Structural Health Monitoring, Non-destructive Evaluation and Remedial Measures for Civil Infrastructures

A special issue of Infrastructures (ISSN 2412-3811).

Deadline for manuscript submissions: 31 May 2025 | Viewed by 5988

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, EC 3602, Miami, FL 33174, USA
Interests: non-destructive evaluation of bridges; structural health moni-toring; vibration analysis and mitigation; structural perfor-mance evaluation; field and la-boratory testing; bridge rehabili-tation and corrosion mitigation; analysis and modeling of mason-ry and R/C frames; fiber re-inforced polymer applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler Street, EC 3660, Miami, FL 33174, USA
Interests: innovation in design, construction, and inspection of bridges; bridge design an analysis; non-destructive evaluation of bridges; structural health monitoring; structural performance evaluation; field and laboratory testing; analysis and modeling of masonry and R/C frames; fiber reinforced polymer applications; structural connections; advanced engineering materials; seismic design and rehabilitation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As civil infrastructure continues to age, the focus is gradually shifting from constructing new systems to maintaining and preserving existing ones. It is crucial to develop effective means and methods for health monitoring and performance evaluation to assess the safety of these structures and to perform preventive maintenance before damage necessitates drastic interventions. Additionally, remedial measures such as new methods and materials for the repair and retrofit of the existing structures and for the design and construction of new infrastructure systems need to be investigated to improve their durability and performance. This is even more important for the resilience of communities that are prone to natural hazards and require better performance and service life.

This Special Issue will compile articles covering a wide range of topics related to both existing and emerging non-destructive evaluation (NDE) methods, structural health monitoring (SHM), and damage detection techniques applicable to civil infrastructure. Contributions are encouraged on methods such as hands-on non-destructive testing (NDT), non-contact or vision-based sensors and instrumentation, load testing, vibration analysis, and the application of novel sensors and technologies. Additionally, this Special Issue will include discussions on condition assessments, performance evaluation methods, and maintenance strategies that utilize NDE and SHM results to devise preventive and preservation tactics. Furthermore, articles on remedial measures for civil infrastructure—including innovative methods, materials, and technologies for repair and retrofit of the existing structures as well as for new construction—addressing existing limitations and enhancing service life are also welcome.

Recent years have seen significant advancements in structural health monitoring and condition assessment, driven by the introduction of innovative sensors, data communication technologies, non-destructive evaluation techniques, and new materials. Materials such as fiber-reinforced polymers (FRPs), ultra-high-performance concrete (UHPC), corrosion-resistant reinforcements, high-performance steel, composites, and improved coatings have emerged, offering increased strength and longevity for civil structures. Therefore, this Special Issue specifically solicits innovative approaches to health monitoring, non-destructive evaluation, and condition assessment, alongside new methods and materials for the maintenance and rehabilitation of existing structures and constructing new ones.

Dr. Armin Mehrabi
Dr. Seyed Saman Khedmatgozar Dolati
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Infrastructures is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural health monitoring
  • structural elements
  • non-destructive testing
  • condition assessment
  • performance evaluation
  • inspection
  • maintenance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 8948 KiB  
Article
Electromechanical Impedance-Based Compressive Load-Induced Damage Identification of Fiber-Reinforced Concrete
by George M. Sapidis, Maria C. Naoum and Nikos A. Papadopoulos
Infrastructures 2025, 10(3), 60; https://doi.org/10.3390/infrastructures10030060 - 10 Mar 2025
Viewed by 546
Abstract
Establishing dependable and resilient methodologies for identifying damage that may compromise the integrity of reinforced concrete (RC) infrastructures is imperative for preventing potential catastrophic failures. Continuous evaluation and Structural Health Monitoring (SHM) can play a key role in extending the lifespan of new [...] Read more.
Establishing dependable and resilient methodologies for identifying damage that may compromise the integrity of reinforced concrete (RC) infrastructures is imperative for preventing potential catastrophic failures. Continuous evaluation and Structural Health Monitoring (SHM) can play a key role in extending the lifespan of new or existing buildings. At the same time, early crack detection in critical members prevents bearing capacity loss and potential failures, enhancing safety and reliability. Furthermore, implementing discrete fibers in concrete has significantly improved the ductility and durability of Fiber-Reinforced Concrete (FRC). The present study employs a hierarchical clustering analysis (HCA) to identify damage in FRC by analyzing the raw Electromechanical Impedance (EMI) signature of piezoelectric lead zirconate titanate (PZT) transducers. The experimental program consisted of three FRC standard cylinders subjected to repeated loading. The loading procedure consists of 6 incremental steps carefully selected to gradually deteriorate FRC’s structural integrity. Additionally, three PZT patches were adhered across the height of its specimen using epoxy resin, and their EMI response was captured between each loading step. Subsequently, the HCA was conducted for each PZT transducer individually. The experimental investigation demonstrates the efficacy of HCA in detecting load-induced damage in FRC through the variations in the EMI signatures of externally bonded PZT sensors. Full article
Show Figures

Figure 1

26 pages, 19954 KiB  
Article
Guidelines for Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Various Types of Degradation Subjected to Seismic Loading
by Seyed Sasan Khedmatgozar Dolati, Adolfo Matamoros and Wassim Ghannoum
Infrastructures 2024, 9(12), 227; https://doi.org/10.3390/infrastructures9120227 - 10 Dec 2024
Viewed by 2040
Abstract
Concrete columns are considered critical elements with respect to the stability of buildings during earthquakes. To improve the accuracy of column damage and collapse risk estimates using numerical simulations, it is important to develop a methodology to quantify the effect of displacement history [...] Read more.
Concrete columns are considered critical elements with respect to the stability of buildings during earthquakes. To improve the accuracy of column damage and collapse risk estimates using numerical simulations, it is important to develop a methodology to quantify the effect of displacement history on column force–deformation modeling parameters. Addressing this knowledge gap systematically and comprehensively through experimentation is difficult due to the prohibitive cost. The primary objective of this study was to develop guidelines to simulate the lateral cyclic behavior and axial collapse of concrete columns with different modes of failure using continuum finite element (FE) models, such that wider parametric studies can be conducted numerically to improve the accuracy of assessment methodologies for critical columns. This study expands on existing FEM research by addressing the complex behavior of columns that experience multiple failure modes, including axial collapse following flexure–shear, shear, and flexure degradation, a topic which has been underexplored in previous works. Nonlinear FE models were constructed and calibrated to experimental tests for 21 columns that sustained flexure, flexure–shear, and shear failures, followed by axial failure, when subjected to cyclic and monotonic lateral displacement protocols. The selected columns represented a range of axial loads, shear stresses, transverse reinforcement ratios, longitudinal reinforcement ratios, and shear span-to-depth ratios. Recommendations on optimal material model parameters obtained from a parametric study are presented. Metrics used for optimization include crack widths, damage in concrete and reinforcement, drift at initiation of axial and lateral strength degradation, and peak lateral strength. The capacities of shear–critical columns calculated with the optimized numerical models are compared with experimental results and standard equations from ASCE 41-17 and ACI 318-19. The optimized finite element models were found to reliably predict peak strength and deformation at the onset of both lateral and axial strength failure, independent of the mode of lateral strength degradation. Also, current standard shear capacity provisions were found to be conservative in most cases, while the FE models estimated shear strength with greater accuracy. Full article
Show Figures

Figure 1

31 pages, 3895 KiB  
Article
Developing an Ontology for Concrete Surface Defects to Enhance Inspection, Diagnosis and Repair Information Modeling
by Fardin Bahreini and Amin Hammad
Infrastructures 2024, 9(12), 220; https://doi.org/10.3390/infrastructures9120220 - 5 Dec 2024
Viewed by 1289
Abstract
Facility maintenance requires thorough inspections throughout a facility’s lifecycle to ensure structural integrity and longevity. A significant challenge lies in managing the semantic relationships between various inspection data across different lifecycle phases and effectively representing inspection results. While numerous studies have focused on [...] Read more.
Facility maintenance requires thorough inspections throughout a facility’s lifecycle to ensure structural integrity and longevity. A significant challenge lies in managing the semantic relationships between various inspection data across different lifecycle phases and effectively representing inspection results. While numerous studies have focused on identifying, analyzing, repairing, and preventing defects, organizing and integrating this information systematically for future use remains unaddressed. This paper introduces the Ontology for Concrete Surface Defects (OCSD), a unified knowledge model that enables stakeholders to access information systematically. OCSD aims to enhance future asset management systems by providing comprehensive knowledge about concrete surface defects, encompassing inspection, diagnosis, 3R (Repair, Rehabilitation, and Replacement), and defect concepts. Although the integration with Building Information Modeling (BIM) standards like the Industry Foundation Classes (IFC) is not undertaken in this study, OCSD provides a foundational framework that can facilitate such mappings in subsequent studies or applications. The methodology includes reviewing existing literature to define relevant concepts, outlining steps for developing OCSD, creating its basic components, and evaluating its effectiveness. The semantic representation of OCSD was assessed through a survey, confirming its ability to clarify concepts and relationships in this field. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 8980 KiB  
Review
Review of Nondestructive Testing (NDT) Techniques for Timber Structures
by Ziad Azzi, Houssam Al Sayegh, Omar Metwally and Mohamed Eissa
Infrastructures 2025, 10(2), 28; https://doi.org/10.3390/infrastructures10020028 - 22 Jan 2025
Viewed by 1494
Abstract
The widespread adoption of wood in construction is driven by its sustainability, cost-effectiveness, and esthetic appeal. The construction of wood buildings often requires minimal specialized equipment, contributing to affordability and higher demand for wood-frame structures. Wood is considered more sustainable than other building [...] Read more.
The widespread adoption of wood in construction is driven by its sustainability, cost-effectiveness, and esthetic appeal. The construction of wood buildings often requires minimal specialized equipment, contributing to affordability and higher demand for wood-frame structures. Wood is considered more sustainable than other building materials, such as steel or concrete, for several reasons, including its renewable nature, low embodied energy, carbon sequestration, energy efficiency, and biodegradability, among others. In the United States, wood is the most common material used in building construction. While many of the structures are single-family homes, wood framing is also prevalent in larger apartment complexes, as well as commercial and industrial buildings. Timber has also been traditionally used for bridge construction, and recently, it has been considered again for the construction of new bridges. Over time, wood-frame construction has developed from a basic method for primitive shelters into a sophisticated field of structural design. As an eco-friendly resource, wood is crucial for promoting sustainable building practices. However, ensuring the long-term performance and safety of timber structures is essential. Regular inspections and testing of wooden structures are important to identify signs of wear, damage, or decay. One type of testing which is gaining popularity is nondestructive testing (NDT). NDT techniques have become invaluable for assessing the condition of timber components because such techniques are non-invasive in nature and do not cause damage, ensuring that structures remain functional with minimal disruptions. These methods provide critical insights into the structural integrity and operational efficiency of wood under sustained loads and in inclement environments. This article examines various NDT techniques used to evaluate timber structures, highlighting their capabilities, as well as advantages and limitations. It also discusses the importance of wood in advancing sustainability within the construction industry and emphasizes the need for accurate and reliable assessment methods to enhance the use of timber as an environmentally friendly building material. By incorporating NDT practices into regular inspection and maintenance protocols for buildings, bridges, and other structures, various stakeholders can ensure the durability, longevity, and safety of timber structures, thereby contributing to the progress and advancement of sustainable construction practices worldwide. Full article
Show Figures

Figure 1

Back to TopTop