Previous Issue
Volume 10, July
 
 

Infrastructures, Volume 10, Issue 8 (August 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 9610 KiB  
Article
Research on the Design and Application of a Novel Curved-Mesh Circumferential Drainage Blind Pipe for Tunnels in Water-Rich Areas
by Wenti Deng, Xiabing Liu, Shaohui He and Jianfei Ma
Infrastructures 2025, 10(8), 199; https://doi.org/10.3390/infrastructures10080199 - 28 Jul 2025
Viewed by 49
Abstract
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering [...] Read more.
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering surveys and comparative analysis, the limitations and application demands of conventional circumferential annular drainage blind pipes in highway tunnels were identified. Based on this, the key parameters of the new blind pipe—including material, wall thickness, and aperture size—were determined. Laboratory tests were then conducted to evaluate the performance of the newly developed pipe. Subsequently, the pipe was applied in a real-world tunnel project, where a construction process and an in-service blockage inspection method for circumferential drainage pipes were proposed. Field application results indicate that, compared to commonly used FH50 soft permeable pipes and F100 semi-split spring pipes, the novel curved-mesh drainage blind pipe exhibits superior circumferential load-bearing capacity, anti-clogging performance, and deformation resistance. The proposed structure provides a total permeable area exceeding 17,500 mm2, three to four times larger than that of conventional drainage pipes, effectively meeting the drainage requirements behind tunnel linings in high-water-content zones. The use of four-way connectors enhanced integration with other drainage systems, and inspection of the internal conditions confirmed that the pipe remained free of clogging and deformation. Furthermore, the curved-mesh design offers better conformity with the primary support and demonstrates stronger adaptability to complex installation conditions. Full article
Show Figures

Figure 1

22 pages, 12147 KiB  
Technical Note
Effects of the Aggregate Shape and Petrography on the Durability of Stone Mastic Asphalt
by Alain Stony Bile Sondey, Vincent Aaron Maleriado, Helga Ros Fridgeirsdottir, Damian Serwin, Carl Christian Thodesen and Diego Maria Barbieri
Infrastructures 2025, 10(8), 198; https://doi.org/10.3390/infrastructures10080198 - 26 Jul 2025
Viewed by 200
Abstract
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the [...] Read more.
Compared to traditional dense asphalt concrete mixtures, stone mastic asphalt (SMA) generally offers superior performance in terms of its mechanical resistance and extended pavement lifespan. Focusing on the Norwegian scenario, this laboratory-based study investigated the durability of SMA considering the influence of the aggregate shape and petrography. The rock aggregates were classified according to three different-shaped refinement stages involving vertical shaft impact crushing. Further, the aggregates were sourced from three distinct locations (Jelsa, Tau and Dirdal) characterized by different petrographic origins: granodiorite, quartz diorite and granite, respectively. Two mixtures with maximum aggregate sizes of 16 mm (SMA 16) and 11 mm (SMA 11) were designed according to Norwegian standards and investigated in terms of their durability performance. In this regard, two main functional tests were performed for the asphalt mixture, namely resistance against permanent deformation and abrasion by studded tyres, and one for the asphalt mortar, namely water sensitivity. Overall, the best test results were related to the aggregates sourced from Jelsa and Tau, thus highlighting that the geological origin exerts a major impact on SMA’s durability performance. On the other hand, the different aggregate shapes related to the crushing refinement treatments seem to play an effective but secondary role. Full article
Show Figures

Figure 1

18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 169
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

18 pages, 2723 KiB  
Article
Study on Harmless Treatment and Performance of Phosphogypsum-Based Inorganic Cementing Material
by Hui Xiang, Chenyang Dong, Hao Wu, Xiaodi Hu, Bo Gao, Zhiwei Fan, Jiuming Wan, Yuan Ma and Hongtao Guan
Infrastructures 2025, 10(8), 196; https://doi.org/10.3390/infrastructures10080196 - 25 Jul 2025
Viewed by 196
Abstract
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to [...] Read more.
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to develop a harmless phosphogypsum-based inorganic cementing material (PICM) mainly based on phosphogypsum, in which cement, quicklime, and a stabilizer were used as additives. Harmful ions and acidity were first detected through X-ray fluorescence and ion chromatography and then harmlessly treated with quicklime. Compaction parameters, mechanical performance, X-ray diffraction analysis, moisture, and freezing resistance were characterized successively. The results illustrated that fluoride and phosphate ions were the primary soluble contaminants, whose leaching solution concentration can be reduced to 15.31 mg/L and undetectable with 2% quicklime through the mass proportion of phosphogypsum added and mixed. Meanwhile, the corresponding pH value was also raised to over 8. Cement content and quicklime were positively correlated with PICM’s maximum dry density. PICM with 25% cement and 2.5% stabilizer presented the highest unconfined compression strength, and flexural strength did not show significant regularity. PICM was mainly composed of quartz, gypsum, ettringite, and calcite, whose content decreased as cement content and quicklime content increased. Stabilizer, quicklime and cement content were positively correlated with PICM’s freezing and moisture resistance. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

21 pages, 4886 KiB  
Article
Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach
by Rahul Anand, Sachin Tripathi, Celso Cruz De Oliveira and Ramesh B. Malla
Infrastructures 2025, 10(8), 195; https://doi.org/10.3390/infrastructures10080195 - 25 Jul 2025
Viewed by 199
Abstract
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. [...] Read more.
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. An initial FE model of the bridge was created based on original drawings and field observations. Field testing using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and deflections) under regular train traffic. Key structural parameters (material properties, section properties, support conditions) were identified and varied in a sensitivity analysis to determine their influence on model outputs. A hybrid sensitivity analysis combining log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter space and calibrate the model. The GA optimization tuned the FE model parameters to minimize discrepancies between simulated results and field measurements, focusing on vertical deflections and natural frequencies. The updated FE model showed significantly improved agreement with observed behavior; for example, vertical deflections under a representative train were matched within a few percent, and natural frequencies were accurately reproduced. This validated model provides a more reliable tool for predicting structural performance and fatigue life under various loading scenarios. The results demonstrate that integrating field data, sensitivity analysis, and model updating can greatly enhance the accuracy of structural assessments for aging railroad bridges, supporting more informed maintenance and management decisions. Full article
Show Figures

Figure 1

24 pages, 1295 KiB  
Article
A Performance-Based Ranking Approach for Optimizing NDT Selection for Post-Tensioned Bridge Assessment
by Carlo Pettorruso, Dalila Rossi and Virginio Quaglini
Infrastructures 2025, 10(8), 194; https://doi.org/10.3390/infrastructures10080194 - 23 Jul 2025
Viewed by 203
Abstract
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT [...] Read more.
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT systems. The ranking is based on four performance categories: measurement accuracy, ease of use, cost, and impact of disruption to bridge operations on traffic. For each NDT technique, a score is assigned for each evaluation category, and the final ranking is determined using the weighted sum model (WSM). This approach enables the final assessment to reflect the priorities of different decision-making contexts defined by the end-user such as accuracy-oriented, cost-oriented, and impact-oriented scenarios. The proposed method is then applied to an existing bridge in order to practically demonstrate its effectiveness and the flexibility of the proposed criteria. Full article
Show Figures

Figure 1

30 pages, 10277 KiB  
Article
A Finite Element Formulation for True Coupled Modal Analysis and Nonlinear Seismic Modeling of Dam–Reservoir–Foundation Systems: Application to an Arch Dam and Validation
by André Alegre, Sérgio Oliveira, Jorge Proença, Paulo Mendes and Ezequiel Carvalho
Infrastructures 2025, 10(8), 193; https://doi.org/10.3390/infrastructures10080193 - 22 Jul 2025
Viewed by 139
Abstract
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical [...] Read more.
This paper presents a formulation for the dynamic analysis of dam–reservoir–foundation systems, employing a coupled finite element model that integrates displacements and reservoir pressures. An innovative coupled approach, without separating the solid and fluid equations, is proposed to directly solve the single non-symmetrical governing equation for the whole system with non-proportional damping. For the modal analysis, a state–space method is adopted to solve the coupled eigenproblem, and complex eigenvalues and eigenvectors are computed, corresponding to non-stationary vibration modes. For the seismic analysis, a time-stepping method is applied to the coupled dynamic equation, and the stress–transfer method is introduced to simulate the nonlinear behavior, innovatively combining a constitutive joint model and a concrete damage model with softening and two independent scalar damage variables (tension and compression). This formulation is implemented in the computer program DamDySSA5.0, developed by the authors. To validate the formulation, this paper provides the experimental and numerical results in the case of the Cahora Bassa dam, instrumented in 2010 with a continuous vibration monitoring system designed by the authors. The good comparison achieved between the monitoring data and the dam–reservoir–foundation model shows that the formulation is suitable for simulating the modal response (natural frequencies and mode shapes) for different reservoir water levels and the seismic response under low-intensity earthquakes, using accelerograms measured at the dam base as input. Additionally, the dam’s nonlinear seismic response is simulated under an artificial accelerogram of increasing intensity, showing the structural effects due to vertical joint movements (release of arch tensions near the crest) and the concrete damage evolution. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

26 pages, 4303 KiB  
Article
Thermal Degradation and Microstructural Evolution of Geopolymer-Based UHPC with Silica Fume and Quartz Powder
by Raghda A. Elhefny, Mohamed Abdellatief, Walid E. Elemam and Ahmed M. Tahwia
Infrastructures 2025, 10(8), 192; https://doi.org/10.3390/infrastructures10080192 - 22 Jul 2025
Viewed by 153
Abstract
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) [...] Read more.
The durability and fire resilience of concrete structures are increasingly critical in modern construction, particularly under elevated-temperature exposure. With this context, the current study explores the thermal and microstructural characteristics of geopolymer-based ultra-high-performance concrete (G-UHPC) incorporating quartz powder (QP) and silica fume (SF) after exposure to elevated temperatures. SF was used at 15% and 30% to partially replace the precursor material, while QP was used at 25%, 30%, and 35% as a partial replacement for fine sand. The prepared specimens were exposed to 200 °C, 400 °C, and 800 °C, followed by air cooling. Mechanical strength tests were conducted to evaluate compressive and flexural strengths, as well as failure patterns. Microstructural changes due to thermal exposure were assessed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Among the prepared mixtures, the 30SF35QP mixture exhibited the highest compressive strength (156.0 MPa), followed by the 15SF35QP mix (146.83 MPa). The experimental results demonstrated that G-UHPC underwent varying levels of thermal degradation across the 200–800 °C range yet displayed excellent resistance to thermal spalling. At 200 °C, compressive strength increased due to enhanced geopolymerization, with the control mix showing a 29.8% increase. However, significant strength reductions were observed at 800 °C, where the control mix retained only 30.8% (32.0 MPa) and the 30SF25QP mixture retained 28% (38.0 MPa) of their original strengths. Despite increased porosity and cracking at 800 °C, the 30SF35QP mixture exhibited superior strength retention due to its denser matrix and reduced voids. The EDS results confirmed improved gel stability in the 30% SF mixtures, as evidenced by higher silicon content. These findings suggest that optimizing SF and QP content significantly enhances the fire resistance and structural integrity of G-UHPC, providing practical insights for the design of sustainable, high-performance concrete structures in fire-prone environments. Full article
Show Figures

Figure 1

27 pages, 6578 KiB  
Article
Evaluating Neural Radiance Fields for ADA-Compliant Sidewalk Assessments: A Comparative Study with LiDAR and Manual Methods
by Hang Du, Shuaizhou Wang, Linlin Zhang, Mark Amo-Boateng and Yaw Adu-Gyamfi
Infrastructures 2025, 10(8), 191; https://doi.org/10.3390/infrastructures10080191 - 22 Jul 2025
Viewed by 262
Abstract
An accurate assessment of sidewalk conditions is critical for ensuring compliance with the Americans with Disabilities Act (ADA), particularly to safeguard mobility for wheelchair users. This paper presents a novel 3D reconstruction framework based on neural radiance field (NeRF), which utilize a monocular [...] Read more.
An accurate assessment of sidewalk conditions is critical for ensuring compliance with the Americans with Disabilities Act (ADA), particularly to safeguard mobility for wheelchair users. This paper presents a novel 3D reconstruction framework based on neural radiance field (NeRF), which utilize a monocular video input from consumer-grade cameras to generate high-fidelity 3D models of sidewalk environments. The framework enables automatic extraction of ADA-relevant geometric features, including the running slope, the cross slope, and vertical displacements, facilitating an efficient and scalable compliance assessment process. A comparative study is conducted across three surveying methods—manual measurements, LiDAR scanning, and the proposed NeRF-based approach—evaluated on four sidewalks and one curb ramp. Each method was assessed based on accuracy, cost, time, level of automation, and scalability. The NeRF-based approach achieved high agreement with LiDAR-derived ground truth, delivering an F1 score of 96.52%, a precision of 96.74%, and a recall of 96.34% for ADA compliance classification. These results underscore the potential of NeRF to serve as a cost-effective, automated alternative to traditional and LiDAR-based methods, with sufficient precision for widespread deployment in municipal sidewalk audits. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop