Previous Issue
Volume 10, October
 
 

Biomimetics, Volume 10, Issue 11 (November 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 2618 KB  
Article
TBC-HRL: A Bio-Inspired Framework for Stable and Interpretable Hierarchical Reinforcement Learning
by Zepei Li, Yuhan Shan and Hongwei Mo
Biomimetics 2025, 10(11), 715; https://doi.org/10.3390/biomimetics10110715 (registering DOI) - 22 Oct 2025
Abstract
Hierarchical Reinforcement Learning (HRL) is effective for long-horizon and sparse-reward tasks by decomposing complex decision processes, but its real-world application remains limited due to instability between levels, inefficient subgoal scheduling, delayed responses, and poor interpretability. To address these challenges, we propose Timed and [...] Read more.
Hierarchical Reinforcement Learning (HRL) is effective for long-horizon and sparse-reward tasks by decomposing complex decision processes, but its real-world application remains limited due to instability between levels, inefficient subgoal scheduling, delayed responses, and poor interpretability. To address these challenges, we propose Timed and Bionic Circuit Hierarchical Reinforcement Learning (TBC-HRL), a biologically inspired framework that integrates two mechanisms. First, a timed subgoal scheduling strategy assigns a fixed execution duration τ to each subgoal, mimicking rhythmic action patterns in animal behavior to improve inter-level coordination and maintain goal consistency. Second, a Neuro-Dynamic Bionic Circuit Network (NDBCNet), inspired by the neural circuitry of C. elegans, replaces conventional fully connected networks in the low-level controller. Featuring sparse connectivity, continuous-time dynamics, and adaptive responses, NDBCNet models temporal dependencies more effectively while offering improved interpretability and reduced computational overhead, making it suitable for resource-constrained platforms. Experiments across six dynamic and complex simulated tasks show that TBC-HRL consistently improves policy stability, action precision, and adaptability compared with traditional HRL, demonstrating the practical value and future potential of biologically inspired structures in intelligent control systems. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

Previous Issue
Back to TopTop