Next Issue
Volume 7, October
Previous Issue
Volume 7, June
 
 

Prosthesis, Volume 7, Issue 4 (August 2025) – 35 articles

Cover Story (view full-size image): Using a lower-limb prosthesis can impact all aspects of daily life, activities, and participation. While the effect of microprocessor-controlled knees compared to non-microprocessor-controlled knees has been studied before, the results are inconsistent and raise the question of which type of knee is most effective. Therefore, we assessed the effect of MPKs compared to NMPKs across all classified ICF domains in adult prosthesis users, utilizing a combination of questionnaires and physical tests. The results of this study demonstrate that using an MPK instead of an NMPK can lead to significant improvements in all classified ICF domains. We recommend considering all classified ICF domains when selecting or evaluating a new prosthetic knee. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 1383 KB  
Article
Surgeon Learning Curve for Minimally Invasive Hemiarthroplasty Using the Direct Anterior Approach for Treatment of Femoral Neck Fractures in Elderly Patients
by Francesco Maruccia, Assad Assaker, Massimiliano Copetti, Serena Filoni, Giacomo Trivellin, Andrea Perna, Franco Gorgoglione and Nicholas Elena
Prosthesis 2025, 7(4), 102; https://doi.org/10.3390/prosthesis7040102 - 20 Aug 2025
Viewed by 199
Abstract
Background: Femoral neck fractures (FNFs) are common injuries among the elderly and are a significant cause of morbidity and mortality. Hemiarthroplasty (HA) is the most suitable choice for elderly patients with multiple comorbidities and reduced functional demands. The direct anterior approach (DAA) to [...] Read more.
Background: Femoral neck fractures (FNFs) are common injuries among the elderly and are a significant cause of morbidity and mortality. Hemiarthroplasty (HA) is the most suitable choice for elderly patients with multiple comorbidities and reduced functional demands. The direct anterior approach (DAA) to perform HA is widely used because, among other attractive features, it facilitates recovery of functional outcomes by limiting iatrogenic muscle damage. The learning curve for surgeons who perform minimally invasive HA using the DAA approach is unknown. The purpose of the study is to perform this determination. Methods: 850 patients (age: 82 ± 6 years) who had suffered FNFs were enrolled for the study between January 2017 and September 2022. The patients underwent minimally invasive hemiarthroplasty (using the anterior minimally invasive surgical (AMIS) technique) and DAA (AMIS + DAA). The patients were divided into three groups, one operated on by surgeons who have substantial experience in HA using DAA (Group A), another operated on by surgeons who have experience in adult hip arthroplasty (≥5 y) but had not specialized in using DAA (Group B), and surgeons who are being trained to perform adult hip arthroplasty (Group C). The metrics determined were duration of surgery, skin incision length, drop in hemoglobin level, length of hospital stay, complications experienced within 2 y of the procedure and the Harris Hip Score. For each of these metrics, the results were used to determine the learning curve for Groups B and C surgeons. Results: Using the learning curve profiles obtained, it was calculated that in order to achieve the competence of Group A surgeons, Group B and Group C surgeons need to perform 46 and 102 consecutive procedures, respectively. Conclusion: For an HA patient to achieve outcomes when treated for FNF using AMIS + DAA requires that the surgeon should have performed a large number of this procedure. In other words, the surgeon learning curve is modest for Group B surgeons but substantial for Group C surgeons. Full article
(This article belongs to the Special Issue State of Art in Hip, Knee and Shoulder Replacement (Volume 2))
Show Figures

Figure 1

18 pages, 1062 KB  
Review
The Use of PEEK Barriers in Bone Regeneration Procedures: A Scoping Review
by Leonardo Díaz, Xavier Uriarte, Andrés Landázuri, Heloisa Fonseca Marāo, Pablo Urrutia, Alfredo Torres and Shengchi Fan
Prosthesis 2025, 7(4), 101; https://doi.org/10.3390/prosthesis7040101 - 19 Aug 2025
Viewed by 230
Abstract
Introduction: Guided bone regeneration (GBR) is a key approach for managing alveolar ridge defects. Although titanium meshes are widely used for non-resorbable space maintenance, their limitations have prompted interest in alternative materials. Polyetheretherketone (PEEK), a high-performance thermoplastic, has emerged as a potential barrier [...] Read more.
Introduction: Guided bone regeneration (GBR) is a key approach for managing alveolar ridge defects. Although titanium meshes are widely used for non-resorbable space maintenance, their limitations have prompted interest in alternative materials. Polyetheretherketone (PEEK), a high-performance thermoplastic, has emerged as a potential barrier due to its mechanical strength, radiolucency, and compatibility with digital workflows. Objective: To map the current evidence on the use of PEEK barriers in GBR, focusing on biological performance, mechanical properties, and clinical outcomes in animal and human studies. Methods: A scoping review was conducted following PRISMA-ScR guidelines. Eligible studies included in vivo animal models or clinical trials involving PEEK barriers for alveolar bone regeneration. Data on study design, defect type, barrier characteristics, surgical protocol, outcomes, and complications were extracted. Results: Five studies met the inclusion criteria: two animal models and three clinical trials. All reported successful space maintenance and bone gain with PEEK barriers, with outcomes comparable to titanium meshes. Customization through CAD/CAM or 3D printing was common. Complications such as soft tissue dehiscence and exposure occurred but generally did not affect regeneration. Evidence was limited by small sample sizes, short follow-up, and single-center designs. Conclusions: PEEK barriers show promise as customizable alternatives to traditional GBR membranes. However, current evidence is limited and geographically concentrated. Future multicenter studies with long-term follow-up and standardized outcome measures are needed to validate the clinical potential of PEEK in bone regeneration. Full article
Show Figures

Figure 1

9 pages, 914 KB  
Review
Ball vs. Locator Attachments in Mandibular Overdentures: A Narrative Review of Clinical Performance and Patient Outcomes
by Michele Miranda, Patrizio Bollero, Alessio Rosa, Marco Gargari and Mirko Martelli
Prosthesis 2025, 7(4), 100; https://doi.org/10.3390/prosthesis7040100 - 19 Aug 2025
Viewed by 174
Abstract
Background: The long-term success of implant-supported mandibular overdentures depends largely on the type of attachment system used. This review compares the clinical performance, complication rates, maintenance requirements, and patient satisfaction between ball and Locator attachments. Methods: A literature search was conducted across PubMed, [...] Read more.
Background: The long-term success of implant-supported mandibular overdentures depends largely on the type of attachment system used. This review compares the clinical performance, complication rates, maintenance requirements, and patient satisfaction between ball and Locator attachments. Methods: A literature search was conducted across PubMed, Scopus, and Web of Science. Studies evaluating clinical outcomes, prosthetic complications, patient-reported satisfaction, and frequency of maintenance in ball and Locator attachments were included. Results: Locator attachments showed higher patient satisfaction scores (mean VAS 8.1–9.0) compared to ball attachments (VAS 6.7–7.9). Complication rates, including matrix wear and attachment loosening, were lower in Locator systems (14–20%) than in ball systems (24–35%). Maintenance needs were more frequent in ball attachments, particularly for the replacement of retentive components (1.8 interventions/year vs. 0.9 in Locator). Peri-implant bone loss was comparable in both systems (<1.5 mm/year), with no statistically significant difference in survival rates over 3–5 years. Conclusions: Locator attachments demonstrate superior clinical performance in terms of patient satisfaction and lower complication rates, with reduced maintenance interventions compared to ball attachments. However, both systems remain viable options depending on anatomical and financial considerations. Full article
Show Figures

Figure 1

18 pages, 2760 KB  
Article
Assessment of Gesture Accuracy for a Multi-Electrode EMG-Sensor-Array-Based Prosthesis Control System
by Vinod Sharma, Erik Lloyd, Mike Faltys, Max Ortiz-Catalan and Connor Glass
Prosthesis 2025, 7(4), 99; https://doi.org/10.3390/prosthesis7040099 - 13 Aug 2025
Viewed by 900
Abstract
Background: Upper limb loss significantly impacts quality of life, and whereas myoelectric prostheses restore some function, conventional surface electromyography (sEMG) systems face challenges like poor signal quality, high cognitive burden, and suboptimal control. Phantom X, a novel implantable electrode-array-based system leveraging machine [...] Read more.
Background: Upper limb loss significantly impacts quality of life, and whereas myoelectric prostheses restore some function, conventional surface electromyography (sEMG) systems face challenges like poor signal quality, high cognitive burden, and suboptimal control. Phantom X, a novel implantable electrode-array-based system leveraging machine learning (ML), aims to overcome these limitations. This feasibility study assessed Phantom X’s performance using non-invasive surface EMG electrodes to approximate implantable system behavior. Methods: This single-arm, non-randomized study included 11 participants (9 able-bodied, 2 with transradial amputation) fitted with a 32-electrode cutaneous array around the forearm. EMG signals were processed through an ML algorithm to control a desk-mounted prosthesis. Performance was evaluated via gesture accuracy (GA), modified gesture accuracy (MGA), and classifier gesture accuracy (CGA) across 11 hand gestures in three arm postures. User satisfaction was also assessed among the two participants with transradial amputation. Results: Phantom X achieved an average GA of 89.0% ± 6.8%, MGA of 96.8% ± 2.0%, and CGA of 93.6% ± 4.1%. Gesture accuracy was the highest in the Arm Parallel posture and the lowest in the Arm Perpendicular posture. Thumbs Up had the highest accuracy (100%), while Index Point and Index Tap gestures showed lower performance (70% and 79% GA, respectively). The mean latency between EMG onset and gesture detection was 250.5 ± 145.9 ms, with 91% of gestures executed within 500 ms. The amputee participants reported high satisfaction. Conclusions: This study demonstrates Phantom X’s potential to enhance prosthesis control through multi-electrode EMG sensing and ML-based gesture decoding. The non-invasive evaluation suggests high accuracy and responsiveness, warranting further studies with the implantable system to assess long-term usability and real-world performance. Phantom X may offer a superior alternative to conventional sEMG-based control, potentially reducing cognitive burden and improving functional outcomes for upper limb amputees. Full article
Show Figures

Figure 1

14 pages, 449 KB  
Article
Perspectives on Ethics Related to Aesthetic Dental Practices Promoted in Social Media—A Cross-Sectional Study
by Maria Aluaș, Sorana D. Bolboacă, Bianca M. Georgiu, Rouven C. Porz and Ondine P. Lucaciu
Prosthesis 2025, 7(4), 98; https://doi.org/10.3390/prosthesis7040098 - 12 Aug 2025
Viewed by 561
Abstract
Background/Objectives: Dental practice, particularly aesthetic dentistry, has been extensively promoted through social media. The widespread advertisement of dental procedures via social media may influence young patients’ perceptions of the dentist’s professional role and potentially alter the dynamics of the doctor–patient relationship. Our study [...] Read more.
Background/Objectives: Dental practice, particularly aesthetic dentistry, has been extensively promoted through social media. The widespread advertisement of dental procedures via social media may influence young patients’ perceptions of the dentist’s professional role and potentially alter the dynamics of the doctor–patient relationship. Our study aimed to examine young dentists’ perspectives on ethical considerations associated with aesthetic dental procedures marketed on social media, and to identify appropriate professional responses to such situations. Methods: A cross-sectional study was conducted at Iuliu Haţieganu University of Medicine and Pharmacy in Cluj-Napoca, Romania, between July and September 2022. Data was collected using four case-based scenarios designed to elicit ethical reasoning. Results: Around 60% of participants identified ethical concerns related to patient requests for aesthetic dental procedures and demonstrated an ability to determine appropriate professional conduct in these contexts. The shift in the dentist’s role—from health care provider to service provider—driven by patient demands for cosmetic treatments was the primary concern perceived by the participants. Conclusions: Most participating young dentists were able to recognize ethical issues surrounding aesthetic dental requests influenced by social media and to adopt a considered professional response. Our findings highlight the need for reinforced ethics education and guidance in navigating social media’s influence on dental practice. Full article
Show Figures

Figure 1

9 pages, 838 KB  
Review
Merging Neuroscience and Engineering Through Regenerative Peripheral Nerve Interfaces
by Melanie J. Wang, Theodore A. Kung, Alison K. Snyder-Warwick and Paul S. Cederna
Prosthesis 2025, 7(4), 97; https://doi.org/10.3390/prosthesis7040097 - 6 Aug 2025
Viewed by 515
Abstract
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering [...] Read more.
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering advancement in neuroengineering that combines surgical techniques with biocompatible materials to create an interface for individuals with limb loss. RPNIs are surgically constructed from autologous muscle grafts that are neurotized by the residual peripheral nerves of an individual with limb loss. RPNIs amplify neural signals and demonstrate long term stability. In this narrative review, the terms “Regenerative Peripheral Nerve Interface (RPNI)” and “RPNI surgery” are used interchangeably to refer to the same surgical and biological construct. This narrative review specifically focuses on RPNIs as a targeted approach to enhance prosthetic control through surgically created nerve–muscle interfaces. This area of research offers a promising solution to overcome the limitations of existing prosthetic control systems and could help improve the quality of life for people suffering from limb loss. It allows for multi-channel control and bidirectional communication, while enhancing the functionality of prosthetics through improved sensory feedback. RPNI surgery holds significant promise for improving the quality of life for individuals with limb loss by providing a more intuitive and responsive prosthetic experience. Full article
Show Figures

Figure 1

10 pages, 782 KB  
Article
Color Stability of Digital and Conventional Maxillofacial Silicone Elastomers Mixed with Nano-Sized Antimicrobials: An In Vitro Study
by Muhanad M. Hatamleh
Prosthesis 2025, 7(4), 96; https://doi.org/10.3390/prosthesis7040096 - 5 Aug 2025
Viewed by 285
Abstract
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a [...] Read more.
Background/Objectives: Maxillofacial silicone prostheses’ long-term color stability remains a challenge. This study aimed to evaluate and compare the color stability of conventional and digital maxillofacial silicone elastomers mixed with nano-sized antimicrobial additives (ZnO nanoparticles and chlorhexidine salt-CHX) at various concentrations over a 10-week period. Methods: A total of nine groups (n = 10) of maxillofacial silicone elastomers were prepared. These included a control group (no additives), conventionally pigmented silicone, digitally pigmented silicone (Spectromatch system), and silicone mixed with ZnO or CHX at 1%, 3%, and 5% by weight. Specimens were fabricated in steel molds and cured at 100 °C for 1 h. Color measurements were performed at baseline and after 1, 4, 6, and 10 weeks using a Minolta Chroma Meter (CIELAB system, ΔE00 formula). Data were analyzed using two-way ANOVA and Tukey HSD post hoc tests (α = 0.05). Results: Color changes (ΔE00) ranged from 0.74 to 2.83 across all groups. The conventional pigmented silicone group showed the highest color difference (ΔE00 = 2.83), while the lowest was observed in the ZnO 1% group (ΔE00 = 0.74). Digital silicone and all antimicrobial-modified groups exhibited acceptable color stability (ΔE00 < 3.1). Time significantly affected color difference, with the largest change occurring during the first four weeks (p < 0.05), followed by stabilization. Regression analysis confirmed high color stability over time for all groups except the conventional pigmented group. Conclusions: This is one of the first studies to directly compare digital and conventional pigmentation methods combined with nano-antimicrobials in maxillofacial silicones. Maxillofacial silicone elastomers mixed with up to 5% ZnO or CHX maintained acceptable color stability over 10 weeks. Digital pigmentation is similar to conventional methods. The incorporation of nano-antimicrobials offers significant microbial resistance and improved color retention. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

13 pages, 371 KB  
Review
Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility
by Fabio Massimo Sciarra, Giovanni Caivano, Antonino Cacioppo, Pietro Messina, Enzo Maria Cumbo, Emanuele Di Vita and Giuseppe Alessandro Scardina
Prosthesis 2025, 7(4), 95; https://doi.org/10.3390/prosthesis7040095 - 1 Aug 2025
Viewed by 482
Abstract
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to [...] Read more.
Objectives: Digitalization has revolutionized dentistry, introducing advanced technological tools that improve diagnostic accuracy and access to healthcare. This study aims to examine the effects of integrating digital technologies into the dental field, analyzing the associated benefits and risks, with particular paid attention to the therapeutic relationship and decision-making autonomy. Materials and Methods: A literature search was conducted in PubMed, Scopus, Web of Science, and Cochrane Library, complemented by Google Scholar for non-indexed studies. The selection criteria included peer-reviewed studies published in English between 2014 and 2024, focusing on digital dentistry, artificial intelligence, and medical ethics. This is a narrative review. Elements of PRISMA guidelines were applied to enhance transparency in reporting. Results: The analysis highlighted that although digital technologies and AI offer significant benefits, such as more accurate diagnoses and personalized treatments, there are associated risks, including the loss of empathy in the dentist–patient relationship, the risk of overdiagnosis, and the possibility of bias in the data. Conclusions: The balance between technological innovation and the centrality of the dentist is crucial. A human and ethical approach to digital medicine is essential to ensure that technologies improve patient care without compromising the therapeutic relationship. To preserve the quality of dental care, it is necessary to integrate digital technologies in a way that supports, rather than replaces, the therapeutic relationship. Full article
Show Figures

Figure 1

12 pages, 2302 KB  
Article
Edentulous Mandibles Restored with Fiber-Reinforced Composite Prostheses Supported by 5.0 mm Ultra-Short Implants: Ten-Year Follow-Up
by Giulia Petroni, Fabrizio Zaccheo, Cosimo Rupe and Andrea Cicconetti
Prosthesis 2025, 7(4), 94; https://doi.org/10.3390/prosthesis7040094 - 1 Aug 2025
Viewed by 754
Abstract
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of [...] Read more.
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of Rome and monitored over a 10-year period. Each case involved the placement of four plateau-design implants with a pure conometric connection and a calcium phosphate-treated surface. The final prostheses were fabricated using CAD/CAM-milled Trinia® fiber-reinforced composite frameworks. Clinical parameters included implant and prosthesis survival, marginal bone level (MBL), peri-implant probing depth (PPD), and patient-reported outcome measures (PROMs). Results: Implant and prosthesis survival reached 100% over the 10-year follow-up. MBL data showed a minor bone gain of approximately 0.11 mm per 5 years (p < 0.0001). PPD remained stable under 3 mm, with a minimal increase of 0.16 mm over the same period (p < 0.0001). PROMs reflected sustained high patient satisfaction. No technical complications, such as chipping or framework fracture, were observed. Conclusions: Rehabilitation of the edentulous mandible with ultra-short implants and metal-free FRC prostheses proved to be a minimally invasive and long-lasting treatment option. The 10-year follow-up confirmed excellent implant and prosthetic outcomes, favorable peri-implant tissue health, and strong patient satisfaction. Nonetheless, further studies with larger sample sizes are needed to confirm these encouraging results and strengthen the clinical evidence. Full article
Show Figures

Figure 1

22 pages, 9122 KB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 - 1 Aug 2025
Viewed by 353
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

20 pages, 1188 KB  
Article
Consensus-Based Recommendations for Comprehensive Clinical Assessment in Prosthetic Care: A Delphi Study
by Frédérique Dupuis, Marion Pichette, Bonnie Swaine, Claudine Auger and Diana Zidarov
Prosthesis 2025, 7(4), 92; https://doi.org/10.3390/prosthesis7040092 - 1 Aug 2025
Viewed by 332
Abstract
Background/Objective: The most effective strategy for addressing users’ prosthetic needs is a comprehensive clinical assessment that provides a holistic understanding of the individual’s symptoms, health, function, and environmental barriers and facilitators. A standardized evaluation form would provide guidance for a structured approach to [...] Read more.
Background/Objective: The most effective strategy for addressing users’ prosthetic needs is a comprehensive clinical assessment that provides a holistic understanding of the individual’s symptoms, health, function, and environmental barriers and facilitators. A standardized evaluation form would provide guidance for a structured approach to comprehensive clinical assessments of people with LLA. The objective of this study was to determine a list of relevant elements to be included in prosthetic evaluation for adults with lower limb amputation. Methods: Three independent focus group discussions were conducted with prosthetists (n = 15), prosthesis users (n = 11), and decision makers (n = 4) to identify all relevant elements that should be included in the clinical assessment of prosthetic services. The final content was then determined using the Delphi technique, with 35 panelists (18 prosthetists and decision makers, and 17 prosthesis users) voting in each round. Results: A total of 91 elements were identified through the focus group, of which 78 were included through the Delphi process. The identified elements are mostly related to the physical health of the prosthesis user (e.g., mobility, pain, and medical information), while others address personal or psychosocial aspects (e.g., activities of daily living, goals, and motivation) or technical aspects (prosthesis-related). Conclusions: Through a Delphi consensus, a list of relevant elements to be included in a prosthetic evaluation was generated. These results will inform the development of a standardized clinical prosthetic assessment form. This form has the potential to improve the quality of clinical evaluations, guide interventions, and enhance the well-being of prosthetic users. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

11 pages, 598 KB  
Systematic Review
Clinical Assessment of Flexible and Non-Metal Clasp Dentures: A Systematic Review
by Plinio Mendes Senna, Carlos Fernando Mourão, Carlos Roberto Teixeira Rodrigues, Laila Zarranz, Mônica Zacharias Jorge, Tea Romasco and Wayne José Batista Cordeiro
Prosthesis 2025, 7(4), 91; https://doi.org/10.3390/prosthesis7040091 - 1 Aug 2025
Viewed by 326
Abstract
Background/Objectives: The present study aimed to evaluate the oral health and patient satisfaction of flexible and non-metal clasp dentures (NMCD) compared to removable partial dentures (RPD) using a systematic review. Methods: The PICOS framework of this review was as follows: Do rehabilitations involving [...] Read more.
Background/Objectives: The present study aimed to evaluate the oral health and patient satisfaction of flexible and non-metal clasp dentures (NMCD) compared to removable partial dentures (RPD) using a systematic review. Methods: The PICOS framework of this review was as follows: Do rehabilitations involving flexible dentures or NMCD have a similar success rate to those using RPD? Thus, the PICOS approach involves the following topics: (P) Population/Problem: partial edentulous adult patients; (I) Intervention: patients rehabilitated with flexible dentures or NMCD; (C) Comparison: patients rehabilitated with standard RPD; (O) Outcome: clinical parameters such as oral health, masticatory function, and patient satisfaction; and (S) Study Type: clinical trials and observational studies (cohort, case–control, and cross-sectional). No language restrictions were applied to the studies. The search strategy consisted of the following keywords in different databases: ((flexible) OR (nonmetal) OR (non-metal) OR (thermoplastic)) AND (denture). Only clinical trials and observational studies (cohort, case–control, and cross-sectional studies) from the last 15 years were included, and no language restrictions were applied. Studies that did not describe the denture material were excluded. Results: Of the 2197 potentially relevant records, 14 studies were included in the present review. Two studies reported retrospective results, while twelve reported a prospective evaluation. Considering the thermoplastic materials, five studies evaluated polyester, five polyamides, three polyacetals, and only one study evaluated polyetheretherketone (PEEK). Flexible dentures and NMCD demonstrated similar periodontal status and bone levels on abutment teeth to RPD after up to 12 months. Flexible dentures exhibited a higher degree of redness of the mucosa after 12 months. One study showed a lower maximum bite force for flexible dentures compared to RPD. No study has performed a clinical evaluation of mastication and chewing ability. Conclusions: Despite increased short-term patient satisfaction for flexible dentures and NMCD, there is weak evidence to support a similar clinical performance of flexible dentures and NMCD to RPD. Full article
Show Figures

Figure 1

25 pages, 659 KB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 - 1 Aug 2025
Viewed by 273
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

28 pages, 746 KB  
Article
Comparing Microprocessor-Controlled and Non-Microprocessor-Controlled Prosthetic Knees Across All Classified Domains of the ICF Model: A Pragmatic Clinical Trial
by Charlotte E. Bosman, Bregje L. Seves, Jan H. B. Geertzen, Behrouz Fard, Irene E. Newsum, Marieke A. Paping, Aline H. Vrieling and Corry K. van der Sluis
Prosthesis 2025, 7(4), 89; https://doi.org/10.3390/prosthesis7040089 - 1 Aug 2025
Viewed by 420
Abstract
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise [...] Read more.
Background: The use of lower limb prosthesis can impact all aspects of daily life, activities and participation. Various studies have compared the microprocessor-controlled knee (MPK) to the non-microprocessor-controlled knee (NMPK) using a variety of different outcome measures, but results are inconsistent and raise the question of which type of knee is most effective. Therefore, we aimed to assess the effect of MPKs compared to NMPKs across all classified ICF domains in adult prosthesis users. Methods: Participants performed baseline measurements with the NMPK (T0). One week later, they started a four-to-six-week trial period with the MPK. Afterward, measurements were repeated with the MPK (T1). Functional tests (6MWT, TUG-test and activity monitor) and questionnaires (ABC, SQUASH, USER-P and PEQ) were used. For statistical analyses, paired t-tests, Wilcoxon signed-rank tests and Chi2 test were applied. The Benjamini–Hochberg procedure was applied to correct for multiple testing. Results: Twenty-five participants were included. Using an MPK compared to an NMPK significantly resulted in improvements in balance and walking confidence, safety, walking distance and self-reported walking ability, as well as a decrease in number of stumbles and falls. Additionally, participants using an MPK were significantly more satisfied with their participation, experienced fewer restrictions, reported greater satisfaction with the appearance and utility of the MPK, experienced less social burden and reported better well-being, compared to using an NMPK. Conclusions: Using an MPK instead of an NMPK can lead to significant improvements in all classified ICF domains, such as improved walking ability, confidence and satisfaction and reduced fall risk. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

16 pages, 2582 KB  
Article
Optimization of Scanning Distance for Three Intraoral Scanners from Different Manufacturers: An In Vitro Accuracy Analysis
by Perla Hokayem, Rim Bourgi, Carlos Enrique Cuevas-Suárez, Miguel Ángel Fernández-Barrera, Juan Eliezer Zamarripa-Calderón, Hani Tohme, Adam Saleh, Nicolas Nassar, Monika Lukomska-Szymanska and Louis Hardan
Prosthesis 2025, 7(4), 88; https://doi.org/10.3390/prosthesis7040088 - 23 Jul 2025
Viewed by 512
Abstract
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of [...] Read more.
Background: Accuracy of optical impressions—defined by the intraoral scanner (IOS)’s trueness and precision per International Organization for Standardization (ISO) standards—is influenced by both operator- and patient-related factors. Thus, this in vitro study aimed to (1) evaluate how scanning distance affects the accuracy of three different intraoral scanners (IOSs), and (2) identify the optimal scanning distance for each scanner. Methods: A maxillary arch model was obtained using polyvinyl siloxane impression material and poured with Type IV stone (Octa-rock royal®, Kulzer, Germany). Using three different types of IOSs—the trios 3 shape (TRIOS ® cart, 3Shape, Copenhagen, Denmark); the Helios 500 (Eighteeth ®, Changzhou, China); and the Heron (3Disc ®, Herndon, VA 20170, USA)—ten scans were performed with each of the IOSs with five predetermined distances: 0 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm. Spacers of varying heights were designed using Meshmixer version 3.5 (Autodesk, Inc., Mill Valley, CA, USA) and three-dimensional printed with the Form 2 printer (Formlabs, Somerville, MA, USA). The scanned data was processed using Geomagic Control X (Version 16.0.2.16496, 3D Systems, Wilsonville, OR, USA). Statistical analyses were performed using R Statistical Software (version 4.2.2), with significance set at α = 0.05. Results: Scanning distance significantly influenced scan accuracy for all three scanners. The 3Disc scanner (3Disc, Herndon, VA, USA) demonstrated the highest accuracy at a 7.5 mm distance, while both the Helios 500 (Eighteeth, Changzhou, China) and Trios 3 (3Shape, Copenhagen, Denmark) scanners achieved their best accuracy at a 5 mm distance, as indicated by the lowest root mean square (RMS) values (p < 0.05). Conclusions: To conclude, each IOS has an optimal scanning distance for best accuracy. Trios 3 (3Shape, Copenhagen, Denmark) outperformed the others in both trueness and precision. Future studies should examine these effects under full-arch and clinical conditions. Full article
Show Figures

Figure 1

12 pages, 999 KB  
Article
Comparison of Digital Intraoral Scanning and Conventional Techniques for Post Space Capture
by Amr Ahmed Azhari, Walaa Magdy Ahmed, Tala Khider, Razan Almaghrabi, Razan Alharbi, Yasser Merdad, Sarah Bukhari and Anas Lahiq
Prosthesis 2025, 7(4), 87; https://doi.org/10.3390/prosthesis7040087 - 18 Jul 2025
Viewed by 492
Abstract
Objective: Several studies have compared the accuracy of digital scans and conventional impressions for post space capture. However, only a few have specifically investigated the precision of intraoral scanners in measuring post spaces of varied lengths. This study aimed to evaluate the accuracy [...] Read more.
Objective: Several studies have compared the accuracy of digital scans and conventional impressions for post space capture. However, only a few have specifically investigated the precision of intraoral scanners in measuring post spaces of varied lengths. This study aimed to evaluate the accuracy of various intraoral scanning techniques in capturing long and short post spaces. Material and Methods: This study grouped samples into eight categories based on four techniques and two post space depths (7 and 11 mm). After tooth preparation, root canal treatment, and post space preparation, laboratory scans were performed using Duralay. Intraoral scans were obtained directly and indirectly with the Trios fourth generation scanner using the Duralay and PVS techniques. The accuracies, in terms of trueness, and precisions were compared after ten repetitions for each group using the Kruskal–Wallis or Mann–Whitney U tests. Results: The Duralay Intraoral Scan groups demonstrated a high consistency, while the Direct Intraoral Scan groups showed moderate consistency. Variability was higher for the Duralay Lab Scan and PVS Intraoral Scan groups for short post spaces. Conclusions: The capture technique significantly affected the accuracies of the post space measurements. The techniques also demonstrated varying consistency and precision. These findings provide critical insights to guide their selections for clinical and research applications. Clinical Significance: This study is one of the few to compare the accuracy of intraoral scanners for the capture of both short and long post spaces. It addresses a key gap in current dental research and offers practical guidance for clinicians and researchers in selecting appropriate scanning techniques for various clinical scenarios. The findings have the potential to enhance the accuracy and reliability of post space measurements and improve patient outcomes. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

15 pages, 4349 KB  
Article
The Roles of Leaflet Geometry in the Structural Deterioration of Bioprosthetic Aortic Valves
by Yaghoub Dabiri and Kishan Narine
Prosthesis 2025, 7(4), 86; https://doi.org/10.3390/prosthesis7040086 - 18 Jul 2025
Viewed by 379
Abstract
Objectives: Our goal was to assess the role of leaflet geometry on the structural deterioration of bioprosthetic aortic valves (BAVs) in a closed configuration. Methods: With a Fung-type orthotropic model, finite element modeling was used to create ten cases with parabolic, circular and [...] Read more.
Objectives: Our goal was to assess the role of leaflet geometry on the structural deterioration of bioprosthetic aortic valves (BAVs) in a closed configuration. Methods: With a Fung-type orthotropic model, finite element modeling was used to create ten cases with parabolic, circular and spline leaflet curvatures and six leaflet angles. Results: A circular circumferential curvature led to lower von Mises and compressive stresses in both the coaptation and load-bearing areas, reduced tensile stresses in the coaptation regions, and increased tensile stresses in the load-bearing areas. A parabolic radial curvature reduced von Mises stresses in the coaptation, as well as the load-bearing regions, reduced compressive stresses in the coaptation, and reduced tensile stresses in the load-bearing regions, leading to a slight increase in the minimized tensile stress in the coaptation regions (1.794 vs. 1.765 MPa) and the minimized compressive stress in the load-bearing regions (0.772 vs. 0.768 MPa). Within a range of downward inclination of the leaflets, all stresses in the coaptation regions decreased. A parabolic circumferential curvature, a linear radial curvature, and, for most cases, upward leaflet inclinations were associated with larger contact pressures between the leaflets. Conclusions: A parabolic radial curvature and downward leaflet inclination likely lead to the longer durability of BAVs. Full article
Show Figures

Figure 1

16 pages, 6475 KB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 971
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

16 pages, 3244 KB  
Article
Finite Element Analysis of Dental Diamond Burs: Stress Distribution in Dental Structures During Cavity Preparation
by Chethan K N, Abhilash H N, Afiya Eram, Saniya Juneja, Divya Shetty and Laxmikant G. Keni
Prosthesis 2025, 7(4), 84; https://doi.org/10.3390/prosthesis7040084 - 16 Jul 2025
Viewed by 437
Abstract
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This [...] Read more.
Background/Objectives: Dental cavity preparation is a critical procedure in restorative dentistry that involves the removal of decayed tissue while preserving a healthy tooth structure. Excessive stress during tooth preparation leads to enamel cracking, dentin damage, and long term compressive pulp health. This study employed finite element analysis (FEA) to investigate the stress distribution in dental structures during cavity preparation using round diamond burs of varying diameters and depths of cut (DOC). Methods: A three-dimensional human maxillary first molar was generated from computed tomography (CT) scan data using 3D Slicer, Fusion 360, and ANSYS Space Claim 2024 R-2. Finite element analysis (FEA) was conducted using ANSYS Workbench 2024. Round diamond burs with diameters of 1, 2, and 3 mm were modeled. Cutting simulations were performed for DOC of 1 mm and 2 mm. The burs were treated as rigid bodies, whereas the dental structures were modeled as deformable bodies using the Cowper–Symonds model. Results: The simulations revealed that larger bur diameters and deeper cuts led to higher stress magnitudes, particularly in the enamel and dentin. The maximum von Mises stress was reached at 136.98 MPa, and dentin 140.33 MPa. Smaller burs (≤2 mm) and lower depths of cut (≤1 mm) produced lower stress values and were optimal for minimizing dental structural damage. Pulpal stress remained low but showed an increasing trend with increased DOC and bur size. Conclusions: This study provides clinically relevant guidance for reducing mechanical damage during cavity preparation by recommending the use of smaller burs and controlled cutting depths. The originality of this study lies in its integration of CT-based anatomy with dynamic FEA modeling, enabling a realistic simulation of tool–tissue interaction in dentistry. These insights can inform bur selection, cutting protocols, and future experimental validations. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

14 pages, 1657 KB  
Article
Assessment of Maximum Torque in Implant-Supported Prostheses: A Pilot Laboratory Study
by Mahoor Kaffashian, Seyedfarzad Fazaeli, Joana Fialho, Filipe Araújo, Patrícia Fonseca and André Correia
Prosthesis 2025, 7(4), 83; https://doi.org/10.3390/prosthesis7040083 - 15 Jul 2025
Viewed by 432
Abstract
Background/Objectives: the precise application of torque during prosthetic screw tightening is essential to the long-term success and mechanical stability of implant-supported restorations. This study aimed to evaluate the influence of practitioner experience, glove material, screwdriver length, and hand moisture on the maximum torque [...] Read more.
Background/Objectives: the precise application of torque during prosthetic screw tightening is essential to the long-term success and mechanical stability of implant-supported restorations. This study aimed to evaluate the influence of practitioner experience, glove material, screwdriver length, and hand moisture on the maximum torque value (MTV) generated during manual tightening. Methods: thirty participants, comprising 10 experienced professors and 20 senior dental students, performed tightening tasks under six hand conditions (nitrile gloves, latex gloves, and bare hands, each in dry and wet environments) using two screwdriver lengths (21 mm and 27 mm). The torque values were measured using a calibrated digital torque meter, and the results were analyzed using a linear mixed model. Results: professors applied significantly higher torque than students (16.92 Ncm vs. 15.03 Ncm; p = 0.008). Nitrile gloves yielded the highest torque (17.11 Ncm), surpassing bare hands significantly (p = 0.003). No statistically significant differences were found for screwdriver length (p = 0.12) or hand moisture (p = 0.11). Conclusions: these findings underscore the importance of clinical proficiency and glove material in torque delivery, providing evidence-based insights to enhance procedural reliability and training standards in implant prosthodontics. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

27 pages, 7203 KB  
Article
The Combined Role of Coronal and Toe Joint Compliance in Transtibial Prosthetic Gait: A Study in Non-Amputated Individuals
by Sergio Galindo-Leon, Hideki Kadone, Modar Hassan and Kenji Suzuki
Prosthesis 2025, 7(4), 82; https://doi.org/10.3390/prosthesis7040082 - 14 Jul 2025
Viewed by 582
Abstract
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, [...] Read more.
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, which play critical roles in gait stability and efficiency. This study aims to evaluate the combined effects of compliance in the coronal plane and a flexible toe joint on prosthetic gait using non-amputated participants as a model. Methods: We conducted gait trials on ten non-amputated individuals in the presence and absence of compliance in the coronal plane and toe compliance, using a previously developed three-degree-of-freedom (DOF) prosthetic foot with a prosthetic simulator. We recorded and analyzed sagittal and coronal kinematic data, ground reaction forces, and electromyographic signals from muscles involved in the control of gait. Results: The addition of compliance in the coronal plane and toe compliance had significant kinematic and muscular effects. Notably, this compliance combination reduced peak pelvis obliquity by 27%, preserved the swing stance/ratio, and decreased gluteus medius’ activation by 34% on the non-prosthetic side, compared to the laterally rigid version of the prosthesis without toe compliance. Conclusions: The results underscore the importance of integrating compliance in the coronal plane and toe compliance in prosthetic feet designs as they show potential in improving gait metrics related to mediolateral movements and balance, while also decreasing muscle activation. Still, these findings remain to be validated in people with transtibial amputations. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

17 pages, 607 KB  
Systematic Review
Incorporating Orthodontics in Maxillofacial Prosthetic Rehabilitation Following Tumor-Ablative Surgery: A Systematic Review
by Nikolaos Gavounelis, Heleni Vastardis and Ioli Ioanna Artopoulou
Prosthesis 2025, 7(4), 81; https://doi.org/10.3390/prosthesis7040081 - 11 Jul 2025
Viewed by 469
Abstract
Background/Objectives: The aim of this systematic review was to identify the role of orthodontics in patients undergoing tumor-ablative surgery, in collaboration with maxillofacial prosthodontic rehabilitation in a multidisciplinary fashion. Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for [...] Read more.
Background/Objectives: The aim of this systematic review was to identify the role of orthodontics in patients undergoing tumor-ablative surgery, in collaboration with maxillofacial prosthodontic rehabilitation in a multidisciplinary fashion. Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42024582050). The focused question was constructed using the PICO (participant, intervention, comparison, and outcome) approach. A three-stage search was performed in PubMed, Scopus, and Web of Science using Medical Subject Heading (MeSH) terms. To assess the risk of bias, the National Institute of Health (NIH) “Quality Assessment Tool for case series/reports” was used. All data was synthesized qualitatively, according to the Synthesis Without Meta-analysis (SWiM) reporting guideline. Results: The initial search yielded 624 articles, of which 22 met the inclusion criteria after screening and eligibility assessment, with most being single-patient case reports and one case series involving 12 patients. The included studies primarily involved tumors in the mandible (64.5%) and maxilla (32.3%). Orthodontic treatment was initiated at various time points, ranging from one month pre-surgery to 19 years post-surgery, primarily utilizing fixed appliances (77.8%). In some studies, orthodontic appliances were used to enhance the stability of maxillofacial prostheses. The results of this study indicate that orthodontic treatment may facilitate prosthetic rehabilitation by improving conditions prior to prosthetic intervention and increasing the retention of the obturator prosthesis. Conclusions: Orthodontic treatment can enhance maxillofacial prosthetic rehabilitation after tumor-ablative surgery by optimizing jaw growth, improving occlusion, and facilitating prosthetic retention or space creation. Further research is needed to establish treatment guidelines. Orthodontic miniscrews may improve temporary prosthesis retention before final implant placement, when indicated. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

13 pages, 1674 KB  
Article
Design Process and Early Functional Outcomes of Digitally Planned Immediate Obturator Prostheses After Partial Maxillectomy
by Anh Tuan Ta, Duc Thanh Le, Minh Tuan Dam, Thi Trang Phuong, Duc Minh Nguyen, Hoang Tuan Pham and Minh Son Tong
Prosthesis 2025, 7(4), 80; https://doi.org/10.3390/prosthesis7040080 - 7 Jul 2025
Viewed by 520
Abstract
Background/Objectives: Partial maxillectomy frequently results in severe impairments of oral functions, such as difficulties in chewing, speech, swallowing, and facial appearance. Immediate prosthetic rehabilitation is challenging because soft tissue healing is typically required before impression taking. This study aimed to (1) develop a [...] Read more.
Background/Objectives: Partial maxillectomy frequently results in severe impairments of oral functions, such as difficulties in chewing, speech, swallowing, and facial appearance. Immediate prosthetic rehabilitation is challenging because soft tissue healing is typically required before impression taking. This study aimed to (1) develop a comprehensive digital workflow for fabricating immediate obturator prostheses using preoperative data and (2) assess their early clinical effectiveness in restoring oral functions after surgery. Methods: In this prospective clinical study, 20 patients undergoing partial maxillectomy from January 2023 to January 2025 were enrolled. A digital workflow combining cone-beam computed tomography (CBCT), intraoral scanning, CAD/CAM design, and 3D metal printing was implemented. Obturator prostheses were digitally designed preoperatively and inserted immediately post-resection. Functional outcomes were postoperatively evaluated after one month using the Obturator Functioning Scale (OFS), which measures functional, speech, esthetic, and psychosocial aspects. Results: The digitally fabricated immediate obturator prostheses were successfully placed intraoperatively in all patients. Most participants reported mild to moderate difficulties, with speech-related issues being the most common, while esthetic concerns were minimal. Masticatory function was satisfactorily restored in 75% of cases, and 60% of patients experienced minimal fluid leakage during swallowing. No significant differences were found between genders. Patients with larger defects tended to report greater functional challenges. Conclusions: The digitally planned immediate obturator prosthesis provides a practical and effective solution for early rehabilitation following partial maxillectomy. This digital workflow reduces patient discomfort, restores key oral functions, and facilitates psychosocial recovery. Full article
(This article belongs to the Special Issue Prosthetic Rehabilitation in Oral Cancer Patients)
Show Figures

Figure 1

19 pages, 2596 KB  
Article
The Effect of Electrospun PMMA/rGO Fiber Addition on the Improvement of the Physical and Mechanical Properties of PMMA Resin
by Tugce Gul Elmas Alsini, Isin Kurkcuoglu, Neslihan Nohut Maslakci and Aysegul Uygun Oksuz
Prosthesis 2025, 7(4), 79; https://doi.org/10.3390/prosthesis7040079 - 4 Jul 2025
Viewed by 511
Abstract
Background/Objectives: Autopolymerizing poly (methyl methacrylate) (PMMA) resin is widely used in provisional restorations; however, its inadequate mechanical properties represent a significant limitation. This study aimed to develop electrospun fibers with chemically reduced graphene oxide (rGO) and to evaluate the effect of fiber reinforcement [...] Read more.
Background/Objectives: Autopolymerizing poly (methyl methacrylate) (PMMA) resin is widely used in provisional restorations; however, its inadequate mechanical properties represent a significant limitation. This study aimed to develop electrospun fibers with chemically reduced graphene oxide (rGO) and to evaluate the effect of fiber reinforcement on the mechanical and physical properties of a commercially available PMMA resin. Methods: Electrospinning was employed to produce nanofibers containing 0.02 wt% and 0.05 wt% rGO within a PMMA matrix. Fiber characterization was performed using SEM-EDS, XRD, TGA/DTG, and FTIR. Following characterization, the fibers were blended into PMMA resin at 1%, 2.5%, and 5% (by weight). The resulting fiber-reinforced composites were tested for flexural strength, elastic modulus, surface roughness, and Vickers microhardness. Results: The addition of 1% and 2.5% PMMA/rGO-0.02 fibers and 1% PMMA/rGO-0.05 fibers significantly improved the flexural strength of PMMA compared with the control group (p < 0.05). A statistically significant increase in elastic modulus was observed only in the group containing 1% PMMA/rGO-0.02 fibers (p < 0.05). However, there were no significant differences in surface roughness or microhardness between the control and experimental groups (p > 0.05). Conclusions: Incorporating electrospun PMMA-rGO fibers into PMMA resin enhances flexural properties at low concentrations without altering surface characteristics. These findings suggest that such fiber-reinforced systems hold promises for improving the mechanical performance and functional longevity of provisional dental restorations under clinical conditions. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

17 pages, 452 KB  
Systematic Review
Comparative Cost-Effectiveness of Resin 3D Printing Protocols in Dental Prosthodontics: A Systematic Review
by Mircea Popescu, Viorel Stefan Perieanu, Mihai Burlibașa, Andrei Vorovenci, Mădălina Adriana Malița, Diana-Cristina Petri, Andreea Angela Ștețiu, Radu Cătălin Costea, Raluca Mariana Costea, Andrei Burlibașa, Andi Ciprian Drăguș, Maria Antonia Ștețiu and Liliana Burlibașa
Prosthesis 2025, 7(4), 78; https://doi.org/10.3390/prosthesis7040078 - 4 Jul 2025
Viewed by 597
Abstract
Objectives: This systematic review aimed to evaluate the cost, production time, clinical performance, and patient satisfaction of 3D printing workflows in prosthodontics compared to conventional and subtractive methods. Methods: Following PRISMA guidelines, a systematic search of electronic databases was performed to identify studies [...] Read more.
Objectives: This systematic review aimed to evaluate the cost, production time, clinical performance, and patient satisfaction of 3D printing workflows in prosthodontics compared to conventional and subtractive methods. Methods: Following PRISMA guidelines, a systematic search of electronic databases was performed to identify studies published between 2015 and 2025 that directly compared digital additive workflows with analogue or subtractive workflows. Studies were eligible if they included prosthodontic treatments such as dentures, crowns, or implant-supported prostheses and reported at least one relevant outcome. The primary outcomes were cost, time efficiency, clinical accuracy (e.g., marginal adaptation, fit), and patient satisfaction. Included studies were methodologically evaluated using MINORS scale and the risk of bias was assessed using ROBINS-I and RoB 2 tools. Results: Seven studies met the inclusion criteria. Overall, 3D printing workflows demonstrated reduced production time and cost in comparison to conventional or subtractive methods. Clinical outcomes were generally comparable or superior, particularly regarding adaptation and fit. Patient satisfaction was favourable in most studies, although reporting varied. Long-term follow-up was limited, which constrains the interpretation of sustained clinical performance. Conclusions: These findings suggest that 3D printing can serve as an efficient and cost-effective alternative in prosthodontic fabrication, with clinical results comparable to those already established. Further research is needed to assess long-term clinical performance and cost-effectiveness in various clinical scenarios. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

16 pages, 1021 KB  
Article
Digital Dentistry and Imaging: Comparing the Performance of Smartphone and Professional Cameras for Clinical Use
by Omar Hasbini, Rim Bourgi, Naji Kharouf, Carlos Enrique Cuevas-Suárez, Khalil Kharma, Carol Moussa, Nicolas Nassar, Aly Osman, Monika Lukomska-Szymanska, Youssef Haikel and Louis Hardan
Prosthesis 2025, 7(4), 77; https://doi.org/10.3390/prosthesis7040077 - 2 Jul 2025
Viewed by 635 | Correction
Abstract
Background: Digital dental photography is increasingly essential for documentation and smile design. This study aimed to compare the linear measurement accuracy of various smartphones and a Digital Single-Lens Reflex (DSLR) camera against digital models obtained by intraoral and desktop scanners. Methods: Tooth height [...] Read more.
Background: Digital dental photography is increasingly essential for documentation and smile design. This study aimed to compare the linear measurement accuracy of various smartphones and a Digital Single-Lens Reflex (DSLR) camera against digital models obtained by intraoral and desktop scanners. Methods: Tooth height and width from six different casts were measured and compared using images acquired with a Canon EOS 250D DSLR, six smartphone models (iPhone 13, iPhone 15, Samsung Galaxy S22 Ultra, Samsung Galaxy S23 Ultra, Samsung Galaxy S24, and Vivo T2), and digital scans obtained from the Helios 500 intraoral scanner and the Ceramill Map 600 desktop scanner. All image measurements were performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA), and statistical analysis was conducted using one-way analysis of variance (ANOVA) with Tukey’s post hoc test (α = 0.05). Results: The results showed no significant differences in measurements across most imaging methods (p > 0.05), except for the Vivo T2, which showed a significant deviation (p < 0.05). The other smartphones produced measurements comparable to those of the DSLR, even at distances as close as 16 cm. Conclusions: These findings preliminary support the clinical use of smartphones for accurate dental documentation and two-dimensional smile design, including the posterior areas, and challenge the previously recommended 24 cm minimum distance for mobile dental photography (MDP). This provides clinicians with a simplified and accessible alternative for high-accuracy dental imaging, advancing the everyday use of MDP in clinical practice. Full article
Show Figures

Figure 1

12 pages, 2354 KB  
Article
Closed- vs. Open-Frame Surgical Guides: An Ex-Vivo Analysis of the Effects of Guide Design on Bone Heating
by Federico Rivara, Gabriella Naty, Carlo Galli, Marcello Vanali, Sara Rossetti and Elena Calciolari
Prosthesis 2025, 7(4), 76; https://doi.org/10.3390/prosthesis7040076 - 2 Jul 2025
Viewed by 386
Abstract
Background/Objectives: Guided implant surgery relies on the use of surgical templates to direct osteotomy drills, but guide design may influence irrigation efficiency, hence bone overheating, a critical factor in preventing thermal necrosis. This ex vivo study compared temperature changes when drilling using [...] Read more.
Background/Objectives: Guided implant surgery relies on the use of surgical templates to direct osteotomy drills, but guide design may influence irrigation efficiency, hence bone overheating, a critical factor in preventing thermal necrosis. This ex vivo study compared temperature changes when drilling using two guide designs: a closed-frame (occlusive structure) and an open-frame (non-occlusive design), evaluating their clinical relevance in mitigating overheating. Methods: Sixteen pig ribs were scanned, and implant osteotomies were planned via a guided surgery software. Two 3D-printed resin templates, one with a closed-frame design and one with an open-frame design, were tested (8 ribs per group, 24 implants per group). Drilling was performed sequentially (diameter of 1.9 mm, 3.25 mm, and 4.1 mm) at 800 rpm, while bone temperatures were recorded at depths of 3 mm and 10 mm using K-type thermo§s. Results: Significantly higher temperature rises were observed with the closed-frame guide. Drilling depth had also a significant influence, with higher temperatures at 3 mm than 10 mm (p < 0.001), suggesting that cortical bone density may amplify frictional heat. No significant effect of drill diameter was detected. Conclusions: Within the limitations of this ex vivo model, the open-frame design kept the maximal temperature rise about 0.67 °C lower than the closed-frame guide (1.22 °C vs. 0.55 °C), i.e., a 2.2-fold relative reduction was observed during the most demanding drilling step. This suggests a more efficient cooling capacity, especially in dense cortical bone, which offers a potential benefit for minimizing thermal risk in guided implant procedures. Full article
Show Figures

Figure 1

25 pages, 11401 KB  
Article
In Vitro Comparison of Monolithic Zirconia Crowns: Marginal/Internal Adaptation and 3D-Quantified Preparation Defects Using Air-Driven, Electric-Driven, and Piezoelectric Ultrasonic Handpieces
by Rand Saman Jadid and Abdulsalam Rasheed Al-Zahawi
Prosthesis 2025, 7(4), 75; https://doi.org/10.3390/prosthesis7040075 - 1 Jul 2025
Viewed by 1058
Abstract
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were [...] Read more.
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were performed using the air-driven handpiece with a guide pin-ended tapered fissure diamond bur on a modified dental surveyor. The finishing process utilized three handpiece types (n = 24/group) with fine/superfine diamond burs under controlled force with a fixed number of rotations and controlled advancement time. Marginal/internal adaptation was evaluated via the triple-scan technique; defects (marginal, axial, and occlusal) were quantified based on predefined criteria through the inspection of the Standard Tessellation Language (STL) file. Results: One-way ANOVA with Tukey HSD and Kruskal–Wallis with Dunn–Bonferroni tests were utilized. The marginal gap showed no significant differences (p > 0.05, η2 = 0.04). The electric handpiece outperformed the ultrasonic (p = 0.023, η2 = 0.105) in internal adaptation, while the air-driven showed no differences (p > 0.05). The ultrasonic handpiece produced fewer marginal defects than the air-driven (p = 0.039, ε2 = 0.132), but more axial defects (median 9 vs. 6, p = 0.014, ε2 = 0.168) than the electric handpiece and occlusal defects (5 vs. 3, 4 p = 0.007, p = 0.015, ε2 = 0.227) than rotary handpieces. The air-driven handpiece exhibited comparable defect numbers to the electric handpiece without statistical significance (p > 0.05). Conclusions: Handpiece selection had a small effect on marginal adaptation but more pronounced effects on overall defect formations and internal adaptation. The ultrasonic handpiece’s decreased marginal defects but variable axial/occlusal results reveal technological constraints, whereas rotary handpieces’ consistency reflects their operator-dependent nature. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Graphical abstract

14 pages, 1341 KB  
Article
Accuracy of New-Generation Intraoral Scanners in Digitizing All-on-Four Implant Models with Varying Posterior Implant Angulations: An In Vitro Trueness and Precision Evaluation
by Noha Taymour, Shereen Moselhy Abdul Hameed, Maram A. AlGhamdi, Zainab Refaey El Sharkawy, Zienab S. Farid and Yousra Ahmed
Prosthesis 2025, 7(4), 74; https://doi.org/10.3390/prosthesis7040074 - 30 Jun 2025
Cited by 1 | Viewed by 501
Abstract
Background: The increasing adoption of digital workflows in implant dentistry necessitates rigorous assessment of intraoral scanning, particularly for complex full-arch rehabilitations like All-on-Four prostheses, where posterior implant angulation may impact the accuracy of optical data acquisition. Objectives: This in vitro study aimed [...] Read more.
Background: The increasing adoption of digital workflows in implant dentistry necessitates rigorous assessment of intraoral scanning, particularly for complex full-arch rehabilitations like All-on-Four prostheses, where posterior implant angulation may impact the accuracy of optical data acquisition. Objectives: This in vitro study aimed to assess the accuracy of digital intraoral scanners in scanning All-on-Four implant models with different posterior implant angulations. Methods: Two epoxy resin All-on-Four implant models were fabricated with two posterior implant angulations (30-degree and 45-degree). Both models were digitized to obtain control datasets using a Smart Optics reference scanner (REF). Four intraoral scanners were comparatively assessed: Cerec Omnicam AC (OMN), Trios 4 (TRI), Cerec Primescan AC (PRI), and Medit i700 (MED), with nine scans per each scanner (n = 9). All STL files were exported and analyzed using Geomagic Control X with root mean square (RMS) values computed for trueness and precision assessments. Results: The comparison between IOS types in terms of trueness revealed that with 30° angulation, the MED group showed the statistically significant least deviation (p = 402). With 45° angulation, both PRI and OMN scanners showed the statistically significant highest deviation values (p = 0.047 and 0.007, respectively). MED again showed the statistically significant least deviation (p = 402). For precision evaluation in 30° angulation models, PRI and OMN scanners showed the statistically significant least deviation values (p = 402 and <0.001, respectively). While, in 45° angulation models, no statistically significant inter-scanner differences were observed. Conclusions: While MED, PRI, and OMN scanners demonstrated clinical validity for 30° angled posterior implants, only the MED system achieved sufficient accuracy for 45° tilt. These findings emphasize the critical relationship between scanner selection and extreme implant angulations in full-arch digital workflows. Full article
Show Figures

Figure 1

10 pages, 345 KB  
Article
Prevalence of Osteoporosis and Vitamin D Levels in Patients Undergoing Total Hip Arthroplasty: Insights from a Single-Center Experience in Italy
by Amarildo Smakaj, Riccardo Iundusi, Angela Chiavoghilefu, Tommaso Cardelli, Danilo Rossi, Claudio Raso, Umberto Tarantino and Elena Gasbarra
Prosthesis 2025, 7(4), 73; https://doi.org/10.3390/prosthesis7040073 - 26 Jun 2025
Viewed by 390
Abstract
Background: Patients awaiting total hip arthroplasty (THA), particularly those with hip osteoarthritis (OA), face an elevated risk of osteoporosis due to age and gender-related factors. Osteoporosis, indicated by low bone mineral density (BMD), can affect implant osteointegration, long-term stability, and increase the [...] Read more.
Background: Patients awaiting total hip arthroplasty (THA), particularly those with hip osteoarthritis (OA), face an elevated risk of osteoporosis due to age and gender-related factors. Osteoporosis, indicated by low bone mineral density (BMD), can affect implant osteointegration, long-term stability, and increase the likelihood of periprosthetic fractures. Despite these risks, osteoporosis is often underdiagnosed and undertreated in THA candidates. While several studies have addressed this issue in Northern populations, data on Southern European cohorts, particularly Italian patients, remain limited. This study aims to evaluate the prevalence of osteoporosis and vitamin D deficiency, as well as the rates of related treatments, in patients with hip osteoarthritis scheduled for THA. Methods: This single-center, retrospective study was conducted at Policlinico Universitario di TorVergata, Italy, involving 66 hip OA patients (35 men, 31 women; mean age 67.5 years). BMD was assessed at the femoral neck, total femur, and lumbar spine via DEXA, alongside vitamin D and PTH levels. Demographic data, ongoing anti-osteoporotic therapies, Harris Hip Score (HHS), and handgrip strength were recorded. Statistical analysis included t-tests and Pearson’s correlation. Osteoporosis was defined per WHO criteria, with significance set at p < 0.05. Results: In this study of 66 patients with hip osteoarthritis (35 men, 31 women; mean age 67.5 years), women exhibited significantly lower bone mineral density (BMD) at the total femur (−0.98 ± 1.42 vs. −0.08 ± 1.04; p < 0.05) and lumbar spine (−0.66 ± 1.74 vs. 0.67 ± 1.59; p < 0.05) compared to men. Handgrip strength was also significantly reduced in females (17.1 ± 8.2 kg) versus males (27.3 ± 10.3 kg; p < 0.05). Vitamin D levels were below 30 ng/mL in 89.4% of patients, and 63.6% had levels below 20 ng/mL; PTH levels were elevated (>65 pg/mL) in 54.5% of cases, indicating frequent secondary hyperparathyroidism. Only 9 patients were receiving vitamin D supplementation and none were on anti-osteoporotic treatment. Conclusions: These findings highlight the frequent coexistence of low BMD, vitamin D deficiency, and reduced muscle strength in THA candidates, suggesting a pattern of musculoskeletal vulnerability that warrants clinical attention. Full article
(This article belongs to the Special Issue State of Art in Hip, Knee and Shoulder Replacement (Volume 2))
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop