With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental
[...] Read more.
With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental adaptability. This study proposes a machine vision-based approach leveraging deep learning to identify four primary types of rail damages: corrugations, spalls, cracks, and scratches. A self-developed acquisition device collected 298 field images from the Chongqing Metro system, which were expanded into 1556 samples through data augmentation techniques (including rotation, translation, shearing, and mirroring). This study systematically evaluated three object detection models—YOLOv8, SSD, and Faster R-CNN—in terms of detection accuracy (
mAP), missed detection rate (
mAR), and training efficiency. The results indicate that YOLOv8 outperformed the other models, achieving an
mAP of 0.79, an
mAR of 0.69, and a shortest training time of 0.28 h. To further enhance performance, this study integrated the Multi-Head Self-Attention (MHSA) module into YOLO, creating MHSA-YOLOv8. The optimized model achieved a significant improvement in
mAP by 10% (to 0.89), increased
mAR by 20%, and reduced training time by 50% (to 0.14 h). These findings demonstrate the effectiveness of MHSA-YOLO for accurate and efficient rail damage detection in complex environments, offering a robust solution for intelligent railway maintenance.
Full article