Deep Learning- and Multi-Point Analysis-Based Systematic Deformation Warning for Arch Dams
Abstract
1. Introduction
2. Relevant Theories for the Proposed Methodology
2.1. Extraction of Arch Dam Deformation Influencing Factors Based on Causality Model
2.2. Deformation Prediction Model Based on 2D Array-CNN
2.3. Overall Deformation Early Warning Indicator Development
2.4. Systematic Early Warning Method for Arch Dams
3. Technology Route
4. Engineering Case Studies
4.1. Engineering and Data Profile
4.2. Development of System Deformation Monitoring Indexes
4.3. Overall Early Warning Method for Arch Dams Based on Systematic Deformation Monitoring Indexes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
HST-MultiCNN | Multi-point CNN based on HST |
Re-CNN | Re-CNN modeling |
SDSI | System deformation residual index |
PCA | Principal component analysis |
RMSE | Root mean square error |
MAE | Root mean square error |
R2 | Determination coefficient |
Deformation residual | |
References
- Buljak, V.; Cocchetti, G.; Cornaggia, A.; Garbowski, T.; Maier, G.; Novati, G. Materials Mechanical Characterizations and Structural Diagnoses by Inverse Analyses. In Handbook of Damage Mechanics; Springer: New York, NY, USA, 2014; pp. 619–642. [Google Scholar]
- Fedele, R.; Maier, G.; Miller, B. Health Assessment of Concrete Dams by Overall Inverse Analyses and Neural Networks. Int. J. Fract. 2006, 137, 151–172. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Z. A methodology for deformation monitoring of concrete dams based on approximate Bayesian computation with sequential Monte Carlo. Expert Syst. Appl. 2024, 255, 124829. [Google Scholar] [CrossRef]
- Tian, J.; Yu, R.; Chen, J.; Chen, C.; Li, Y.; Sun, X.; Huang, H. Digital twin model for analyzing deformation and seepage in high earth-rock dams. Autom. Constr. 2025, 173, 106079. [Google Scholar] [CrossRef]
- Jia, D.; Yang, J.; Sheng, G. Dam deformation prediction model based on the multiple decomposition and denoising methods. Measurement 2024, 238, 115268. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Z.; Su, H. A multipoint prediction model for the deformation of concrete dams considering climatic features of high-altitude regions. Eng. Struct. 2024, 319, 118845. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Gu, C.; Li, H.; Liu, Y.; Hu, S. A Novel Hybrid Decomposition—Ensemble Prediction Model for Dam Deformation. Appl. Sci. 2020, 10, 5700. [Google Scholar] [CrossRef]
- Xu, G.; Lu, Y.; Jing, Z.; Wu, C.; Zhang, Q. IEALL: Dam Deformation Prediction Model Based on Combination Model Method. Appl. Sci. 2023, 13, 5160. [Google Scholar] [CrossRef]
- Li, Z.; Yin, C.; Chen, R.; Wu, Z.; Chen, J.; Lu, X. A novel deformation monitoring model for high arch dams using impulse response-based equivalent temperature and machine learning-aided separate modeling. Expert Syst. Appl. 2024, 238, 122328. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Yuan, R.; Hu, S. Hierarchical prediction of dam deformation based on hybrid temporal network and load-oriented residual correction. Eng. Struct. 2024, 308, 117949. [Google Scholar] [CrossRef]
- Wen, L.; Li, Y.; Zhao, W.; Cao, W.; Zhang, H. Predicting the deformation behaviour of concrete face rockfill dams by combining support vector machine and AdaBoost ensemble algorithm. Comput. Geotech. 2023, 161, 105611. [Google Scholar] [CrossRef]
- Gu, H.; Yang, M.; Gu, C.-S.; Huang, X.-F. A factor mining model with optimized random forest for concrete dam deformation monitoring. Water Sci. Eng. 2021, 14, 330–336. [Google Scholar] [CrossRef]
- Li, Y.-L.; Yin, Q.-G.; Zhang, Y.; Zhou, H. Deformation prediction model of concrete face rockfill dams based on an improved random forest model. Water Sci. Eng. 2023, 16, 390–398. [Google Scholar] [CrossRef]
- Gu, C.; Wang, Y.; Gu, H.; Hu, Y.; Yang, M.; Cao, W.; Fang, Z. A Combined Safety Monitoring Model for High Concrete Dams. Appl. Sci. 2022, 12, 12103. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, Y.; Huang, S.; Wang, P.; Xiang, Y. Research on Dam Deformation Prediction Model Based on Optimized SVM. Processes 2022, 10, 1842. [Google Scholar] [CrossRef]
- Meng, Z.; Hu, Y.; Jiang, S.; Zheng, S.; Zhang, J.; Yuan, Z.; Yao, S. Slope Deformation Prediction Combining Particle Swarm Optimization-Based Fractional-Order Grey Model and K-Means Clustering. Fractal Fract. 2025, 9, 210. [Google Scholar] [CrossRef]
- Sun, X.; Lu, T.; Hu, S.; Wang, H.; Wang, Z.; He, X.; Ding, H.; Zhang, Y. A New Algorithm for Predicting Dam Deformation Using Grey Wolf-Optimized Variational Mode Long Short-Term Neural Network. Remote Sens. 2024, 16, 3978. [Google Scholar] [CrossRef]
- Cai, S.; Gao, H.; Zhang, J.; Peng, M. A self-attention-LSTM method for dam deformation prediction based on CEEMDAN optimization. Appl. Soft Comput. 2024, 159, 111615. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, W.; Li, Y.; Wen, L. A deep learning prediction model of DenseNet-LSTM for concrete gravity dam deformation based on feature selection. Eng. Struct. 2023, 295, 116827. [Google Scholar] [CrossRef]
- Su, Y.; Fu, J.; Lin, W.; Lin, C.; Lai, X.; Xie, X. Dam Deformation Monitoring Model Based on Deep Learning and Split Conformal Quantile Prediction. Appl. Sci. 2025, 15, 1960. [Google Scholar] [CrossRef]
- Pan, J.; Liu, W.; Liu, C.; Wang, J. Convolutional neural network-based spatiotemporal prediction for deformation behavior of arch dams. Expert Syst. Appl. 2023, 232, 120835. [Google Scholar] [CrossRef]
- Luo, S.; Wei, B.; Chen, L. Multi-point deformation monitoring model of concrete arch dam based on MVMD and 3D-CNN. Appl. Math. Model. 2024, 125, 812–826. [Google Scholar] [CrossRef]
- Lin, C.; Weng, K.; Lin, Y.; Zhang, T.; He, Q.; Su, Y. Time Series Prediction of Dam Deformation Using a Hybrid STL–CNN–GRU Model Based on Sparrow Search Algorithm Optimization. Appl. Sci. 2022, 12, 11951. [Google Scholar] [CrossRef]
- Zhou, T.; Wei, Y.; Jie, Y.; Zhang, Y. Prediction intervals for concrete face sandy gravel dam settlement using Kalman filter-based kernel extreme learning machine. Measurement 2024, 236, 115094. [Google Scholar] [CrossRef]
- Chen, B.; Huang, Z.-S.; Bao, T.-F.; Zhu, Z. Deformation early-warning index for heightened gravity dam during impoundment period. Water Sci. Eng. 2021, 14, 54–64. [Google Scholar] [CrossRef]
- Zhan, M.; Chen, B.; Wu, Z. Deformation warning index for reinforced concrete dam based on structural health monitoring data and numerical simulation. Water Sci. Eng. 2023, 16, 408–418. [Google Scholar] [CrossRef]
- Chen, X.; Sun, W.; Liu, Y.; Fan, X.; Gu, C.; Guo, J.; Li, B.; Hu, S. Considering integrated information on environmental features and neighborhood deformation: A missing value filling framework for arch dam deformation sequence. Adv. Eng. Inform. 2025, 63, 102959. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghorai, S.; Dhara, M.; Naskar, H.; Ali, S.B.; Das, N.; Saha, P.; Tudu, B.; Chatterjee, A.; Bandyopadhyay, R.; et al. Accurate prediction of piperine content in black pepper using combined CNN and regression modelling with PDMAM@G electrode and cyclic voltammetry. J. Food Compos. Anal. 2025, 141, 107355. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Q.; Han, X.; Lv, P. Prediction of reference crop evapotranspiration based on improved convolutional neural network (CNN) and long short-term memory network (LSTM) models in Northeast China. J. Hydrol. 2024, 645, 132223. [Google Scholar] [CrossRef]
- Kang, X.; Li, Y.; Zhang, Y.; Wen, L.; Sun, X.; Wang, J. PCA-IEM-DARNN: An enhanced dual-stage deep learning prediction model for concrete dam deformation based on feature decomposition. Measurement 2025, 242, 115664. [Google Scholar] [CrossRef]
- Mi, X.; Yu, L.; Zhang, J.; Liu, R.; Hu, B.; Qiu, S. Analysis of fracture spatial distributions and fast reconstruction of discrete fracture networks model based on non-parametric kernel density estimation method. Eng. Geol. 2025, 351, 108034. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, L.; Zhao, Y.; Wu, K. Significant wave height prediction based on improved fuzzy C-means clustering and bivariate kernel density estimation. Renew. Energy 2025, 245, 122787. [Google Scholar] [CrossRef]
- Jia, D.; Yang, J.; Ma, C.; Cheng, L.; Xiao, S.; Gong, X. Research on arch dam deformation prediction method based on interpretability clustering and panel data model. Eng. Struct. 2025, 329, 119794. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Niu, X.; Ma, N.; Sun, F.; Gong, S. Deep Learning- and Multi-Point Analysis-Based Systematic Deformation Warning for Arch Dams. Infrastructures 2025, 10, 170. https://doi.org/10.3390/infrastructures10070170
Zhou T, Niu X, Ma N, Sun F, Gong S. Deep Learning- and Multi-Point Analysis-Based Systematic Deformation Warning for Arch Dams. Infrastructures. 2025; 10(7):170. https://doi.org/10.3390/infrastructures10070170
Chicago/Turabian StyleZhou, Tao, Xiubo Niu, Ning Ma, Futing Sun, and Shilin Gong. 2025. "Deep Learning- and Multi-Point Analysis-Based Systematic Deformation Warning for Arch Dams" Infrastructures 10, no. 7: 170. https://doi.org/10.3390/infrastructures10070170
APA StyleZhou, T., Niu, X., Ma, N., Sun, F., & Gong, S. (2025). Deep Learning- and Multi-Point Analysis-Based Systematic Deformation Warning for Arch Dams. Infrastructures, 10(7), 170. https://doi.org/10.3390/infrastructures10070170