Sustainable Road Design and Traffic Management

A special issue of Infrastructures (ISSN 2412-3811).

Deadline for manuscript submissions: 1 December 2025 | Viewed by 7266

Special Issue Editors

Department of Transportation Engineering, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
Interests: road infrastructure design; environmental impact; sustainability; traffic noise

E-Mail Website
Guest Editor
Department of Transportation Engineering, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
Interests: pavement design; pavement management and maintenance; pavement materials; nondestructive testing (FWD, GPR); geosynthetics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Intelligent Transport Systems, Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia
Interests: intelligent transport systems; cooperative systems; traffic control; ITS architecture; open data in traffic
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sustainable roads must be planned, designed, built, and managed effectively and efficiently—all while upholding strict environmental standards and ensuring the necessary levels of mobility and safety. Practices like the implementation of complete streets, utilization of recycled and renewable materials, and a holistic approach to drainage play integral roles in mitigating the environmental impact of roads today. Additionally, to meet the demands of modern transportation, researchers and practitioners who deal with road infrastructure must embrace new technologies. These include tools like Building Information Modeling in the design and construction phases and integrating the Internet of Things and Artificial Intelligence in predictive maintenance strategies. By incorporating advanced materials, smart technologies, and sustainable practices while considering the needs of all users, we can create road networks that are efficient, safe, more accessible, environmentally friendly, and resilient.

This Special Issue aims to provide an overview of the current innovative tendencies in road design and traffic management, which have implementational potential in the future. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Strategies for minimizing the environmental impact of road infrastructure;
  • Sustainable materials for road construction;
  • Innovative road surfaces;
  • Autonomous vehicles' impact on road design;
  • Applications of IoT and AI in predictive road maintenance.

We look forward to receiving your contributions.

Dr. Saša Ahac
Dr. Josipa Domitrović
Dr. Miroslav Vujić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Infrastructures is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart roads
  • smart materials
  • complete streets
  • recycling
  • reuse
  • emissions
  • life cycle analysis
  • traffic safety
  • resilient infrastructures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1057 KiB  
Article
Crash Severity in Collisions with Roadside Light Poles: Highlighting the Potential of Passive Safe Pole Solutions
by Višnja Tkalčević Lakušić, Marija Ferko and Darko Babić
Infrastructures 2025, 10(7), 163; https://doi.org/10.3390/infrastructures10070163 - 30 Jun 2025
Abstract
This paper investigates crash severity in single-vehicle road crashes involving collisions with roadside light poles in Croatia. Due to the absence of detailed object-type classifications in the official crash database, media reports were used to identify relevant incidents in combination with the official [...] Read more.
This paper investigates crash severity in single-vehicle road crashes involving collisions with roadside light poles in Croatia. Due to the absence of detailed object-type classifications in the official crash database, media reports were used to identify relevant incidents in combination with the official state database, resulting in 38 crashes identified between 2016 and March 2025. Descriptive analysis and crosstabulation were applied to explore patterns in crash outcomes. A CHAID decision tree analysis was then applied in an exploratory capacity to highlight possible predictors of injury or fatal outcomes, acknowledging the limitations of the small sample size. Results showed that the speed limit was the only variable significantly associated with crash severity, with all crashes above 50 km/h resulting in injuries or fatalities. The findings highlight the importance of speed management and support the potential for implementing passively safe poles to reduce the consequences of such crashes. The study also discusses the performance of different pole types in line with EN 12767:2019, defines risk zones, and proposes solutions for the example locations. The results offer future research implications and valuable insights for road safety improvement, especially in areas with frequent pole collisions. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

19 pages, 3345 KiB  
Article
AI for Predicting Pavement Roughness in Road Monitoring and Maintenance
by Christina Plati, Angeliki Armeni, Charis Kyriakou and Dimitra Asoniti
Infrastructures 2025, 10(7), 157; https://doi.org/10.3390/infrastructures10070157 - 26 Jun 2025
Viewed by 197
Abstract
In recent decades, numerous studies have investigated the application of Artificial Intelligence (AI), and more precisely of Artificial Neural Networks (ANNs), in the prediction of complex technical parameters, particularly in the field of road infrastructure management. Among them, prediction of the widely used [...] Read more.
In recent decades, numerous studies have investigated the application of Artificial Intelligence (AI), and more precisely of Artificial Neural Networks (ANNs), in the prediction of complex technical parameters, particularly in the field of road infrastructure management. Among them, prediction of the widely used International Roughness Index (IRI) has attracted much attention due to its importance in pavement maintenance planning. This study focuses on predicting future IRI values using traditional regression models and neural networks, specifically Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) networks, on two highway sections, each analyzed in two experimental setups. The models consider only traffic and structural road characteristics as variables. The results show that the LSTM method provides significantly lower prediction errors for both highway sections, indicating better performance in capturing roughness trends over time. These results confirm that ANNs are a useful tool for engineers by predicting future IRI values, as they help to extend pavement life and reduce overall maintenance costs. The integration of machine learning into pavement evaluation is a promising step forward in ongoing efforts to optimize pavement management. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

23 pages, 2630 KiB  
Article
Machine Learning Traffic Flow Prediction Models for Smart and Sustainable Traffic Management
by Rusul Abduljabbar, Hussein Dia and Sohani Liyanage
Infrastructures 2025, 10(7), 155; https://doi.org/10.3390/infrastructures10070155 - 24 Jun 2025
Viewed by 263
Abstract
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data [...] Read more.
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data to predict traffic patterns more effectively, allowing for the deployment of proactive measures to prevent or reduce traffic congestion and idling times, leading to enhanced eco-friendly mobility. Specifically, this paper evaluates the impact of multisource sensor inputs and spatial detector interactions on machine learning-based traffic flow prediction. Using a dataset of 839,377 observations from 14 detector stations along Melbourne’s Eastern Freeway, Bidirectional Long Short-Term Memory (BiLSTM) models were developed to assess predictive accuracy under different input configurations. The results demonstrated that incorporating speed and occupancy inputs alongside traffic flow improves prediction accuracy by up to 16% across all detector stations. This study also investigated the role of spatial flow input interactions from upstream and downstream detectors in enhancing prediction performance. The findings confirm that including neighbouring detectors improves prediction accuracy, increasing performance from 96% to 98% for eastbound and westbound directions. These findings highlight the benefits of optimised sensor deployment, data integration, and advanced machine-learning techniques for smart and eco-friendly traffic systems. Additionally, this study provides a foundation for data-driven, adaptive traffic management strategies that contribute to sustainable road network planning, reducing vehicle idling, fuel consumption, and emissions while enhancing urban mobility and supporting sustainability goals. Furthermore, the proposed framework aligns with key United Nations Sustainable Development Goals (SDGs), particularly those promoting sustainable cities, resilient infrastructure, and climate-responsive planning. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

23 pages, 423 KiB  
Article
Older Adults’ Walking Behavior and the Associated Built Environment in Medium-Income Central Neighborhoods of Santiago, Chile
by Mohammad Paydar and Asal Kamani Fard
Infrastructures 2025, 10(6), 137; https://doi.org/10.3390/infrastructures10060137 - 1 Jun 2025
Viewed by 303
Abstract
The prevalence of car dependence and sedentary lifestyles has created concern in the transportation and health sectors. Walking is the most popular and practical kind of exercise that can significantly enhance health. In Chile, more than half of older adults have health issues [...] Read more.
The prevalence of car dependence and sedentary lifestyles has created concern in the transportation and health sectors. Walking is the most popular and practical kind of exercise that can significantly enhance health. In Chile, more than half of older adults have health issues and almost 72% of the elderly population never engages in physical activity. This study aims to investigate the relationship between older adults’ walking behavior and the built environment along the streets and parks in Santiago’s middle-income neighborhoods. Six medium-income central and pericentral neighborhoods of Santiago were selected. The average number of older persons who walk along the paths and two modified audit forms were used to measure walking behavior and built environment features, respectively. Both correlation analysis and backward regression were used to examine the associations. While elements like the existence of bus stops, pedestrian streets, and general cleanliness contribute to the enhanced number of older adults who walk along street segments, the presence of insecurity signs was found to be negatively associated with the number of older adults who walk in the neighborhood parks. Furthermore, complexity and mystery showed a negative association with the number of older adults in the neighborhood parks. Urban policymakers might use these findings to encourage older adults to walk more in Santiago’s medium-income neighborhoods. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

26 pages, 3439 KiB  
Article
The Prediction of the Compaction Curves and Energy of Bituminous Mixtures
by Filippo Giammaria Praticò and Giusi Perri
Infrastructures 2025, 10(6), 132; https://doi.org/10.3390/infrastructures10060132 - 29 May 2025
Viewed by 278
Abstract
The optimisation of road construction planning and design prioritises safety, comfort, cost-effectiveness, and sustainability by aligning with sustainable development goals (SDGs) and integrating life cycle assessment (LCA)-based criteria. Asphalt mixture compaction is a critical construction-phase process that requires careful monitoring due to its [...] Read more.
The optimisation of road construction planning and design prioritises safety, comfort, cost-effectiveness, and sustainability by aligning with sustainable development goals (SDGs) and integrating life cycle assessment (LCA)-based criteria. Asphalt mixture compaction is a critical construction-phase process that requires careful monitoring due to its significant impact on fuel consumption, CO2 emissions, and pavement performance. However, characterising the compaction process during the design stage is challenging due to the unavailability of primary data, such as the compaction energy applied by the roller on-site. This study addresses this gap by developing a methodology for deriving compaction-energy-related data at the laboratory stage. An algorithm is proposed to estimate key compaction parameters, specifically the locking point and compaction curves, based on aggregate grading. Equations to improve the design of bituminous mixtures based on compaction targets were derived. The findings support more sustainable planning, the optimised selection of construction equipment, and improved competitive equilibria between different pavement technologies by promoting low-carbon and energy-efficient strategies aligned with SDGS. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

20 pages, 5670 KiB  
Article
Performance Evaluation of Waste Rubber-Modified Asphalt Mixtures: A Comparative Study of Asphalt Concrete and Stone Mastic Asphalt Gradings
by Ivana Ban, Ivana Barišić, Marijana Cuculić and Matija Zvonarić
Infrastructures 2025, 10(5), 107; https://doi.org/10.3390/infrastructures10050107 - 25 Apr 2025
Viewed by 514
Abstract
Crumb rubber (CR) obtained from end-of-life tyres (ELT) has gained significant attention in the sustainable design of asphalt pavements in recent years, showing a promising perspective in the enhancement of pavement performance related to its structural and functional properties. Existing research on CR [...] Read more.
Crumb rubber (CR) obtained from end-of-life tyres (ELT) has gained significant attention in the sustainable design of asphalt pavements in recent years, showing a promising perspective in the enhancement of pavement performance related to its structural and functional properties. Existing research on CR influence on pavement performance mostly focused on peculiarities of asphalt mixture modification procedures—dry and wet processes, CR content in the mixture and CR particle size. In this study, a laboratory-based experimental investigation of CR effect on two different mixture gradations, namely dense-graded and gap-graded mixtures with three different binder contents, was performed. CR was added in mixtures through binder modification, with a constant CR content of 18% by binder weight in all mixtures. Volumetric properties—maximum mixture density, bulk density and void characteristics, alongside mechanical properties determined by the Marshall test method—were determined on unmodified and modified mixtures. The goal was to evaluate the influence of CR modification with respect to three different binder contents. The results showed that gap-graded mixtures are more sensitive to change in CR modified binder content in comparison to dense-graded mixtures in terms of air voids content. Furthermore, the mechanical properties of CR-modified mixtures were slightly enhanced in gap-graded mixtures, showing a promising potential of CR modification for pavement performance. However, the choice of optimal binder content in CR-modified mixtures was shown to be a critical mixture design parameter due to the increased sensitivity of binder content change to the analysed voids properties and permanent deformations. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

24 pages, 4944 KiB  
Article
Modeling Riding and Stopping Behaviors at Motorcycle Box Intersections: A Case Study in Chiang Mai City, Thailand
by Wachira Wichitphongsa, Nopadon Kronprasert, Moe Sandi Zaw, Pongthep Pisetsit and Thaned Satiennam
Infrastructures 2025, 10(4), 97; https://doi.org/10.3390/infrastructures10040097 - 16 Apr 2025
Viewed by 647
Abstract
A motorcycle box intersection is a signalized intersection with advanced stop lines or stopping spaces intended for motorcycles, creating a waiting area in front of other vehicles. This study introduces the External Driver Model (EDM) with microscopic traffic simulation using PTV Vissim 2024 [...] Read more.
A motorcycle box intersection is a signalized intersection with advanced stop lines or stopping spaces intended for motorcycles, creating a waiting area in front of other vehicles. This study introduces the External Driver Model (EDM) with microscopic traffic simulation using PTV Vissim 2024 software, which replicates the filtering and stopping behavior of motorcycles in mixed traffic on intersection approaches. This research aims to evaluate the traffic performance of motorcycle boxes with respect to motorcycle departure times, headway intervals, lane-filtering rates, and vehicle movement patterns at 12 signalized urban intersections in Chiang Mai, Thailand. The results show that the motorcycle box intersection has improved traffic efficiency, reduced motorcycle departure time, and maintained a constant distance between cars and other vehicles. Signalized intersections with motorcycle boxes improved traffic flow efficiency by favoring motorcycles without affecting car delays. Spatial-temporal visualization further supported the clustering characteristics of motorcycles in motorcycle-stopping areas, contributing to more orderly and predictable behavior in traffic. Furthermore, the lane-filtering rates demonstrated significant improvement at intersections equipped with motorcycle boxes compared to conventional intersection designs. These findings indicated that motorcycle boxes are valuable for motorcycle traffic management and intersection safety in urban areas with high volumes of motorcycle traffic. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

21 pages, 7725 KiB  
Article
Trip Generation Models for Transportation Impact Analyses of Shopping Centers in Croatia
by Deana Breški, Biljana Maljković and Mihaela Senjak
Infrastructures 2025, 10(4), 85; https://doi.org/10.3390/infrastructures10040085 - 4 Apr 2025
Cited by 1 | Viewed by 528
Abstract
For effective transportation planning, land use, travel behavior, and infrastructure capacity should be optimized to support sustainable urban growth and reduce congestion. Every new site development generates traffic volume, which can affect the quality of traffic flow in the surrounding road network. Therefore, [...] Read more.
For effective transportation planning, land use, travel behavior, and infrastructure capacity should be optimized to support sustainable urban growth and reduce congestion. Every new site development generates traffic volume, which can affect the quality of traffic flow in the surrounding road network. Therefore, trip generation, which predicts future travel demand, is a crucial step in the traditional four-step transportation model. In this context, the main objective of this study is to develop a model for estimating vehicle trip generation due to the construction of a shopping center, which is a significant traffic generator. The survey was conducted in Split (Croatia) at five existing locations, and linear regression analysis was used to develop models for different time periods. The results indicated that vehicle trips are strongly correlated with the gross floor area of shopping centers, with a high coefficient of determination. Additionally, this study presents a comparison of measured traffic volumes with estimates using ITE Trip Generation Manual equations. The findings suggest that these vehicle trip estimates should be reduced by approximately 40%. Since no previous studies have been conducted on the impact of land use on trip generation in the Republic of Croatia, the developed models represent a first step in creating a database that should be expanded with new data. Estimating the traffic generated by a new site development is a crucial component of traffic management, as it helps planners and engineers assess its impact on the surrounding road network and implement necessary measures to ensure efficient and safe traffic flow. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

16 pages, 1863 KiB  
Article
Determining Passing Sight Distance on Upgraded Road Sections over Single and Platooned Heavy Military Vehicles
by Stergios Mavromatis, Vassilios Matragos, Antonis Kontizas and Kiriakos Amiridis
Infrastructures 2025, 10(3), 65; https://doi.org/10.3390/infrastructures10030065 - 19 Mar 2025
Viewed by 293
Abstract
Although truck platooning enhances transportation efficiency, reduces fuel consumption, and lowers freight transport costs, it can also create limited overtaking opportunities, potentially leading to risky overtaking maneuvers. The present study examines the impact of platooned heavy military vehicles on the quantification of Passing [...] Read more.
Although truck platooning enhances transportation efficiency, reduces fuel consumption, and lowers freight transport costs, it can also create limited overtaking opportunities, potentially leading to risky overtaking maneuvers. The present study examines the impact of platooned heavy military vehicles on the quantification of Passing Sight Distance (PSD). Two distinct cases are examined: single and platooned military vehicles passing, the latter formed by five trucks. The authors, by realistically modeling the passing task, examined the interaction between vehicle dynamic parameters and roadway grade utilizing an existing vehicle dynamics model. The analysis of various speed values revealed significant PSD variations depending on the examined impeding (overtaken) vehicle’s platooning configuration and utilized grade. The present assessment accurately quantifies the grade impact on the required PSDs for such special vehicle arrangements and can be applied to any vehicle platooning configuration. Moreover, a preliminary tool is introduced to assist road designers in accurately assessing the impact of roadway grade on the passing process. This tool, when combined with a more in-depth analysis of additional factors, can help justify the need for an extra lane in road sections where platooning regularly occurs. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

19 pages, 4777 KiB  
Article
Driving Automation Systems Penetration and Traffic Safety: Implications for Infrastructure Design and Policy
by Antonia Antonakaki, Maria G. Oikonomou, Thodoris Garefalakis and George Yannis
Infrastructures 2024, 9(12), 234; https://doi.org/10.3390/infrastructures9120234 - 16 Dec 2024
Cited by 1 | Viewed by 1126
Abstract
The increasing penetration of autonomous vehicles (AVs) presents new challenges and opportunities for road safety. This study aims to evaluate the impact of AV penetration rates on traffic safety through the use of microscopic simulation scenarios based on the Villaverde network in Madrid. [...] Read more.
The increasing penetration of autonomous vehicles (AVs) presents new challenges and opportunities for road safety. This study aims to evaluate the impact of AV penetration rates on traffic safety through the use of microscopic simulation scenarios based on the Villaverde network in Madrid. Eleven scenarios were simulated with SAE Level 5 AV market penetration rates (MPRs) ranging from 0% to 100% in 10% increments. Vehicle conflicts, defined as instances where the time to collision was less than 1.5 s, were analyzed along with traffic composition and roadway characteristics. Multiple linear and multinomial logistic regression models were applied to examine the relationships between time-to-collision (TTC), conflict numbers, maximum conflict speed, and critical influencing factors such as vehicle type and road capacity. The results indicate that higher AV penetration rates generally improve traffic safety, although the coexistence of conventional vehicles and vehicles equipped with driving automation systems introduces traffic heterogeneity, potentially influencing safety outcomes. These findings suggest that while AVs have a positive effect on road safety, further analysis is needed to address the complexities introduced by mixed-traffic conditions. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

24 pages, 3016 KiB  
Article
Reconstructing Intersection Conflict Zones: Microsimulation-Based Analysis of Traffic Safety for Pedestrians
by Irena Ištoka Otković, Aleksandra Deluka-Tibljaš, Đuro Zečević and Mirjana Šimunović
Infrastructures 2024, 9(12), 215; https://doi.org/10.3390/infrastructures9120215 - 22 Nov 2024
Cited by 1 | Viewed by 1350
Abstract
According to statistics from the World Health Organization, traffic accidents are one of the leading causes of death among children and young people, and statistical indicators are even worse for the elderly population. Preventive measures require an approach that includes analyses of traffic [...] Read more.
According to statistics from the World Health Organization, traffic accidents are one of the leading causes of death among children and young people, and statistical indicators are even worse for the elderly population. Preventive measures require an approach that includes analyses of traffic infrastructure and regulations, users’ traffic behavior, and their interactions. In this study, a methodology based on traffic microsimulations was developed to select the optimal reconstruction solution for urban traffic infrastructure from the perspective of traffic safety. Comprehensive analyses of local traffic conditions at the selected location, infrastructural properties, and properties related to traffic users were carried out. The developed methodology was applied and tested at a selected unsignalized pedestrian crosswalk located in Osijek, Croatia, where traffic safety issues had been detected. Analyses of the possible solutions for traffic safety improvements were carried out, taking into account the specificities of the chosen location and the traffic participants’ behaviors, which were recorded and measured. The statistical analysis showed that children had shorter reaction times and crossed the street faster than the analyzed group of adult pedestrians, which was dominated by elderly people in this case. Using microsimulation traffic modeling (VISSIM), an analysis was conducted on the incoming vehicle speeds for both the existing and the reconstructed conflict zone solutions under different traffic conditions. The results exhibited a decrease in average speeds for the proposed solution, and traffic volume was detected to have a great impact on incoming speeds. The developed methodology proved to be effective in selecting a traffic solution that respects the needs of both motorized traffic and pedestrians. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 2204 KiB  
Review
Overview of the Patents and Patent Applications on Upper Guardrail Protection Systems for Motorcyclists
by Laura Brigita Parežnik, Marko Renčelj and Tomaž Tollazzi
Infrastructures 2025, 10(7), 165; https://doi.org/10.3390/infrastructures10070165 - 30 Jun 2025
Abstract
Upright-posture motorcycle crashes against steel safety barriers (SSBs) often result in severe upper-body injuries due to the sharp upper edge of the rail. While solutions for sliding crashes on curves, called a ‘motorcyclist-friendly barrier’, are already implemented in practice, protective measures for upright-posture [...] Read more.
Upright-posture motorcycle crashes against steel safety barriers (SSBs) often result in severe upper-body injuries due to the sharp upper edge of the rail. While solutions for sliding crashes on curves, called a ‘motorcyclist-friendly barrier’, are already implemented in practice, protective measures for upright-posture impacts remain underdeveloped. This study systematically reviews patents and patent applications addressing upper guardrail protection for motorcyclists. We identified and analysed a small number of existing innovations aimed at mitigating the consequences of upright crashes. The selected solutions were evaluated according to their technical design, ease of installation, potential for recycling, environmental compatibility, and expected costs. Our comparative analysis reveals that while some patents or patent applications offer promising features, such as flexible caps, bent plates, or modular attachments, none comprehensively address all safety, environmental, and economic requirements. The findings provide a basis for further development of motorcyclist-friendly SSB designs and suggest specific criteria that should be included in future guidelines and standard updates. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

27 pages, 1470 KiB  
Review
Beyond Speed Reduction: A Systematic Literature Review of Traffic-Calming Effects on Public Health, Travel Behaviour, and Urban Liveability
by Fotios Magkafas, Grigorios Fountas, Panagiotis Ch. Anastasopoulos and Socrates Basbas
Infrastructures 2025, 10(6), 147; https://doi.org/10.3390/infrastructures10060147 - 16 Jun 2025
Viewed by 440
Abstract
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming [...] Read more.
Traffic calming has emerged as a key urban strategy to reduce vehicle speeds and mitigate road traffic risks, with increasing recognition of its broader implications for public health, human behaviour, and urban liveability. This systematic literature review examines the multifaceted impacts of traffic-calming measures—from speed limit reductions to physical infrastructure and enforcement-based interventions—by synthesising findings from 28 peer-reviewed studies. Guided by the PRISMA framework, the review compiles research exploring links between traffic calming and outcomes related to public health, behaviour, and urban quality of life. Research consistently indicates that such interventions reduce both the frequency and severity of collisions, improve air and noise quality, and promote active mobility. These effects are shaped by user perceptions: non-motorised users tend to report higher levels of safety and accessibility, whereas motorised users often express frustration or resistance. Beyond safety and environmental improvements, traffic calming has been associated with greater use of public space, stronger social connections, and enhanced environmental aesthetics. The findings also show that key challenges may affect the effectiveness of traffic calming and these include negative attitudes among drivers, mixed outcomes for air quality, and unintended consequences such as traffic displacement or increased noise when interventions are poorly implemented. Overall, the findings suggest that traffic calming can serve as both a public health initiative and a tool for enhancing urban liveability, provided that the measures are designed with contextual sensitivity and supported by inclusive communication strategies. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

Back to TopTop