Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway
Abstract
1. Introduction
2. Methodology
2.1. Railway Track Design, Capacity, and Digital Tools
2.2. Case Study: The Røros Line
3. Results and Discussion
3.1. Track Capacity
3.2. Passing Loop Design
3.3. Branch Line Design
3.4. Limitations and Future Work
- (i)
- (ii)
- As the main protected area along the Røros line is the Åkersvika nature reserve in Hamar, it is necessary to make sure that the upgrade of the passing loops does not impair sensitive ecological areas [66]. Moreover, future research can also focus on minimizing land acquisition and resettlement processes [67,68].
- (iii)
- As this exploratory work employed BIM software only to position the transport infrastructure on the terrain, future work can delve into structural considerations such as the bearing capacity of the soil, bridges, and culverts, also considering the possible presence of underground pipelines.
- (iv)
- Future research can take into consideration that the length of the freight trains is 740 m in order to meet the European goal [69]. In this regard, it is also necessary to control operational quality in terms of robustness and capacity utilization, which requires a certain level of resilience to delays and disruptions [70].
- (v)
- Given the national relevance of upgrading the Røros line, it is necessary to consider the long-term economic impact of the project so that the initial investment can be recouped [71]. From the perspective of the investment return rate, cost–benefit analyses can ascertain whether the benefits brought by the enhanced freight transport system can cover the cost of the infrastructure upgrade [72].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bektas, T. Freight Transport and Distribution, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Monios, J.; Bergqvist, R. Intermodal Freight Transport and Logistics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ahsan, N.; Hewage, K.; Razi, F.; Hussain, S.A.; Sadiq, R. A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions. Renew. Sustain. Energy Rev. 2023, 185, 113621. [Google Scholar] [CrossRef]
- Kirschstein, T.; Meisel, F. GHG-emission models for assessing the eco-friendliness of road and rail freight transports. Transp. Res. Part B Methodol. 2015, 73, 13–33. [Google Scholar] [CrossRef]
- Sha, A.; Jiang, W.; Wang, W.; Lou, B.; Cao, Y.; Jia, M. Design and prospect of new pavement materials for smart road. Chin. Sci. Bull. 2020, 65, 3259–3269. [Google Scholar] [CrossRef]
- Pinto, J.T.; de Miranda Pinto, M.; Mistage, O.; Bilotta, P.; Helmers, E. Road-rail intermodal freight transport as a strategy for climate change mitigation. Environ. Dev. 2018, 25, 100–110. [Google Scholar] [CrossRef]
- Barbieri, D.M.; Lou, B.; Passavanti, M.; Hui, C.; Lessa, D.A.; Maharaj, B.; Banerjee, A.; Wang, F.; Chang, K.; Naik, B.; et al. Survey data regarding perceived air quality in Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa, United States before and during COVID-19 restrictions. Data Br. 2020, 32, 106169. [Google Scholar] [CrossRef]
- Rosales, R. Less emissions or less freight? Conflicting narratives for sustainable logistics in Norway. Energy Res. Soc. Sci. 2025, 122, 104010. [Google Scholar] [CrossRef]
- Laurino, A.; Ramella, F.; Beria, P. The economic regulation of railway networks: A worldwide survey. Transp. Res. Part A Policy Pract. 2015, 77, 202–212. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X. Reducing CO2 emissions through pricing, planning, and subsidizing rail freight. Transp. Res. Part D Transp. Environ. 2020, 87, 102483. [Google Scholar] [CrossRef]
- Nasjonal Transportplan 2025–2036. Published by Samferdselsdepartement. Norway. 2024. Available online: https://www.regjeringen.no/contentassets/aaee20cf5a9e468ea97fd51638c42407/no/pdfs/stm202320240014000dddpdfs.pdf (accessed on 16 May 2025).
- Bane NOR Bane NOR. 2025. Available online: https://www.banenor.no/ (accessed on 16 May 2025).
- Bane NOR Stadig mer Gods på Bane—Åtte Prosents Økning Hittil i år. Available online: https://www.banenor.no/nyheter-og-aktuelt/nyheter/2022/stadig-mer-gods-pa-bane--atte-prosents-okning-hittil-i-ar/ (accessed on 16 May 2025).
- Oslo Economics. Kan Godstrafikken på Jernbanen Reddes? En Analyse av Togets Betydning og Konsekvenser ved Bortfall; Oslo Economics: Oslo, Norway, 2025. [Google Scholar]
- Norwegian Railway Directorate. 2025. Available online: https://www.jernbanedirektoratet.no/ (accessed on 16 May 2025).
- VY. 2025. Available online: https://www.vy.no/ (accessed on 16 May 2025).
- CargoNet. 2025. Available online: https://www.cargonet.no/ (accessed on 16 May 2025).
- Norwegian Railway Directorate, Rørosbanen. 2025. Available online: https://www.jernbanedirektoratet.no/jernbanestrekning/rorosbanen/ (accessed on 16 May 2025).
- Norwegian Railway Directorate, Dovrebanen. 2025. Available online: https://www.jernbanedirektoratet.no/jernbanestrekning/dovrebanen/ (accessed on 16 May 2025).
- Pyrgidis, C.N. Railway Transportation Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9780367494230. [Google Scholar]
- Profillidis, V. Railway Planning, Management, and Engineering, 5th ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781032341699. [Google Scholar]
- Guerrieri, M. Fundamentals of Railway Design, 1st ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Barbieri, D.M.; Hoff, I.; Mork, H. Laboratory investigation on unbound materials used in a highway with premature damage. In Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Athens, Greece, 28–30 June 2017; Loizos, A., Al-Qadi, I.L., Scarpas, A.T., Eds.; Taylor & Francis: Athens, Greece, 2017; pp. 101–108. [Google Scholar]
- Barbieri, D.M.; Hoff, I.; Mørk, M.B.E. Mechanical assessment of crushed rocks rerived from tunnelling operations. In Sustainable Civil Infrastructures; Cheng, W.-C., Yang, J., Wang, J., Eds.; Springer: Hangzhou, China, 2019; pp. 225–241. [Google Scholar] [CrossRef]
- Bane NOR. Teknisk Regelverk. Norway. 2025. Available online: https://trv.banenor.no/wiki/Forside (accessed on 16 May 2025).
- Bane NOR. Sporets Komponenter/Sporveksler. 2025. Available online: https://www.jernbanekompetanse.no/wiki/Sporets_komponenter/Sporveksler (accessed on 16 May 2025).
- Jensen, M. Hjerkinn. 2009. Available online: https://commons.wikimedia.org/wiki/File:Hjerkinn_2009_(9050540644).jpg (accessed on 16 May 2025).
- UIC Code 406; International Union of Railways: Paris, France, 2013.
- Hacon. Timetable Construction and Dispatching. 2025. Available online: https://www.hacon.de/en/portfolio/timetable-construction-disposition/ (accessed on 16 May 2025).
- Zhan, S.; Xie, J.; Wong, S.C.; Zhu, Y.; Corman, F. Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions. Transp. Res. Part E Logist. Transp. Rev. 2024, 183, 103429. [Google Scholar] [CrossRef]
- RailNetEurope Timetable Redesign for Smart Capacity Management. 2025. Available online: https://rne.eu/capacity-management/ttr/ (accessed on 16 May 2025).
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 1st ed.; Wiley: Hoboken, NY, USA, 2008. [Google Scholar]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Bazán, Á.M.; Alberti, M.G.; Álvarez, A.A.; Trigueros, J.A. New perspectives for BIM usage in transportation infrastructure projects. Appl. Sci. 2020, 10, 7072. [Google Scholar] [CrossRef]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for transportation infrastructure—Literature review, applications, challenges, and recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Norwegian public roads administration Håndbok V770 Modellgrunnlag; Vegdirektoratet: Oslo, Norway, 2015.
- Bane NOR. Krav Til Informasjonsmodellering (KIM). 2022. Available online: https://www.banenor.no/kim (accessed on 16 May 2025).
- Lassen, A.K.; Hjelseth, E.; Tollnes, T. Enhancing learning outcomes by introducing BIM in civil engineering studies–experiences from a university college in Norway. Int. J. Sustain. Dev. Plan. 2018, 13, 62–72. [Google Scholar] [CrossRef]
- Barbieri, D.M.; Lou, B.; Passavanti, M.; Barbieri, A.; Bjørheim, F. A survey dataset evaluating perceptions of civil engineering students about Building Information Modelling (BIM). Data 2023, 8, 114. [Google Scholar] [CrossRef]
- Trimble. Trimble Novapoint. 2025. Available online: https://www.novapoint.com/products/novapoint (accessed on 16 May 2025).
- Trimble. Om Trimble. 2025. Available online: https://civil.trimble.no/om/om-trimble (accessed on 16 May 2025).
- Rüther, D.C.; Lindsay, E.; Slåtten, M.S. Landslide inventory: ‘Hans’ storm southern Norway, August 7–9, 2023. Landslides 2024, 21, 1155–1159. [Google Scholar] [CrossRef]
- Virk, Z.T.; Fennell, J.; Haghighi, A.T.; Klove, B. Introducing the concept of “resource scapes” to account for water, energy and biomass resources’ nexus dependencies and governance. Resour. Environ. Sustain. 2025, 19, 100199. [Google Scholar] [CrossRef]
- Bane NOR. Datakatalogen “Maximo”. 2025. Available online: https://oppslagsverk.banenor.no/datakatalogen/ (accessed on 16 May 2025).
- Bane NOR. Sporets Trasé/Sporgeometri. 2025. Available online: https://www.jernbanekompetanse.no/wiki/Sporets_trasé/Sporgeometri (accessed on 16 May 2025).
- European Union. Regulation (EU) 2024/1679; European Union: Brussels, Belgium, 2024. [Google Scholar]
- Norwegian Railway Directorate. Godsstrategi—NTP 2022–2033; Norwegian Railway Directorate: Norway, Oslo, 2019. [Google Scholar]
- Bane NOR. Strekningsbeskrivelse Rørosbanen. 2025. Available online: https://orv.banenor.no/sjn/doku.php?id=strekningsbeskrivelse:strekningsoversikt:rorosbanen (accessed on 16 May 2025).
- Norwegian Railway Directorate. Standarder for Kapasitetsplanlegging; Norwegian Railway Directorate: Oslo, Norway, 2017. [Google Scholar]
- Ke, B.R.; Lin, C.L.; Chien, H.H.; Chiu, H.W.; Chen, N. A new approach for improving the performance of freight train timetabling of a single-track railway system. Transp. Plan. Technol. 2015, 38, 238–264. [Google Scholar] [CrossRef]
- Burdett, R.L.; Kozan, E. Techniques for absolute capacity determination in railways. Transp. Res. Part B Methodol. 2006, 40, 616–632. [Google Scholar] [CrossRef]
- Dick, C.T.; Atanassov, I.; Kippen, F.B.; Mussanov, D. Relative train length and the infrastructure required to mitigate delays from operating combinations of normal and over-length freight trains on single-track railway lines in North America. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 233, 731–742. [Google Scholar] [CrossRef]
- Norwegian Mapping Authority. Norges Kart. 2025. Available online: https://www.kartverket.no/til-lands/kart/norgeskart (accessed on 16 May 2025).
- Ciccone, A.; Di Stasio, S.; Asprone, D.; Salzano, A.; Nicolella, M. Application of openBIM for the management of existing railway infrastructure: Case study of the Cancello–Benevento railway line. Sustainability 2022, 14, 2283. [Google Scholar] [CrossRef]
- Bartonek, D.; Bures, J.; Vystavel, O.; Havlicek, R. Case study of remodelling the as-built documentation of a railway construction into the BIM and GIS environment. Appl. Sci. 2023, 13, 5591. [Google Scholar] [CrossRef]
- Queiroz, D.; Placido, M.; Silva, R.; Vital, W. Influence of topographic data in the development of railway projects using BIM. J. Transp. Eng. Part A Syst. 2023, 149, 04023036. [Google Scholar] [CrossRef]
- Liu, Z.; Han, F.; Ni, G.; Liang, T.; Qi, M. 3D visualization of railway development using GIS and BIM techniques. Adv. Transdiscipl. Eng. 2020, 14, 199–207. [Google Scholar] [CrossRef]
- Bane NOR. Hamar Stasjon. 2025. Available online: https://www.banenor.no/reise-og-trafikk/stasjoner/-h-/hamar/ (accessed on 16 May 2025).
- Acerra, E.M.; Busquet, G.F.D.; Parente, M.; Marinelli, M.; Vignali, V.; Simone, A. Building Information Modeling (BIM) application for a section of Bologna’s red tramway line. Infrastructures 2022, 7, 168. [Google Scholar] [CrossRef]
- Pasetto, M.; Giordano, A.; Borin, P.; Giacomello, G. Integrated railway design using Infrastructure-Building Information Modeling. The case study of the port of Venice. Transp. Res. Procedia 2020, 45, 850–857. [Google Scholar] [CrossRef]
- Geological Survey of Norway. Nasjonal Database for Ustabile Fjellpartier. 2025. Available online: https://geo.ngu.no/kart/ustabilefjellparti_mobil/ (accessed on 16 May 2025).
- Norwegian Water Resources and Energy Directorate. Kvikkleireskredfare. 2025. Available online: https://temakart.nve.no/tema/kvikkleire (accessed on 16 May 2025).
- Norwegian Water Resources and Energy Directorate. Flomsone. 2025. Available online: https://temakart.nve.no/tema/flomsone (accessed on 16 May 2025).
- Koks, E.E.; Rozenberg, J.; Zorn, C.; Tariverdi, M.; Vousdoukas, M.; Fraser, S.A.; Hall, J.W.; Hallegatte, S. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 2019, 10, 2677. [Google Scholar] [CrossRef]
- Armstrong, J.; Helm, P.; Preston, J.; Loveridge, F. Economics of geotechnical asset deterioration, maintenance and renewal. Transp. Geotech. 2024, 45, 101185. [Google Scholar] [CrossRef]
- Norwegian Environment Agency. Norges Verneområder. 2025. Available online: https://www.miljodirektoratet.no/ansvarsomrader/vernet-natur/norges-verneomrader/ (accessed on 16 May 2025).
- Egze, A.; Zeleke, T.; Seyoum, A. The impact of involuntary resettlement on households’ livelihood: A case study of railway infrastructure induced resettlement in South Wello zone of Amhara Region, Ethiopia. J. Clean. Prod. 2023, 420, 138402. [Google Scholar] [CrossRef]
- Kasraian, D.; Maat, K.; Stead, D.; van Wee, B. Long-term impacts of transport infrastructure networks on land-use change: An international review of empirical studies. Transp. Rev. 2016, 36, 772–792. [Google Scholar] [CrossRef]
- Abramovic, B.; Majstrovic, M.; Mašek, J.; Šipuš, D. Railway freight corridors in the European Union. Transp. Res. Procedia 2024, 77, 109–115. [Google Scholar] [CrossRef]
- Al-Mousa, M.; Sipilä, H.; Fröidh, O. Railway capacity utilization and service quality of freight trains with increased top speed in mixed traffic. Transp. Res. Interdiscip. Perspect. 2024, 28, 101242. [Google Scholar] [CrossRef]
- Ahern, A.; Anandarajah, G. Railway projects prioritisation for investment: Application of goal programming. Transp. Policy 2007, 14, 70–80. [Google Scholar] [CrossRef]
- Jones, H.; Moura, F.; Domingos, T. Transport infrastructure project evaluation using cost-benefit analysis. Procedia Soc. Behav. Sci. 2014, 111, 400–409. [Google Scholar] [CrossRef]
Radius (m) | Track Spacing (m) |
---|---|
R ≤ 350 | 4.70 |
350 < R ≤ 500 | 4.68 |
500 < R ≤ 600 | 4.66 |
600 < R ≤ 1000 | 4.64 |
1000 < R ≤ 4000 | 4.60 |
4000 < R ≤ 5000 | 4.56 |
R < 5000 | 4.40 |
R ≤ 300 m | 300 m < R ≤ 500 m | 500 m < R ≤ 1100 m | R > 1100 m | Straight | |
---|---|---|---|---|---|
Dovre line | 8% | 12% | 17% | 23% | 40% |
Røros line | 7% | 13% | 16% | 14% | 50% |
s > 20‰ | 15‰ < s ≤ 20‰ | 10‰ < s ≤ 15‰ | 5‰ < s ≤ 10‰ | 0‰ < s ≤ 5‰ | s = 0‰ | |
---|---|---|---|---|---|---|
Dovre line | 0% | 16% | 18% | 16% | 31% | 19% |
Røros line | 0% | 0% | 14% | 30% | 37% | 19% |
Embankment | Cutting | Bridge | Tunnel | |
---|---|---|---|---|
Dovre line | 29.7% | 36.2% | 0.5% | 2.6% |
Røros line | 34.0% | 14.1% | 0.7% | 0.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solheim, A.; Gjestad, G.C.; Østmoen, C.; Lydersen, Ø.; Edin Nilsen, S.A.; Barbieri, D.M.; Lou, B. Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway. Infrastructures 2025, 10, 180. https://doi.org/10.3390/infrastructures10070180
Solheim A, Gjestad GC, Østmoen C, Lydersen Ø, Edin Nilsen SA, Barbieri DM, Lou B. Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway. Infrastructures. 2025; 10(7):180. https://doi.org/10.3390/infrastructures10070180
Chicago/Turabian StyleSolheim, Are, Gustav Carlsen Gjestad, Christoffer Østmoen, Ørjan Lydersen, Stefan Andreas Edin Nilsen, Diego Maria Barbieri, and Baowen Lou. 2025. "Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway" Infrastructures 10, no. 7: 180. https://doi.org/10.3390/infrastructures10070180
APA StyleSolheim, A., Gjestad, G. C., Østmoen, C., Lydersen, Ø., Edin Nilsen, S. A., Barbieri, D. M., & Lou, B. (2025). Railway Infrastructure Upgrade for Freight Transport: Case Study of the Røros Line, Norway. Infrastructures, 10(7), 180. https://doi.org/10.3390/infrastructures10070180