Aerosolization Affects Bacillus globigii Vegetative Cell and Spore Behaviors
Abstract
1. Introduction
2. Materials and Methods
2.1. Aerosolization Chamber and Experimental Setup
2.2. Preparation of Bacillus globigii Cultures
2.3. Aerosolization and Bioaerosol Collection
2.4. Plating and Antibiotic Susceptibility
2.5. DNA Extraction and Quantitative Polymerase Chain Reaction
2.6. Data Analysis and Statistical Significance
2.7. Computational Fluid Dynamics Modeling
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Belay, W.Y.; Getachew, M.; Tegegne, B.A.; Teffera, Z.H.; Dagne, A.; Zeleke, T.K.; Abebe, R.B.; Gedif, A.A.; Fenta, A.; Yirdaw, G.; et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Front. Pharmacol. 2024, 15, 1444781. [Google Scholar] [CrossRef]
- Drug-Resistant Infections: A Threat to Our Economic Future. 2017. Available online: https://documents1.worldbank.org/curated/en/323311493396993758/pdf/final-report.pdf (accessed on 3 September 2025).
- Rattanaumpawan, P.; Chuenchom, N.; Thamlikitkul, V. Thamlikitkul, Perception, attitude, knowledge and learning style preference on challenges of antimicrobial resistance and antimicrobial overuse among first year doctors in training and final year medical students. Antimicrob. Resist. Infect. Control. 2019, 8, 142. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 2. [Google Scholar] [CrossRef]
- Seyoum, M.M.; Obayomi, O.; Bernstein, N.; Williams, C.F.; Gillor, O. Occurrence and distribution of antibiotics and corresponding antibiotic resistance genes in different soil types irrigated with treated wastewater. Sci. Total Environ. 2021, 782, 146835. [Google Scholar] [CrossRef]
- Sharma, S.; Chauhan, A.; Ranjan, A.; Mathkor, D.M.; Haque, S.; Ramniwas, S.; Tuli, H.S.; Jindal, T.; Yadav, V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front. Microbiol. 2024, 15, 1403168. [Google Scholar] [CrossRef] [PubMed]
- Endale, H.; Mathewos, M.; Abdeta, D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect. Drug Resist. 2023, 16, 7515–7545. [Google Scholar] [CrossRef] [PubMed]
- Ifedinezi, O.V.; Nnaji, N.D.; Anumudu, C.K.; Ekwueme, C.T.; Uhegwu, C.C.; Ihenetu, F.C.; Obioha, P.; Simon, B.O.; Ezechukwu, P.S.; Onyeaka, H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics 2024, 13, 1087. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef]
- Ham, Y.-H.; Cheng, J.; Nagl, S.; Yu, J.Z.; Cai, Z.; Chan, W. Surgical Face Mask as an Air Sampling Device for Assessing Personal Exposure to Airborne Antimicrobial Resistance Gene-Bearing Bacteria. Anal. Chem. 2024, 96, 17021–17026. [Google Scholar] [CrossRef]
- George, P.B.L.; Rossi, F.; St-Germain, M.-W.; Amato, P.; Badard, T.; Bergeron, M.G.; Boissinot, M.; Charette, S.J.; Coleman, B.L.; Corbeil, J.; et al. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics 2022, 11, 974. [Google Scholar] [CrossRef]
- Kobayashi, S.; Tamamura-Andoh, Y.; Yamane, I.; Kusumoto, M.; Katsuda, K. The association between farm-level antimicrobial usage and resistance of Staphylococcus spp., as the major genus isolated from aerosol samples, in Japanese piggeries. Front. Veter. Sci. 2023, 10, 1127819. [Google Scholar] [CrossRef]
- Smith, B.L.; King, M.D. Aerosolization triggers immediate antibiotic resistance in bacteria. J. Aerosol Sci. 2022, 164, 106017. [Google Scholar] [CrossRef]
- Smith, B.L.; King, M.D. Quiescence of Escherichia coli Aerosols to Survive Mechanical Stress during High-Velocity Collection. Microorganisms 2023, 11, 647. [Google Scholar] [CrossRef]
- Smith, B.L.; Zhang, M.; King, M.D. Airborne Escherichia coli bacteria biosynthesize lipids in response to aerosolization stress. Sci. Rep. 2025, 15, 2349. [Google Scholar] [CrossRef]
- Bagra, K.; Bellanger, X.; Merlin, C.; Singh, G.; Berendonk, T.U.; Klümper, U. Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. Sci. Total Environ. 2023, 904, 166661. [Google Scholar] [CrossRef]
- Wang, M.; Tian, Y.; Xu, L.; Zhang, F.; Lu, H.; Li, M.; Li, B. High Osmotic Stress Increases OmpK36 Expression through the Regulation of KbvR to Decrease the Antimicrobial Resistance of Klebsiella pneumoniae. Microbiol. Spectr. 2022, 10, e0050722. [Google Scholar] [CrossRef]
- Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Zhou, Y.; Cheng, G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021, 26, 4277. [Google Scholar] [CrossRef] [PubMed]
- Krüger, G.I.; Urbina, F.; Pardo-Esté, C.; Salinas, V.; Álvarez, J.; Avilés, N.; Oviedo, A.; Kusch, C.; Pavez, V.; Vernal, R.; et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms 2025, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- Mikelonis, A.M.; Ratliff, K.; Youn, S. Laboratory results and mathematical modeling of spore surface interactions in stormwater runoff. J. Contam. Hydrol. 2020, 235, 103707. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Szabo, J.; Magnuson, M.; Harper, W.F. Clustering, morphology, and treatment resistance of Bacillus globigii spores recovered from a pilot-scale activated sludge system. Chemosphere 2020, 260, 127591. [Google Scholar] [CrossRef]
- Chichester, K.D.; Silcott, D.B.; Colyer, C.L. Analysis of Bacillus globigii spores by CE. Electrophoresis 2008, 29, 641–651. [Google Scholar] [CrossRef]
- Christie, G.; Setlow, P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell. Signal. 2020, 74, 109729. [Google Scholar] [CrossRef]
- Gauvry, E.; Mathot, A.-G.; Couvert, O.; Leguérinel, I.; Jules, M.; Coroller, L. Differentiation of Vegetative Cells into Spores: A Kinetic Model Applied to Bacillus subtilis. Appl. Environ. Microbiol. 2019, 85, e00322-19. [Google Scholar] [CrossRef] [PubMed]
- Setlow, B.; Atluri, S.; Kitchel, R.; Koziol-Dube, K.; Setlow, P. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins. J. Bacteriol. 2006, 188, 3740–3747. [Google Scholar] [CrossRef] [PubMed]
- Sinai, L.; Rosenberg, A.; Smith, Y.; Segev, E.; Ben-Yehuda, S. The molecular timeline of a reviving bacterial spore. Mol. Cell 2015, 57, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Sella, S.R.; Vandenberghe, L.P.; Soccol, C.R. Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiol. Res. 2014, 169, 931–939. [Google Scholar] [CrossRef]
- Rohde, M. The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7, 3. [Google Scholar] [CrossRef]
- Guldimann, C.; Boor, K.J.; Wiedmann, M.; Guariglia-Oropeza, V. Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression to Support Homeostasis in Gram-Positive Bacteria. Appl. Environ. Microbiol. 2016, 82, 4456–4469. [Google Scholar] [CrossRef]
- González, L.M.; Mukhitov, N.; Voigt, C.A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 2020, 16, 126–133. [Google Scholar] [CrossRef]
- Whatmore, A.M.; Reed, R.H. Determination of turgor pressure in Bacillus subtilis: A possible role for K+ in turgor regulation. J. Gen. Microbiol. 1990, 136, 2521–2526. [Google Scholar] [CrossRef] [PubMed]
- Oswin, H.P.; Haddrell, A.E.; Hughes, C.; Otero-Fernandez, M.; Thomas, R.J.; Reid, J.P. Oxidative Stress Contributes to Bacterial Airborne Loss of Viability. Microbiol. Spectr. 2023, 11, e0334722. [Google Scholar] [CrossRef]
- Hu, S.; McFarland, A.R. Numerical Performance Simulation of a Wetted Wall Bioaerosol Sampling Cyclone. Aerosol Sci. Technol. 2007, 41, 160–168. [Google Scholar] [CrossRef]
- Setlow, P. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Pak, H.; King, S.D.; Zuniga, A.A.; Hassan, Y.A.; King, M.D. Mitigating airborne pathogen risks in a full-scale meat processing facility. Total Environ. Microbiol. 2025, 1, 100025. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2009. Available online: https://asm.org/protocols/kirby-bauer-disk-diffusion-susceptibility-test-pro (accessed on 3 September 2025).
- Zhang, M.; Smith, B.L.; Wilsey, R.N.; Koch, T.N.; Dohanich, E.; McShane, P.J.; Honda, J.R.; King, M.D. Culture and real-time quantitative PCR to detect environmental nontuberculous mycobacteria in a clinical care center. Total Environ. Microbiol. 2025, 1, 100016. [Google Scholar] [CrossRef]
- Suzuki, M.T.; Taylor, L.T.; DeLong, E.F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 2000, 66, 4679–4687. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Sehulster, L.; Chinn, R.Y.W. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm. Rep. 2003, 52, 1–42. [Google Scholar]
- Chosewood, C.L.; Wilson, D.E. Biosafety in Microbiological and Biomedical Laboratories, 5th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2009. [Google Scholar]
- Anthrax. Available online: https://www.osha.gov/anthrax/medical-information# (accessed on 3 September 2025).
- Morawska, L.P.; Kuipers, O.P. Antibiotic tolerance in environmentally stressed Bacillus subtilis: Physical barriers and induction of a viable but nonculturable state. MicroLife 2022, 3, uqac010. [Google Scholar] [CrossRef]
- Cho, W.I.; Chung, M.S. Bacillus spores: A review of their properties and inactivation processing technologies. Food Sci. Biotechnol. 2020, 29, 1447–1461. [Google Scholar] [CrossRef] [PubMed]
- Modugno, C.; Peltier, C.; Simonin, H.; Dujourdy, L.; Capitani, F.; Sandt, C.; Perrier-Cornet, J.-M. Understanding the Effects of High Pressure on Bacterial Spores Using Synchrotron Infrared Spectroscopy. Front. Microbiol. 2020, 10, 3122. [Google Scholar] [CrossRef]
- Setlow, P. Spore Resistance Properties. Microbiol. Spectr. 2014, 2, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Driks, A. The Bacillus anthracis spore. Mol. Asp. Med. 2009, 30, 368–373. [Google Scholar] [CrossRef] [PubMed]










| Parameter | Value |
|---|---|
| Temperature | 27 °C |
| Inlet | Velocity Inlet (4.937 m/s) |
| Natural Leakage Outlet | Pressure Outlet (0 Pa) |
| Walls | Stationary, No Slip |
| Tolerance (x) | 10−3 |
| Tolerance (y) | 10−3 |
| Tolerance (P) | 10−3 |
| Tolerance (velocity) | 10−3 |
| Tolerance (k) | 10−3 |
| Tolerance (ω) | 10−3 |
| Aerosolization Time, min | Mass Median Diameter, µm | Average Diameter, µm | Particle Concentration, Number/cm3 |
|---|---|---|---|
| 5 | 0.936 | 0.990 | 1498 |
| 10 | 0.630 | 0.753 | 3026 |
| 15 | 0.643 | 0.785 | 1232 |
| 30 | 0.656 | 0.721 | 664 |
| 45 | 0.633 | 0.705 | 1436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B.L.; Zhang, M.; Kumar, S.; King, M.D. Aerosolization Affects Bacillus globigii Vegetative Cell and Spore Behaviors. Microorganisms 2025, 13, 2532. https://doi.org/10.3390/microorganisms13112532
Smith BL, Zhang M, Kumar S, King MD. Aerosolization Affects Bacillus globigii Vegetative Cell and Spore Behaviors. Microorganisms. 2025; 13(11):2532. https://doi.org/10.3390/microorganisms13112532
Chicago/Turabian StyleSmith, Brooke L., Meiyi Zhang, Sunil Kumar, and Maria D. King. 2025. "Aerosolization Affects Bacillus globigii Vegetative Cell and Spore Behaviors" Microorganisms 13, no. 11: 2532. https://doi.org/10.3390/microorganisms13112532
APA StyleSmith, B. L., Zhang, M., Kumar, S., & King, M. D. (2025). Aerosolization Affects Bacillus globigii Vegetative Cell and Spore Behaviors. Microorganisms, 13(11), 2532. https://doi.org/10.3390/microorganisms13112532

