., & Yanagi, U. (2025). Comparison of QIIME1 and QIIME2 for Analyzing Fungal Samples from Various Built Environments. Microorganisms, 13(11), 2545. https://doi.org/10.3390/microorganisms13112545

