Multiscale Patterns of Bacterial and Protist Diversity Across Red Sea Coral Reefs
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Stations
2.2. Laboratory Processing
2.3. Bioinformatics Processing
2.4. Data Analysis
2.4.1. Taxonomic Overview Visualization
2.4.2. Alpha Diversity Statistics
2.4.3. Beta Diversity Statistics
2.4.4. Redundancy Analysis
2.4.5. Indicator ESV Analysis
3. Results
3.1. Community Composition Overview
3.2. Impact of Reef and Exposure Site on Microbial Community Composition
3.3. Microbial ESVs as Bioindicators
4. Discussion
4.1. Reef-Specific Bacterial and Protist Assemblages in the Red Sea
4.2. Within-Reef Community Differences Reveal Microhabitat-Driven Divergence
4.3. Cross-Domain Comparisons Reveal Overlapping but Non-Redundant Patterns
4.4. Indicator Taxa and Classification Models Support Community-Based Monitoring
4.5. Implications and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Moberg, F.; Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 1999, 29, 215–233. [Google Scholar] [CrossRef]
- Bourne, D.G.; Webster, N.S. Coral reef bacterial communities. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 163–187. [Google Scholar]
- Ainsworth, T.; Fordyce, A.; Camp, E. The other microeukaryotes of the coral reef microbiome. Trends Microbiol. 2017, 25, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Bayer, T.; Neave, M.J.; Alsheikh-Hussain, A.; Aranda, M.; Yum, L.K.; Mincer, T.; Hughen, K.; Apprill, A.; Voolstra, C.R. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl. Environ. Microbiol. 2013, 79, 4759–4762. [Google Scholar] [CrossRef] [PubMed]
- Galand, P.E.; Ruscheweyh, H.-J.; Salazar, G.; Hochart, C.; Henry, N.; Hume, B.C.; Oliveira, P.H.; Perdereau, A.; Labadie, K.; Belser, C. Diversity of the Pacific Ocean coral reef microbiome. Nat. Commun. 2023, 14, 3039. [Google Scholar] [CrossRef]
- Delgadillo-Ordoñez, N.; Raimundo, I.; Barno, A.R.; Osman, E.O.; Villela, H.; Bennett-Smith, M.; Voolstra, C.R.; Benzoni, F.; Peixoto, R.S. Red Sea atlas of coral-associated bacteria highlights common microbiome members and their distribution across environmental gradients—A systematic review. Microorganisms 2022, 10, 2340. [Google Scholar] [CrossRef]
- Osman, E.O.; Suggett, D.J.; Voolstra, C.R.; Pettay, D.T.; Clark, D.R.; Pogoreutz, C.; Sampayo, E.M.; Warner, M.E.; Smith, D.J. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 2020, 8, 8. [Google Scholar]
- Neave, M.J.; Apprill, A.; Aeby, G.; Miyake, S.; Voolstra, C.R. Microbial communities of Red Sea coral reefs. In Coral Reefs of the Red Sea; Springer: Berlin/Heidelberg, Germany, 2019; pp. 53–68. [Google Scholar]
- Frühe, L.; Klein, S.G.; Angulo-Preckler, C.; Martynova, A.; Alamoudi, T.; García, J.V.A.; Arossa, S.; Breavington, J.; Frappi, S.; Laiolo, E. Particle-Associated Bacterioplankton Communities Across the Red Sea. Environ. Microbiol. 2025, 27, e70075. [Google Scholar] [CrossRef]
- Gaidos, E.; Rusch, A.; Ilardo, M. Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: Community spatial structure, rare members and nitrogen-cycling guilds. Environ. Microbiol. 2011, 13, 1138–1152. [Google Scholar] [CrossRef]
- Naumann, M.S.; Richter, C.; el-Zibdah, M.; Wild, C. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: Implications for pelagic–benthic coupling in the reef ecosystem. Mar. Ecol. Prog. Ser. 2009, 385, 65–76. [Google Scholar] [CrossRef]
- Mayer, F.W.; Wild, C. Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. Mar. Freshw. Res. 2010, 61, 1006–1014. [Google Scholar] [CrossRef]
- Ducklow, H.W. The biomass, production and fate of bacteria in coral reefs. Ecosyst. World 1990, 25, 265–289. [Google Scholar]
- Rochelle-Newall, E.; Torréton, J.-P.; Mari, X.; Pringault, O. Phytoplankton-bacterioplankton coupling in a subtropical South Pacific coral reef lagoon. Aquat. Microb. Ecol. 2008, 50, 221–229. [Google Scholar] [CrossRef]
- Van Duyl, F.; Gast, G.; Steinhoff, W.; Kloff, S.; Veldhuis, M.; Bak, R. Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters. Coral Reefs 2002, 21, 293–306. [Google Scholar] [CrossRef]
- Sorokin, Y.I. Microbial production in the coral-reef community. Pascal Fr. Bibliogr. Databases 1978, 83, 281–323. [Google Scholar]
- Yoshinaga, I.; Fukami, K.; Ishida, Y. Comparison of DNA and protein synthesis rates of bacterial assemblages between coral reef waters and pelagic waters in tropical ocean. Mar. Ecol. Prog. Ser. 1991, 76, 167–174. [Google Scholar] [CrossRef]
- Yahel, R.; Yahel, G.; Genin, A. Daily cycles of suspended sand at coral reefs: A biological control. Limnol. Oceanogr. 2002, 47, 1071–1083. [Google Scholar] [CrossRef]
- Rasheed, M.; Wild, C.; Franke, U.; Huettel, M. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia. Estuar. Coast. Shelf Sci. 2004, 59, 139–150. [Google Scholar] [CrossRef]
- Frade, P.R.; Glasl, B.; Matthews, S.A.; Mellin, C.; Serrão, E.A.; Wolfe, K.; Mumby, P.J.; Webster, N.S.; Bourne, D.G. Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Commun. Biol. 2020, 3, 442. [Google Scholar] [CrossRef]
- Glasl, B.; Bourne, D.G.; Frade, P.R.; Thomas, T.; Schaffelke, B.; Webster, N.S. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 2019, 7, 94. [Google Scholar] [CrossRef]
- Osman, E.O.; Smith, D.J.; Ziegler, M.; Kürten, B.; Conrad, C.; El-Haddad, K.M.; Voolstra, C.R.; Suggett, D.J. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Change Biol. 2018, 24, e474–e484. [Google Scholar] [CrossRef]
- Ngugi, D.K.; Antunes, A.; Brune, A.; Stingl, U. Biogeography of pelagic bacterioplankton across an antagonistic temperature–salinity gradient in the Red Sea. Mol. Ecol. 2012, 21, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Hoteit, I. Rapid red sea deep water renewals caused by volcanic eruptions and the north atlantic oscillation. Sci. Adv. 2018, 4, eaar5637. [Google Scholar] [CrossRef] [PubMed]
- Raitsos, D.E.; Yi, X.; Platt, T.; Racault, M.F.; Brewin, R.J.; Pradhan, Y.; Papadopoulos, V.P.; Sathyendranath, S.; Hoteit, I. Monsoon oscillations regulate fertility of the Red Sea. Geophys. Res. Lett. 2015, 42, 855–862. [Google Scholar] [CrossRef]
- Chaidez, V.; Dreano, D.; Agusti, S.; Duarte, C.; Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 2017, 7, 8144. [Google Scholar] [CrossRef]
- Sofianos, S.S.; Johns, W.E. An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J. Geophys. Res. Ocean. 2002, 107, 17-1–17-11. [Google Scholar] [CrossRef]
- Hench, J.L.; Leichter, J.J.; Monismith, S.G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 2008, 53, 2681–2694. [Google Scholar] [CrossRef]
- Nelson, C.E.; Alldredge, A.L.; McCliment, E.A.; Amaral-Zettler, L.A.; Carlson, C.A. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J. 2011, 5, 1374–1387. [Google Scholar] [CrossRef]
- Cordier, T.; Esling, P.; Lejzerowicz, F.; Visco, J.; Ouadahi, A.; Martins, C.; Cedhagen, T.; Pawlowski, J. Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ. Sci. Technol. 2017, 51, 9118–9126. [Google Scholar] [CrossRef]
- Cordier, T.; Forster, D.; Dufresne, Y.; Martins, C.I.; Stoeck, T.; Pawlowski, J. Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring. Mol. Ecol. Resour. 2018, 18, 1381–1391. [Google Scholar] [CrossRef]
- Frühe, L.; Cordier, T.; Dully, V.; Breiner, H.W.; Lentendu, G.; Pawlowski, J.; Martins, C.; Wilding, T.A.; Stoeck, T. Supervised machine learning is superior to indicator value inference in monitoring the environmental impacts of salmon aquaculture using eDNA metabarcodes. Mol. Ecol. 2021, 30, 2988–3006. [Google Scholar] [CrossRef]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Stoeck, T.; Bass, D.; Nebel, M.; Christen, R.; Jones, M.D.; Breiner, H.W.; Richards, T.A. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010, 19, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Buchner, D.; Macher, T.-H.; Leese, F. APSCALE: Advanced pipeline for simple yet comprehensive analyses of DNA metabarcoding data. Bioinformatics 2022, 38, 4817–4819. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Frøslev, T.G.; Kjøller, R.; Bruun, H.H.; Ejrnæs, R.; Brunbjerg, A.K.; Pietroni, C.; Hansen, A.J. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 2017, 8, 1188. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; De Vargas, C.; Decelle, J. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012, 41, D597–D604. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef]
- Cáceres, M.D.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Ma, L.; Becker, C.; Weber, L.; Sullivan, C.; Zgliczynski, B.; Sandin, S.; Brandt, M.; Smith, T.B.; Apprill, A. Biogeography of reef water microbes from within-reef to global scales. Aquat. Microb. Ecol. 2022, 88, 81–94. [Google Scholar] [CrossRef]
- Milke, F.; Wagner-Doebler, I.; Wienhausen, G.; Simon, M. Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean. ISME J. 2022, 16, 2653–2665. [Google Scholar] [CrossRef]
- Shao, Q.; Sun, D.; Fang, C.; Feng, Y.; Wang, C. Biodiversity and biogeography of abundant and rare microbial assemblages in the Western subtropical Pacific Ocean. Front. Microbiol. 2022, 13, 839562. [Google Scholar] [CrossRef] [PubMed]
- Zakem, E.J.; McNichol, J.; Weissman, J.; Raut, Y.; Xu, L.; Halewood, E.R.; Carlson, C.A.; Dutkiewicz, S.; Fuhrman, J.A.; Levine, N.M. Functional biogeography of marine microbial heterotrophs. Science 2025, 388, eado5323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Chen, B.; Yu, Y.; Wang, T.; Xu, N.; Fan, X.; Penuelas, J.; Fu, Z.; Deng, Y. Global biogeography of microbes driving ocean ecological status under climate change. Nat. Commun. 2024, 15, 4657. [Google Scholar] [CrossRef] [PubMed]
- Schwob, G.; Segovia, N.I.; González-Wevar, C.; Cabrol, L.; Orlando, J.; Poulin, E. Exploring the microdiversity within marine bacterial taxa: Toward an integrated biogeography in the Southern Ocean. Front. Microbiol. 2021, 12, 703792. [Google Scholar] [CrossRef]
- Martiny, J.B.H.; Bohannan, B.J.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Horner-Devine, M.C.; Kane, M.; Krumins, J.A.; Kuske, C.R. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 2006, 4, 102–112. [Google Scholar] [CrossRef]
- Weber, L.; González-Díaz, P.; Armenteros, M.; Ferrer, V.M.; Bretos, F.; Bartels, E.; Santoro, A.E.; Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: Changes from Cuba to the Florida Keys. Environ. Microbiol. 2020, 22, 499–519. [Google Scholar] [CrossRef]
- Littman, R.A.; Willis, B.L.; Pfeffer, C.; Bourne, D.G. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol. Ecol. 2009, 68, 152–163. [Google Scholar] [CrossRef]
- Schwalbach, M.S.; Brown, M.; Fuhrman, J.A. Impact of light on marine bacterioplankton community structure. Aquat. Microb. Ecol. 2005, 39, 235–245. [Google Scholar] [CrossRef]
- Abirami, B.; Radhakrishnan, M.; Kumaran, S.; Wilson, A. Impacts of global warming on marine microbial communities. Sci. Total Environ. 2021, 791, 147905. [Google Scholar] [CrossRef]
- Brown, S.A.; Balmonte, J.P.; Hoarfrost, A.; Ghobrial, S.; Arnosti, C. Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean. Biogeosciences 2022, 19, 5617–5631. [Google Scholar] [CrossRef]
- Moran, M.A. The global ocean microbiome. Science 2015, 350, aac8455. [Google Scholar] [CrossRef]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef]
- Harbeitner, R.C.; Wittmers, F.; Yung, C.C.; Eckmann, C.A.; Hehenberger, E.; Blum, M.; Needham, D.M.; Worden, A.Z. Gradients of bacteria in the oceanic water column reveal finely-resolved vertical distributions. PLoS ONE 2024, 19, e0298139. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-C.; Fuhrman, J.A. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME Commun. 2022, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Schaechter, M. Eukaryotic Microbes; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Austin, B. Bacterial pathogens of marine fish. In Oceans and Health: Pathogens in the Marine Environment; Springer: Berlin/Heidelberg, Germany, 2005; pp. 391–413. [Google Scholar]
- Petersen, J.M.; Yuen, B. The symbiotic “all-rounders”: Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 2021, 87, e02129–20. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kang, H.C.; Lim, A.S.; Jang, S.H.; Lee, K.; Lee, S.Y.; Ok, J.H.; You, J.H.; Kim, J.H.; Lee, K.H. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 2021, 7, eabe4214. [Google Scholar] [CrossRef]
- Xu, K.; Choi, J.K.; Yang, E.J.; Lee, K.C.; Lei, Y. Biomonitoring of coastal pollution status using protozoan communities with a modified PFU method. Mar. Pollut. Bull. 2002, 44, 877–886. [Google Scholar] [CrossRef]
- El-Tohamy, W.S.; Hopcroft, R.R. Planktonic ciliate communities along an environmental gradient in the Nile Delta (Damietta region, Egypt). Sci. Rep. 2024, 14, 19950. [Google Scholar] [CrossRef]
- Vekeman, B.; Kerckhof, F.M.; Cremers, G.; De Vos, P.; Vandamme, P.; Boon, N.; Op den Camp, H.J.; Heylen, K. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ. Microbiol. 2016, 18, 4523–4536. [Google Scholar] [CrossRef]
- Swan, B.K.; Martinez-Garcia, M.; Preston, C.M.; Sczyrba, A.; Woyke, T.; Lamy, D.; Reinthaler, T.; Poulton, N.J.; Masland, E.D.P.; Gomez, M.L. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 2011, 333, 1296–1300. [Google Scholar] [CrossRef]
- Malfertheiner, L.; Martínez-Pérez, C.; Zhao, Z.; Herndl, G.J.; Baltar, F. Phylogeny and metabolic potential of the candidate phylum SAR324. Biology 2022, 11, 599. [Google Scholar] [CrossRef]
- Wasmund, K.; Schreiber, L.; Lloyd, K.G.; Petersen, D.G.; Schramm, A.; Stepanauskas, R.; Jørgensen, B.B.; Adrian, L. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J. 2014, 8, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Oborník, M.; Modrý, D.; Lukeš, M.; Černotíková-Stříbrná, E.; Cihlář, J.; Tesařová, M.; Kotabová, E.; Vancová, M.; Prášil, O.; Lukeš, J. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 2012, 163, 306–323. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.R.; Cumbo, V.R.; Harii, S.; Shinzato, C.; Chan, C.X.; Ragan, M.A.; Satoh, N.; Ball, E.E.; Miller, D.J. Deciphering the nature of the coral–Chromera association. ISME J. 2018, 12, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Hohenegger, J. Functional shell geometry of symbiont-bearing benthic Foraminifera. Galaxea J. Coral Reef Stud. 2009, 11, 81–89. [Google Scholar] [CrossRef]
- Hallock, P.; Lidz, B.H.; Cockey-Burkhard, E.M.; Donnelly, K.B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM index. Environ. Monit. Assess. 2003, 81, 221–238. [Google Scholar] [CrossRef]
- Prazeres, M.; Martínez-Colón, M.; Hallock, P. Foraminifera as bioindicators of water quality: The FoRAM Index revisited. Environ. Pollut. 2020, 257, 113612. [Google Scholar] [CrossRef]






| Primer | Gene | Target Taxa | References |
|---|---|---|---|
| 16S27F534R | 16S | Bacteria (BAC) | Muyzer et al. 1993, Weisburg et al. 1992 [34,35] |
| 18SV9M | 18S | Protists (PRO) | Stoeck et al. [36] |
| Reef | Bacteria | Protists | ||
|---|---|---|---|---|
| R2 | p | R2 | p | |
| KAEC | 0.41 | 0.001 *** | 0.34 | 0.001 *** |
| Abu Shosha | 0.35 | 0.001 *** | 0.25 | 0.002 ** |
| Tahla | 0.28 | 0.002 ** | 0.11 | 0.014 * |
| Al-Fahal | 0.17 | 0.008 ** | 0.13 | 0.003 ** |
| Shib Nazar | 0.13 | 0.001 *** | 0.16 | 0.001 *** |
| Qita’ Al-Gersh | 0.11 | 0.01 ** | 0.1 | 0.005 ** |
| (a) | |||
| Exposed | Sheltered | Class Error | |
| Exposed | 52 | 2 | 3.7% |
| Sheltered | 11 | 43 | 20.4% |
| (b) | |||
| Exposed | Sheltered | Class Error | |
| Exposed | 45 | 9 | 16.67% |
| Sheltered | 9 | 45 | 16.67% |
| (a) | |||||||
| ESV | Domain | Phylum | Class | Order | Family | Genus | |
| ESV_158 | Bacteria | Proteobacteria | Alphaproteobacteria | Rhizobiales | Methyloligellaceae | Methyloceanibacter | |
| ESV_599 | Bacteria | Chloroflexi | KD4-96 | Uncult. bacterium | |||
| ESV_2055 | Bacteria | Actinobacteriota | Acidimicrobiia | Actinomarinales | Uncult. bacterium | ||
| ESV_413 | Bacteria | SAR324 clade(Marine Group B) | Uncult. bacterium | ||||
| ESV_879 | Bacteria | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Marinovum | |
| (b) | |||||||
| ESV | Domain | Phylum | Class | Order | Family | Genus | Species |
| ESV_409 | Eukaryota | Alveolata | Colpodellidea | Vitrelladida | Vitrellaceae | ||
| ESV_397 | Eukaryota | Alveolata | Litostomatea | Haptoria_5 | Pleurostomatida | Epiphyllum | E. shenzhenense |
| ESV_2021 | Eukaryota | Rhizaria | Tubothalamea | Miliolida | |||
| ESV_40 | Eukaryota | Opisthokonta | |||||
| ESV_843 | Eukaryota | Rhizaria | |||||
| ESV_1531 | Eukaryota | Rhizaria | Globothalamea | Rotaliida | |||
| ESV_2932 | Eukaryota | Rhizaria | Tubothalamea | Miliolida | Moliolidae | ||
| ESV_362 | Eukaryota | Alveolata | Gregarinomorphea | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hempel, C.A.; Frühe, L. Multiscale Patterns of Bacterial and Protist Diversity Across Red Sea Coral Reefs. Microorganisms 2025, 13, 2549. https://doi.org/10.3390/microorganisms13112549
Hempel CA, Frühe L. Multiscale Patterns of Bacterial and Protist Diversity Across Red Sea Coral Reefs. Microorganisms. 2025; 13(11):2549. https://doi.org/10.3390/microorganisms13112549
Chicago/Turabian StyleHempel, Christopher A., and Larissa Frühe. 2025. "Multiscale Patterns of Bacterial and Protist Diversity Across Red Sea Coral Reefs" Microorganisms 13, no. 11: 2549. https://doi.org/10.3390/microorganisms13112549
APA StyleHempel, C. A., & Frühe, L. (2025). Multiscale Patterns of Bacterial and Protist Diversity Across Red Sea Coral Reefs. Microorganisms, 13(11), 2549. https://doi.org/10.3390/microorganisms13112549

