Next Article in Journal
Ensemble Deep Learning for Real–Bogus Classification with Sky Survey Images
Next Article in Special Issue
IBKA-MSM: A Novel Multimodal Fake News Detection Model Based on Improved Swarm Intelligence Optimization Algorithm, Loop-Verified Semantic Alignment and Confidence-Aware Fusion
Previous Article in Journal
Contrasting Flexible and Rigid Bioinspired Flapping Hydrofoils for Suspended Particles Discharge in Raceway Aquaculture
Previous Article in Special Issue
An Improved Crested Porcupine Optimization Algorithm Incorporating Butterfly Search and Triangular Walk Strategies
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

An Enhanced Red-Billed Blue Magpie Optimizer Based on Superior Data Driven for Numerical Optimization Problems

1
Media and Communication, University of Westminster, London NW1 5LS, UK
2
School of Qilu Transportation, Shandong University, Jinan 250061, China
*
Author to whom correspondence should be addressed.
Biomimetics 2025, 10(11), 780; https://doi.org/10.3390/biomimetics10110780
Submission received: 13 October 2025 / Revised: 2 November 2025 / Accepted: 10 November 2025 / Published: 16 November 2025
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)

Abstract

The Red-Billed Blue Magpie Optimizer (RBMO) is a recently introduced swarm-based meta-heuristic that has shown strong potential in engineering optimization but remains under-explored. To address its inherent limitations, this paper proposes an Enhanced RBMO (ERBMO) that synergistically incorporates two key strategies: a dominant-group-based two-stage covariance-driven strategy that captures evolutionary trends to improve population quality while reinforcing global exploration, and a Powell mechanism (PM) that eliminates dimensional stagnation and markedly strengthens convergence. Extensive experiments on the CEC 2017 benchmark suite demonstrate that ERBMO outperforms ten basic and improved algorithms in global exploration, local convergence accuracy and robustness, attaining Friedman ranks of 1.931, 1.621, 1.345 and 1.276 at 10D, 30D, 50D and 100D, respectively. Furthermore, empirical studies on practical engineering design problems confirm the algorithm’s capability to consistently deliver high-quality solutions, highlighting its broad applicability to real-world constrained optimization tasks. In future work, we will deploy the algorithm for real-world tasks such as UAV path-planning and resource-scheduling problems.

1. Introduction

Solving an optimization problem amounts to identifying the set of decision variables that minimizes or maximizes a given objective while satisfying prescribed constraints [1]. The recent explosion of science and technology has spawned increasingly complex tasks whose objective functions are high-dimensional, non-differentiable, non-convex and computationally expensive [2]. These characteristics often render traditional techniques ineffective or impractical because classical methods rely on rigid mathematical structures that demand exact analytical expressions of both the objective and the feasible region; they locate the optimum through direct or indirect calculations confined to a limited area [3]. In contrast, meta-heuristics deliver feasible, near-optimal solutions within a reasonable time or under restricted computational budgets by explicitly trading solution accuracy for runtime efficiency [4]. This trade-off has made them a promising alternative and has led to successful applications in path planning [5], job-shop scheduling [6], image segmentation [7], feature selection [8] and many other domains.
Swarm intelligence (SI) algorithms form a major branch of meta-heuristics that abstract the collective behavior of natural animal societies. By extracting social interaction models observed in different species, researchers have derived a variety of SI optimizers. Among them, Particle Swarm Optimization (PSO) [9]—patterned after the foraging flights of bird flocks—introduces velocity- and position-based update rules and has become one of the most intensively studied methods. Ant Colony Optimization (ACO) [10], another cornerstone algorithm, reproduces the pheromone trail laying and following behavior of foraging ants. Continued SI research has produced further nature-inspired schemes such as the Grey Wolf Optimizer (GWO) [11], Whale Optimization Algorithm (WOA) [12] and Harris Hawks Optimization (HHO) [13], all of which have been extensively analyzed and applied to diverse optimization tasks. More recently, emerging population-based algorithms—including Tuna Swarm Optimization (TSO) [14], the Parrot Optimizer (PO) [15], the Snow Geese Algorithm (SGA) [16] and the Crayfish Optimization Algorithm (COA) [17]—have expanded the SI repertoire with novel biological metaphors and updated search strategies.
Beyond the vigorous development of swarm intelligence algorithms, other categories of meta-heuristics continue to broaden their influence. Evolutionary-based methods such as the Genetic Algorithm (GA) [18], Genetic Programming (GP) [19] and Differential Evolution (DE) [20] are still intensively studied and applied across diverse domains. Physics-inspired algorithms—including Simulated Annealing (SA) [21], the Polar Lights Optimizer (PLO) [22] and the Gravitational Search Algorithm (GSA) [23]—model natural forces or physical phenomena, while mathematics-driven approaches like the Sine Cosine Algorithm (SCA) [24], Arithmetic Optimization Algorithm (AOA) [25] and Chaotic Evolution Optimization (CEO) [26] exploit trigonometric, arithmetic or chaotic operators. Additionally, human-based meta-heuristics such as the Catch Fish Optimization Algorithm (CFOA) [27], Football Team Training Algorithm (FTTA) [28] and Escape Optimization Algorithm (EOA) [29] are attracting increasing attention by emulating human learning, decision-making and social interaction behaviors. The classification of meta-heuristic algorithms is shown in Figure 1.
The Red-Billed Blue Magpie Optimizer (RBMO) is a novel swarm intelligence algorithm proposed by Fu et al. in 2024, inspired by the cooperative foraging behavior of the red-billed blue magpie [30]. Its effectiveness has been validated on benchmark suites, engineering-constrained problems and UAV path-planning tasks. Moreover, RBMO has been successfully applied to the optimal sizing of photovoltaic-plus-storage systems [31], neural network hyper-parameter tuning [32], target–trajectory prediction [33] and fault feature extraction [34]. Although RBMO has been applied to various optimization tasks, it still struggles with complex landscapes: its limited exploration–exploitation balance weakens population diversity and frequently causes premature convergence. Moreover, the No-Free-Lunch (NFL) theorem states that no single algorithm can excel across all problems [35]. Ye et al. strengthened exploration through a boundary-handling mechanism and balanced exploitation by embedding the search process in a guided framework [36]. Kong et al. boosted global reach and stability by generating the initial population with a logistic chaotic map [37]. Liu et al. let individual memory direct the search trajectory, achieving an adaptive trade-off between exploitation and exploration [32].
Consequently, this paper proposes an enhanced variant, ERBMO, which incorporates two complementary boosting techniques to overcome the deficiencies of the original RBMO. To thoroughly evaluate the proposed ERBMO algorithm, we conducted extensive experiments on the CEC 2017 test suite, the CEC 2022 test suite and a set of real-world engineering design problems. The results show that ERBMO consistently produces high-quality solutions across different scenarios. The core contributions of this study are summarized as follows:
(1)
The ERBMO is proposed, integrating two enhancement techniques: a dominant-group-based two-stage covariance-driven strategy and a Powell mechanism.
(2)
The dominant-group-based two-stage covariance-driven strategy captures effective information from dominant individuals to enhance the global search capability and adaptability to complex landscapes.
(3)
The Powell mechanism further refines the search around the best solution, accelerating convergence and improving the final solution quality.
(4)
Comprehensive evaluations, using the CEC 2017 test suite, and engineering design problems demonstrate that ERBMO outperforms other advanced algorithms in terms of convergence and robustness, with statistical validation confirming its consistent superiority across various optimization challenges.
The remainder of the paper is organized as follows. Section 2 reviews the biological inspiration and mathematical foundation of the basic RBMO. Section 3 details the proposed enhancement strategies and derives their mathematical models. Section 4 presents the comprehensive experimental results and discussions of the CEC 2017 test suite. Section 5 demonstrates the practical applicability of ERBMO through a variety of engineering design problems. Section 6 provides an in-depth performance analysis and discussion of all experiments. Finally, Section 7 summarizes the contributions and outlines future research directions.

2. Red-Billed Blue Magpie Optimizer

The Red-Billed Blue Magpie Optimizer (RBMO) is a swarm intelligence-based meta-heuristic proposed by Fu et al. [30], inspired by the foraging strategies of the red-billed blue magpie. By emulating the bird’s natural behaviors of searching, chasing, attacking prey and catching food, the algorithm constructs a set of corresponding search operators. A detailed description of the operators for each phase is presented below.

2.1. Initialization

As a population-based swarm intelligence algorithm, RBMO adopts the conventional initialization scheme. Within a D-dimensional search space bounded by lb and ub, the algorithm stochastically generates N candidate solutions—termed agents—according to Equation (1); these agents collectively constitute the initial RBMO population.
X i i n i = l b + r a n d 1 , D × u b l b , i = 1 , 2 , , N
where X i i n i denotes the initial position of the i-th red-billed blue magpie agent, and r a n d 0 , 1 D is a D-dimensional random vector drawn from a uniform distribution.

2.2. Search for Food

In the RBMO algorithm, each red-billed blue magpie agent employs two distinct predation strategies. Equation (2) models the search tactic used when targeting small prey, whereas Equation (3) describes the cooperative strategy adopted for hunting large prey.
X i n e w = X i o l d + 1 p × m = 1 p X m o l d X r 1 o l d × r a n d
X i n e w = X i o l d + 1 q × m = 1 q X m o l d X r 2 o l d × r a n d
where X i o l d denotes the current position of the i-th agent, X i n e w is its updated position and p is the number of agents that hunt in a small group (randomly selected between 2 and 5). X m o l d represents the m-th agent randomly chosen from the current population when foraging in a small group, whereas q is the number of agents involved in large-group food searching (randomly selected between 2 and N). X r 1 o l d and X r 2 o l d are two additional agents randomly selected from the present population.

2.3. Attacking Prey

Once the prey is located, the red-billed blue magpie employs two distinct attack tactics—Equation (4) for small prey and Equation (5) for large prey—detailed below.
X i n e w = X f o o d + C F × 1 p × m = 1 p X m o l d X i o l d × r a n d n
X i n e w = X f o o d + C F × 1 q × m = 1 q X m o l d X i o l d × r a n d n
In the equations, X f o o d denotes the position of the food source, representing the globally best agent. C F is dynamically updated according to Equation (6), while r a n d n is a random scalar drawn from a standard normal distribution with a mean of 0 and variance of 1.
C F = 1 F E s F E s M a x 2 × F E s F E s M a x
In the equation, F E s and F E s M a x denote the current number of function evaluations and the maximum number of function evaluations, respectively.

2.4. Food Storage

After the search-and-attack phase, RBMO determines which candidate solutions survive into the next iteration by means of a deterministic survival rule: the newly generated position is accepted only if it yields a better (or equally good) objective value than its predecessor; otherwise, the previous position is retained.
X i n e x t = X i n e w ,   f i t n e s s i n e w < f i t n e s s i o l d X i o l d ,   f i t n e s s i n e w f i t n e s s i o l d
In the equation, X i n e x t denotes the position of the i-th agent advanced to the next iteration, while f i t n e s s i o l d and f i t n e s s i n e w represent the fitness values of the i-th agent before and after the update, respectively. It should be noted that RBMO executes operators A and B sequentially in every iteration. For either operator, the probability of selecting the corresponding search strategy is set to 0.5.

3. The Proposed Enhanced Red-Billed Blue Magpie Optimizer

As a novel swarm intelligence method, RBMO has demonstrated competitive performance in its original publication and has been applied to several domains. Nevertheless, it still suffers from two limitations: (i) an insufficient global search capability, which leads to the premature loss of population diversity, and (ii) a weak local search ability, resulting in a slow convergence. To alleviate these deficiencies, two complementary mechanisms are introduced in this paper.

3.1. Dominant-Group-Based Two-Stage Covariance-Driven Strategy

Meta-heuristic algorithms rely on an intensive global search phase in the early stage to locate promising regions, followed by a refined local search phase to obtain solutions of higher precision. In RBMO, however, the “food-searching” (exploration) and “prey-attacking” (exploitation) operators are executed simultaneously in every single iteration. This permanent coupling causes the population to converge prematurely, so the algorithm is easily trapped in local optima during the latter search period—a drawback that becomes especially pronounced in high-dimensional landscapes with complex topologies. Moreover, although RBMO introduces information from different agents, it ignores the quality of these agents, so the guiding direction is not necessarily improved. To strengthen RBMO’s exploration ability and its capacity to escape from local optima, this work proposes a dominant-group-based two-stage covariance-driven strategy (DTC). The core of DTC lies in exploiting the guidance of a dominant subpopulation to steer the swarm toward promising regions and to enhance the exploration capacity. To fully utilize the information carried by these elite individuals, a covariance matrix is constructed on the fly. This matrix captures the shape and orientation of the current search distribution, enabling the algorithm to perform efficient, adaptive sampling of the solution space. The mathematical model of DTC is given below.
C o v = 1 P i = 1 P X i P X w × X i P X w T ,   X i P P d
X w = i = 1 P ω i × X i P ,   X i P P d
ω i = ln P + 1 / i = 1 P ln P + 1 ln i
where C o v denotes the covariance matrix of the dominant subgroup, and X w represents its weighted centroid. Each agent in the dominant subgroup is assigned a weight coefficient ω i , which scales its contribution to the collective guidance. By incorporating these weights, the influence of individual agents is differentiated, enabling the swarm to orient itself more effectively toward promising regions of the search space. P is the number of the dominant group. X i P is the agent in the dominant group. After obtaining C o v , the DTC devises two complementary search operators. Exploration phase—to guarantee a strong global coverage, Equation (11) amplifies the exploratory power by steering the search along the principal directions revealed by the dominant subgroup. Local-optimum escape—Equation (12) reinforces the ability to jump out of local optima by injecting information from both the best-so-far agent and a randomly chosen agent.
X i n e w = X w + g i ,   g i ~ N 0 , C o v
X i n e w = X r 1 o l d + X w + X f o o d 3 + g i ,   g i ~ N 0 , C o v
As illustrated in Figure 2, the dominant subgroup propels the swarm toward promising regions, the best agent accelerates convergence, and a randomly selected individual is employed to diversify search directions, thereby mitigating the risk of premature convergence to local optima.

3.2. Powell Mechanism

The RBMO algorithm lacks a mechanism that geometrically and adaptively refines solution trajectories, which limits its ability to perform fine-grained movements around promising regions and thus blunts the sharpness of convergence in the later exploitation phase. To overcome this weakness, this paper incorporates Powell’s Mechanism (PM). As a powerful derivative-free local search technique, PM accelerates convergence by constructing and reusing conjugate directions. Embedding this mechanism into ERBMO equips the algorithm with an enhanced capacity to locally exploit the best regions discovered during the global search.
The procedure consists of three consecutive stages: basic search, acceleration search and adjustment search. In each iteration, the basic search starts from the current position and performs successive one-dimensional minimizations along the existing directions to generate a new position vector. The acceleration search then computes the difference between two consecutive position vectors to obtain a direction that is closer to the optimum and replaces one of the original search directions with it. Finally, the adjustment search substitutes the current direction set with the newly acquired conjugate direction for the next iteration. This cycle repeats until a sufficiently accurate solution is obtained. The detailed implementation of the Powell mechanism is described as follows.
Step 1: Initialization: Choose a starting point γ 0 and D mutually independent search directions; specify a convergence tolerance E r r > 0 and initialize k = 0 .
Step 2: Basic search: Compute δ i using Equation (13), then successively generate new base points γ 1 , γ 2 , …, γ D along the respective dimensions, as specified in Equation (14).
F γ i + δ i × d i = min F γ i + δ i × d i
γ i + 1 = γ i + δ i × d i , i = 0 , 1 , , D 1
where δ i represents the set of step lengths along each axis. If a component of δ i is negative, a one-dimensional line search is conducted along the corresponding direction. When i < D 1 , the index ii is incremented by 1 and Step 2 is revisited; otherwise, the algorithm proceeds to Step 3.
Step 3: Acceleration search: Compute the acceleration direction d D = γ D γ 0 . If the termination criterion on d D < E r r is satisfied, exit; otherwise, proceed to Step 4.
Step 4: Compute the maximum-descent index t l using Equation (15). If Equation (16) is satisfied, the search directions for the next cycle remain unchanged; set γ 0 = γ D and k = k + 1 and proceed to Step 2. Otherwise, Step 5 is executed.
F γ t l F γ t l + 1 = max 0 i D 1 F γ i F γ i + 1
F γ 0 2 × F γ D + F 2 × γ D γ 0 2 × F γ t l F γ t l + 1
Step 5: Adjusted search: Set γ t l + i = γ t l + i + 1 to ensure the newly generated exploration directions remain linearly independent, then compute δ D via Equation (14). Set γ 0 = γ D + 1 = γ D + δ D × d D and k = k + 1 and proceed to Step 2. The PM method is used to further excavate promising regions, so PM is performed when F E s > 0.9 × F E s M a x .

3.3. Implementation Steps of Proposed ERBMO Algorithm

Summarizing the above, the pseudo-code and flowchart of the ERBMO proposed in this paper are shown in Algorithm 1 and Figure 3.
Algorithm 1: Pseudo-code of ERBMO
1: Initialize the RBMO parameters
2: Initialize the population X using Equation (1)
3: While FEs < FEsMax
4: Construct C o v using Equation (8)//DTC
5: For i = 1: N do
6:  //Exploration//
7:  If rand < F E s / F E s M a x Then
8:       Update position of ith agent using Equation (11)//DTC
9:  Eles
10:    If rand < 0.5 Then
11:       Update position of ith agent using Equation (2)//Search for food
12:   Eles
13:      Update position of ith agent using Equation (3)//Search for food
14:   End if
15:   End if
16:  //Exploitation//
17:  If rand > F E s / F E s M a x Then
18:      Update position of ith agent using Equation (12)//DTC
19:  Eles
20:    If rand < 0.5 Then
21:      Update position of ith agent using Equation (4)//Attacking prey
22:   Eles
23:      Update position of ith agent using Equation (5)//Attacking prey
24:   End if
25:   End if
26: End for
27: FEs = FEs + 2N
28: If FEs > 0.9 × F E s M a x Then
29: Update position of Xfood (the best agent) using Powell mechanism//PM
30: End if
31: End while
32: Return the best solution Xfood
Time complexity serves as a key indicator of algorithmic performance, reflecting both the intricacy and the computational expense of a method. For population-based optimizers, it is primarily governed by three factors: population size N, problem dimension D and the number of iterations T. In the baseline RBMO, the overall complexity is dictated by (i) population initialization and (ii) position updating. Consequently, the time complexity of RBMO can be expressed as follows.
O R B M O = O i n i t i a l i z a t i o n + O p o s i t i o n   u p d a t i n g = O N × D + O 2 T × N × D = O 2 T + 1 × N × D
For ERBMO, the population initialization routine remains identical to the original RBMO, so no extra cost is incurred. DTC is embedded into the existing search cycle rather than appended as an additional phase; consequently, the 2N position updates performed per iteration are shared among all operators, leaving the asymptotic cost of the update stage unchanged. The PM is invoked only on the current best agent; if it is executed T1 times during the entire run, its complexity is O T 1 × N × D . Hence, the overall time complexity of ERBMO is given below.
O E R B M O = O i n i t i a l i z a t i o n + O p o s i t i o n   u p d a t i n g = O N × D + O 2 T × N × D + T 1 × N × D = O 2 T + T 1 + 1 × N × D
Although the theoretical time complexity of ERBMO is higher than that of the basic RBMO, the subsequent experimental results reveal that this modest increase in runtime is accompanied by a substantial gain in solution quality, making the trade-off fully acceptable. Moreover, all runs in this study are terminated once a prescribed maximum number of function evaluations is reached; this criterion eliminates any bias that could arise from the additional position updates performed within a single iteration, ensuring a fair comparison among algorithms.

4. Performance Analysis Using Benchmark Test Functions

Section 4 presents the experimental results of the proposed ERBMO on a suite of benchmark functions. Three sets of experiments were conducted to verify its effectiveness. First, a parameter sensitivity analysis was performed to determine the optimal parameter configuration of ERBMO. Second, ablation studies were carried out to quantify the contribution of each individual improvement strategy. Finally, ERBMO was compared with both basic and enhanced algorithms from different categories. The remainder of this section is organized as follows. Section 4.1 describes the benchmark functions. Section 4.2 details the experimental settings and the algorithms used for comparison. The parameter sensitivity analysis and the ablation study are presented in Section 4.3 and Section 4.4, respectively. The comprehensive comparison between ERBMO and the selected algorithms is provided in Section 4.5.

4.1. Review of the CEC 2017 Test Suite

This section assesses the performance of the proposed ERBMO algorithm using the CEC 2017 test suite (Dimensions = 10, 30, 50, 100). The CEC 2017 set comprises unimodal functions (F1, F3; F2 officially removed), multimodal functions (F4–F10), hybrid functions (F11–F20) and composite functions (F21–F30). Unimodal functions, which possess a single global optimum, are employed to quantify the exploitation capability and convergence speed. Multimodal, hybrid and composition functions, all characterized by multiple local optima, serve to examine the global exploration capacity and the ability to escape sub-optimal regions. Detailed specifications of the entire test suite are provided in Table 1.

4.2. Experimental Setup

The proposed ERBMO was benchmarked against ten state-of-the-art meta-heuristics representative of five algorithmic families: (a) evolutionary—AE [38] and LSHADE-SPACMA [39]; (b) physics-based—SAO [40] and ACGRIME [41]; (c) mathematics-based—QIO [42] and EPSCA [43]; (d) human-inspired—CFOA [27] and ISGTOA [44]; and (e) swarm intelligence—MPA [45] and EOSMA [46]. LSHADE-SPACMA serves as a state-of-the-art differential evolution variant, ACGRIME, EPSCA and ISGTOA represent distinct algorithmic classes whose superiority has been verified in their respective articles and EOSMA is a swarm-based enhancement that has demonstrated a competitive performance against IMODE, MadDE and LSHADE-cnEpSin. This selection covers both basic and enhanced variants, providing a comprehensive assessment of ERBMO’s relative superiority. The parameters of the comparison algorithm were determined by consulting the relevant literature, as shown in Table 2. Each function was run independently for 30 trials in order to guarantee a fair comparison. The maximum number of function evaluations (MaxFEs) was set to 1000× dimension. The best value (Min), standard deviation (Std) and mean fitness value (Mean) of the 30 trials were used in the statistical analysis. A core AMD R9 7945HX (2.5 GHz) CPU and 32 GB of RAM were used to conduct the research on MATLAB 2021b running on a Windows 11 operating system.

4.3. Parameter Sensitivity Analysis

In ERBMO, the size P of the elite pool governs the reliability of the estimated covariance matrix. An excessively large P incorporates low-fitness individuals and dilutes the search gradient, whereas an overly small P yields a statistically unreliable estimate. A parameter sensitivity study was therefore conducted to determine the most suitable value. Recognizing that the CEC 2017 suite spans multiple dimensions, we tested six linearly scaled settings: 5D, 10D, 15D, 20D, 25D and 30D.
Figure 4 reports the Friedman ranks obtained by basic RBMO and ERBMO with six dominant group sizes on the CEC 2017 suite; for brevity only, the statistical summaries are reported here and the full numerical results are provided in Table A1, Table A2, Table A3 and Table A4 of Appendix A. The Friedman test is conducted at a significance level of α = 0.05. Two observations are immediate. First, every ERBMO variant, regardless of P, consistently outperforms the original RBMO across all dimensions, confirming the usefulness of the proposed enhancements. Second, performance degrades when P is either too large (25D, 30D) or too small (5D). An excessive P introduces inferior solutions and corrupts the covariance estimate, whereas an insufficient P provides inadequate statistical support. ERBMO with P = 15D achieves the lowest average rank on every dimension and is therefore adopted in the remainder of this study.

4.4. Ablation Study

To quantify the individual contribution of each component, an ablation study was conducted on the CEC 2017 suite at four dimensionalities, comparing RBMO, the original algorithm DRBMO (RBMO + DTC only), PRBMO (RBMO + PM only) and ERBMO (RBMO + both); for brevity only, the statistical summaries are reported here and the full numerical results are provided in Table A5, Table A6, Table A7 and Table A8 of Appendix A.
Table 3 summarizes the Friedman ranks for RBMO, its ablated variants and ERBMO; all p-values in the last column are below 0.05, confirming significant differences among the configurations. Figure 5 depicts the corresponding rankings, from which three conclusions are drawn. First, ERBMO equipped with both enhancements consistently occupies the first rank, indicating that DTC and PM reinforce rather than hinder each other. Second, the single-strategy variants DRBMO and PRBMO both outperform the baseline RBMO, verifying the individual efficacy of each modification. Third, DRBMO surpasses PRBMO only at 10D and falls behind at higher dimensions, implying that the ability of the covariance matrix to capture variable interdependencies weakens as dimensionality increases, consequently degrading the benefit delivered by DTC.
The Nemenyi post hoc test evaluates the pairwise significance of the Friedman ranks. Algorithms whose average ranks differ by less than the critical difference value (CD) are linked by a horizontal bar, indicating no statistically significant discrepancy. The critical difference value (CDV) was calculated according to Equation (17), where M represents the number of algorithms and K represents the number of functions tested.
C D V = q a × K K + 1 6 M
Figure 6 presents the CD diagrams for RBMO, DRBMO, PRBMO and ERBMO at 10D, 30D, 50D and 100D. As illustrated in Figure 5, ERBMO is isolated from all other algorithms, indicating statistically significant differences with both the ablated variants and the baseline RBMO. DRBMO and PRBMO are connected by the CD bar, suggesting that the individual contributions of the two enhancement strategies are statistically indistinguishable. RBMO remains unconnected to any competitor, confirming its significant inferiority. Consequently, the Friedman and Nemenyi tests jointly demonstrate that each proposed modification is effective and that their combination further amplifies the optimization capability of RBMO.

4.5. Comparative Evaluation with Other Algorithms

This subsection benchmarks ERBMO against a diverse set of baseline and enhanced algorithms; the complete numerical results are provided in Table A9, Table A10, Table A11 and Table A12 of Appendix A, while only statistical summaries and visual comparisons are presented here for brevity. To visualize the relative performance of ERBMO and its competitors across the 29 CEC 2017 functions, a radar chart is constructed in Figure 7. Each algorithm is represented by a closed curve formed by its ranks on every function; smaller ranks yield a smaller enclosed area. The ERBMO curve consistently lies closest to the origin, indicating the best aggregate behavior. Subsequent subsections provide detailed convergence, robustness and statistical analyses (Friedman, Nemenyi and Wilcoxon rank-sum tests) to quantify this advantage.
Figure 8 illustrates the convergence behavior of ERBMO and its competitors on six representative functions: unimodal F1, multimodal F7, hybrid F13 and F19 and composition F25 and F30. For F1, ERBMO attains the highest accuracy, although its initial slope is moderate; the late-phase acceleration is produced by the PM-guided local refinement and the DTC-captured descent direction. For the multimodal F7, ERBMO, ACGRIME and EPSCA share a similar early convergence rate, yet only ERBMO continues to decrease and finally delivers the best value, indicating that DTC enlarges the search scope and avoids premature stagnation, while PM further exploits the most promising basins. For the hybrid F13 and F19, ERBMO converges fastest at 10D; at higher dimensions, the early stage is deliberately slowed because DTC enlarges the sample cloud, but a sharp drop reappears once PM concentrates the search on the reduced promising region. Finally, for the composition landscapes F25 and F30, ERBMO exhibits the steadiest and most persistent downward trajectory, confirming that the combined strategies enable the algorithm to track the composite ridges and descend continuously toward the global optimum. Collectively, DTC governs global exploration and escape, whereas PM performs fine-scale exploitation; their synergy equips ERBMO with a sustained and adaptable convergence capacity across varying function topologies.
Robustness is essential for meta-heuristics because real-world deployment demands consistent performance. Figure 9 compares the solution distributions of ERBMO and its competitors through box-and-whisker diagrams that simultaneously expose the median accuracy, inter-quartile spread and outlier frequency. Lower and narrower boxes indicate both high precision and high stability; outliers and tall boxes immediately reveal volatility or failure runs. Across all six representative functions, ERBMO produces the most compact boxes with the fewest outliers and consistently occupies the lowest positions, demonstrating a superior and steady optimization performance under independent trials.
The statistical significance of the accuracy differences between ERBMO and each competitor was assessed with the Wilcoxon rank-sum test at α = 0.05. Table 4 summarizes the outcomes using the “+/=/−” notation, where “+” indicates that ERBMO is significantly superior, “=” denotes no significant difference and “−” signifies that ERBMO is significantly inferior. The aggregated results, visualized in Figure 10, show that ERBMO obtains more “+” than “−” against every rival across all four dimensionalities of the CEC 2017 suite, confirming its consistent advantage. Detailed pairwise comparisons are elaborated below.
For the 10D functions, the ERBMO algorithm records win/tie/loss counts of 28/0/1, 26/0/3, 29/0/0, 22/2/5, 27/2/0, 19/9/1, 27/2/0, 26/0/3, 27/1/1 and 26/1/2 against AE, LSHADE-SPACMA, SAO, ACGRIME, QIO EPSC, CFO, ISGTO, MPA and EOSMA, respectively. Thus, the ERBMO algorithm achieves a statistically significant superiority for at least 19 functions in every pairwise comparison.
For the 30D functions, the ERBMO algorithm records win/tie/loss counts of 26/1/, 26/0/3, 29/0/0, 25/3/1, 27/1/1, 16/11/2, 29/0/0, 28/1/0, 29/0/0 and 27/1/1 against AE, LSHADE-SPACMA, SAO, ACGRIME, QIO EPSC, CFO, ISGTO, MPA and EOSMA, respectively. Thus, the ERBMO algorithm achieves a statistically significant superiority for at least 16 functions in every pairwise comparison.
For the 50D functions, the ERBMO algorithm records win/tie/loss counts of 27/1/1, 27/0/2, 28/1/0, 27/1/1, 28/1/0, 20/7/2, 29/0/0, 29/0/0, 29/0/0 and 29/0/0 against AE, LSHADE-SPACMA, SAO, ACGRIME, QIO EPSC, CFO, ISGTO, MPA and EOSMA, respectively. Thus, the ERBMO algorithm achieves a statistically significant superiority for at least 20 functions in every pairwise comparison.
For the 100D functions, the ERBMO algorithm records win/tie/loss counts of 28/0/1, 26/0/3, 29/0/0, 28/1/0, 29/0/0, 24/1/4, 29/0/0, 29/0/0, 29/0/0 and 29/0/0 against AE, LSHADE-SPACMA, SAO, ACGRIME, QIO EPSC, CFO, ISGTO, MPA and EOSMA, respectively. Thus, the ERBMO algorithm achieves a statistically significant superiority for at least 24 functions in every pairwise comparison.
Having established significant pairwise differences, we next evaluate the overall performance gap via the Friedman test. Figure 11 displays the average Friedman ranks of ERBMO and the competing algorithms, and the corresponding test statistics are summarized in Table 5. The p-values in the last column confirm significant performance differences among all contenders. ERBMO attains the best average rank of 1.543, followed by EPSCA (3.819) and L-SHADE-SPACMA (4.491), whereas the two basic algorithms MPA and SAO occupy the last two positions. Notably, ERBMO’s rank improves as dimensionality increases; corroborated by the ablation results, this indicates that the rival methods suffer a heavier performance degradation with high-dimensional functions, thereby elevating ERBMO’s relative standing. A detailed Friedman analysis is provided below.
For 10D functions, ERBMO, LSHADE-SPACMA and ACGRIME occupy the top three positions, followed in order by EOSMA, ISGTOA, EPSCA, QIO, AE, CFOA, MPA and SAO. Overall, ERBMO secures the leading position, with a Friedman score of 1.931, outperforming the second-ranked algorithm.
For 30D functions, ERBMO, EPSCA and LSHADE-SPACMA occupy the top three positions, followed in order by ACGRIME, ISGTOA, AE, EOSMA, QIO, CFOA, MPA and SAO. Overall, ERBMO secures the leading position, with a Friedman score of 1.621, outperforming the second-ranked algorithm.
For 50D functions, ERBMO, EPSCA and LSHADE-SPACMA occupy the top three positions, followed in order by ACGRIME, ISGTOA, AE, EOSMA, QIO, CFOA, MPA and SAO. Overall, ERBMO secures the leading position, with a Friedman score of 1.345, outperforming the second-ranked algorithm.
For 100D functions, ERBMO, EPSCA and LSHADE-SPACMA occupy the top three positions, followed in order by ISGTOA, AE, ACGRIME, EOSMA, QIO, MPA, SAO and CFOA. Overall, ERBMO secures the leading position, with a Friedman score of 1.276, outperforming the second-ranked algorithm.
According to the Nemenyi post hoc test illustrated in Figure 12, ERBMO is linked to EPSCA at 30D, 50D and 100D, indicating no significant difference in these cases, and to LSHADE-SPACMA at 10D, implying a comparable performance only in low-dimensional instances. In contrast, ERBMO is separated from all remaining competitors by CDV, confirming its statistical superiority. Overall, ERBMO delivers consistently strong results against both basic and improved algorithms across the dimensional range.

5. Performance Analysis Using Engineering Optimization Problems

To appraise the practical utility and reliability of ERBMO, seven well-established constrained optimization problems, detailed in Table 6, are employed. Each case involves the simultaneous tuning of several continuous variables subject to stress, deflection or geometric restrictions, while the goal is to minimize the mass or production cost. Following common practice, each constrained problem is converted into an unconstrained equivalent by a static penalty framework: whenever any constraint is violated, a large positive term is added to the fitness value, so infeasible individuals are automatically driven out of the search population during evolution. To ensure impartiality, all engineering cases are tackled with identical algorithmic settings: the population size equals the value advised in the source literature, the optimization budget is capped at 1000 × D function evaluations and 30 independent runs are executed per problem to guarantee statistical reliability. Table 7 summarizes the results of ERBMO and its rivals, together with the outcomes of Friedman’s and Wilcoxon’s rank-sum tests.
Table 7 shows that ERBMO delivers the best overall performance, achieving the lowest average Friedman rank of 1.143. Specifically, it attains the best mean value for RW01–RW04 and RW06–RW07, and ranks second for RW05, slightly behind LSHADE-SPACMA. Moreover, the Wilcoxon rank-sum test indicates that ERBMO is significantly superior to every competitor in at least six engineering problems. These results firmly demonstrate the effectiveness and robustness of ERBMO in tackling constrained optimizations tasks.

6. Discussion

The ERBMO algorithm achieves a balanced intensification of exploitation and exploration through the synergy of DTC and PM, while preserving the ability to escape local optima. In both the CEC 2017 suite and real-world engineering problems, this synergy translates into measurable gains in optimization efficiency. PM injects fine-grained local search, whereas DTC accurately tracks the evolutionary gradient, giving ERBMO a clear edge on unimodal functions. By injecting diverse individuals, DTC enlarges the search scope and, guided by the detected trend, improves the solution quality; PM subsequently refines the most promising regions, allowing ERBMO to maintain a high search efficiency for complex landscapes. As dimensionality increases, however, DTC’s capacity to capture variable interdependencies weakens, so the DTC-only variant degrades. The sensitivity analysis confirms that an excessively large elite pool slows the search, whereas an overly small one fails to represent the evolutionary direction; the adopted 15D offers the best compromise. Statistically, Friedman, Nemenyi and Wilcoxon tests consistently corroborate the superiority of ERBMO, and the engineering case studies further attest to its practical applicability. Both DTC and PM are designed as self-contained, plug-and-play modules: the dominant-group covariance strategy can be transplanted into any population-based optimizer to enrich its exploration pattern, while the Powell mechanism—essentially a deterministic local searcher—can be seamlessly invoked whenever the host algorithm reveals weak exploitation, affording an immediate refinement boost without altering the original structure.

7. Conclusions

To compensate for the insufficient local exploitation and global exploration of the original RBMO, as well as to alleviate the loss of population diversity in the later stages of evolution, this paper proposes an Enhanced RBMO (ERBMO). The algorithm integrates a dominant-group-based two-stage covariance-driven strategy (DTC) for global search and a Powell mechanism (PM) for fine-scale exploitation. DTC dynamically injects diverse individuals to expand the search scope and capture evolutionary trends, while PM performs the in-depth refinement of promising regions; their synergy realizes an adaptive balance between exploration and exploitation. Comparative experiments on the CEC 2017 benchmark suite against ten representative meta-heuristic algorithms show that ERBMO achieves a superior convergence accuracy and stability across various landscapes. Engineering cases further verify its ability to consistently deliver high-quality feasible solutions, demonstrating a significant practical potential.
Nevertheless, ERBMO still presents the following limitations: Although the DTC parameter has been linearly scaled with dimension, its universality across a broader problem domain remains to be verified. In high-dimensional scenarios, DTC’s capacity to capture variable correlations decreases, reducing its guidance efficiency. As a local search operator, PM still has room for further enhancement. In summary, ERBMO is not a “final” algorithm, and future work will focus on the following: parameter self-adaptation, introducing reinforcement learning or deep learning to enable an online self-adaptation of the elite pool size P and penalty coefficients; expanded applications, developing binary, multi-objective and dynamic variants, and applying them to wider fields such as UAV path planning and supply chain optimization; and cross-domain technology fusion, exploring the use of large language models or knowledge graphs to automatically generate or refine search operators, thereby continuously improving global and local search efficiency. Moreover, in many domains, machine learning techniques are the primary tools for problem solving—examples include hybrid deep learning models for classification [47,48], Long Short-Term Memory networks for motion pattern recognition [49] and feed-forward neural networks for human health monitoring [50]. The performance of all these approaches is heavily influenced by their hyper-parameter settings. Consequently, we plan to employ the proposed optimizer to tune the hyper-parameters of such machine learning methods in our future work.

Author Contributions

L.K.: conceptualization/methodology/software/writing—review and editing/supervision/project administration/funding acquisition. S.L.: conceptualization/methodology/software/validation/formal analysis/investigation/resources/data curation/writing—original draft/writing—review and editing/visualization. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, grant numbers 2024R1.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data are provided within the manuscript.

Acknowledgments

I would like to thank the anonymous reviewers who have helped to improve the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Experimental results of ERBMO with different P (D = 10).
Table A1. Experimental results of ERBMO with different P (D = 10).
No.IndexRBMOP = 5DP = 10DP = 15DP = 20DP = 25DP = 30D
F1Best4.8595E+044.8595E+041.0763E+029.4699E+023.9914E+031.9278E+048.4037E+03
Avg1.9123E+061.9123E+066.1492E+031.7517E+044.8399E+054.9668E+057.9832E+06
Std4.3461E+064.3461E+067.6330E+034.2886E+047.7810E+055.5473E+059.6802E+06
Rank5512346
F2Best3.0242E+023.0242E+023.0000E+023.0001E+023.0024E+023.0190E+023.0086E+02
Avg3.0229E+033.0229E+034.0358E+023.0347E+027.9393E+023.5153E+023.9217E+02
Std3.7665E+033.7665E+032.3704E+021.0456E+011.8443E+031.2587E+021.4431E+02
Rank6641523
F3Best4.0058E+024.0058E+024.0180E+024.0346E+024.0486E+024.0285E+024.0504E+02
Avg4.1157E+024.1157E+024.0516E+024.0503E+024.0560E+024.0605E+024.0717E+02
Std2.4411E+012.4411E+011.8355E+009.7697E−016.1410E−011.3397E+002.2543E+00
Rank6621345
F4Best5.0612E+025.0612E+025.0301E+025.1582E+025.1504E+025.0594E+025.1237E+02
Avg5.2157E+025.2157E+025.1216E+025.2575E+025.2907E+025.2476E+025.2828E+02
Std8.6368E+008.6368E+006.4400E+005.6800E+007.4053E+007.5196E+009.2499E+00
Rank2214635
F5Best6.0295E+026.0295E+026.0001E+026.0018E+026.0081E+026.0061E+026.0202E+02
Avg6.0909E+026.0909E+026.0202E+026.0043E+026.0183E+026.0218E+026.0454E+02
Std4.5711E+004.5711E+003.3227E+003.6358E−017.7587E−011.2081E+001.6609E+00
Rank6631245
F6Best7.1924E+027.1924E+027.1620E+027.2143E+027.3322E+027.2249E+027.2952E+02
Avg7.3863E+027.3863E+027.2902E+027.3799E+027.4284E+027.4257E+027.4279E+02
Std1.2719E+011.2719E+011.0369E+017.6167E+005.5781E+008.9606E+001.0005E+01
Rank3312645
F7Best8.0340E+028.0340E+028.0510E+028.1230E+028.1695E+028.0941E+028.2126E+02
Avg8.1352E+028.1352E+028.1147E+028.2517E+028.2651E+028.2581E+028.3387E+02
Std6.1569E+006.1569E+005.0650E+005.5161E+007.0147E+009.7016E+008.8162E+00
Rank2213546
F8Best9.1818E+029.1818E+029.0000E+029.0000E+029.0030E+029.0003E+029.0150E+02
Avg1.0713E+031.0713E+039.0940E+029.0073E+029.1313E+029.0675E+029.0810E+02
Std1.5316E+021.5316E+022.3728E+011.8366E+004.6510E+016.5648E+009.6271E+00
Rank6641523
F9Best1.4081E+031.4081E+031.6475E+031.7746E+032.1070E+031.9598E+031.5376E+03
Avg2.1563E+032.1563E+032.1775E+032.2668E+032.4329E+032.4066E+032.2734E+03
Std4.1512E+024.1512E+023.3064E+022.8930E+022.5572E+022.8808E+023.0560E+02
Rank1123654
F10Best1.1071E+031.1071E+031.1048E+031.1035E+031.1069E+031.1068E+031.1069E+03
Avg1.1681E+031.1681E+031.1226E+031.1155E+031.1132E+031.1257E+031.1241E+03
Std5.9867E+015.9867E+011.3765E+011.2798E+014.7963E+004.2826E+011.3995E+01
Rank6632154
F11Best2.3525E+032.3525E+031.3422E+031.5929E+032.8385E+033.6268E+033.6692E+03
Avg1.6594E+061.6594E+065.8179E+034.5646E+051.6254E+052.1813E+041.2329E+05
Std5.4052E+065.4052E+068.1754E+031.7416E+065.6720E+051.9068E+042.0884E+05
Rank6615423
F12Best1.3787E+031.3787E+031.3516E+031.3372E+031.3406E+031.3669E+031.6952E+03
Avg2.4121E+032.4121E+031.6045E+031.5285E+031.5196E+031.7626E+033.2664E+03
Std1.1576E+031.1576E+033.5796E+022.2942E+022.1092E+022.6638E+022.9867E+03
Rank5532146
F13Best1.4230E+031.4230E+031.4041E+031.4164E+031.4192E+031.4225E+031.4245E+03
Avg1.4371E+031.4371E+031.4261E+031.4281E+031.4287E+031.4290E+031.4385E+03
Std1.0260E+011.0260E+019.9050E+006.9769E+003.9787E+004.6537E+007.2611E+00
Rank5512346
F14Best1.5063E+031.5063E+031.5002E+031.5032E+031.5091E+031.5095E+031.5089E+03
Avg1.6518E+031.6518E+031.5285E+031.5204E+031.5216E+031.5234E+031.5526E+03
Std1.5990E+021.5990E+021.7736E+011.8269E+011.0545E+019.5723E+004.2394E+01
Rank6641235
F15Best1.6023E+031.6023E+031.6049E+031.6176E+031.6545E+031.6148E+031.6136E+03
Avg1.7508E+031.7508E+031.6427E+031.6565E+031.7184E+031.6937E+031.7261E+03
Std2.6290E+022.6290E+025.7058E+013.1351E+015.3756E+017.0774E+017.2044E+01
Rank6612435
F16Best1.7261E+031.7261E+031.7287E+031.7485E+031.7472E+031.7590E+031.7683E+03
Avg1.7576E+031.7576E+031.7640E+031.7701E+031.7858E+031.7780E+031.7929E+03
Std4.0995E+014.0995E+011.8687E+011.4271E+012.1839E+011.4121E+012.0678E+01
Rank1123546
F17Best1.8450E+031.8450E+031.8279E+031.8271E+031.8555E+031.9132E+031.9449E+03
Avg6.4087E+036.4087E+031.8997E+031.8840E+031.9201E+032.0905E+033.1689E+03
Std7.0102E+037.0102E+038.1512E+018.6589E+017.1315E+011.4029E+022.0460E+03
Rank6621345
F18Best1.9064E+031.9064E+031.9025E+031.9040E+031.9053E+031.9059E+031.9071E+03
Avg2.0149E+032.0149E+031.9076E+031.9061E+031.9073E+031.9097E+031.9189E+03
Std3.4349E+023.4349E+025.3305E+002.0609E+001.3595E+002.3615E+009.3895E+00
Rank6631245
F19Best2.0227E+032.0227E+032.0264E+032.0591E+032.0740E+032.0266E+032.0700E+03
Avg2.0862E+032.0862E+032.0718E+032.0955E+032.1293E+032.1215E+032.1232E+03
Std4.6870E+014.6870E+012.9628E+013.5544E+013.6273E+014.2822E+014.0521E+01
Rank2213645
F20Best2.2062E+032.2062E+032.2056E+032.2066E+032.2044E+032.2089E+032.2059E+03
Avg2.2872E+032.2872E+032.3081E+032.2943E+032.2911E+032.2939E+032.2802E+03
Std4.8298E+014.8298E+012.9635E+014.1245E+015.7039E+014.7961E+015.2861E+01
Rank2265341
F21Best2.2431E+032.2431E+032.3000E+032.2121E+032.2265E+032.2157E+032.2172E+03
Avg2.3085E+032.3085E+032.3028E+032.2846E+032.3037E+032.2876E+032.3099E+03
Std2.0642E+012.0642E+013.3049E+003.3724E+012.1425E+013.5405E+012.7207E+01
Rank5531426
F22Best2.6059E+032.6059E+032.6053E+032.6074E+032.6160E+032.6156E+032.6234E+03
Avg2.6319E+032.6319E+032.6192E+032.6225E+032.6286E+032.6301E+032.6329E+03
Std2.5433E+012.5433E+012.4610E+011.2546E+017.2161E+001.4344E+017.2166E+00
Rank5512346
F23Best2.7347E+032.7347E+032.7295E+032.6808E+032.5246E+032.6111E+032.5780E+03
Avg2.7513E+032.7513E+032.7385E+032.7449E+032.7381E+032.7373E+032.7449E+03
Std1.8318E+011.8318E+017.4868E+001.8709E+016.0590E+014.4556E+015.0939E+01
Rank6634215
F24Best2.8984E+032.8984E+032.8978E+032.8977E+032.8980E+032.8990E+032.8983E+03
Avg2.9514E+032.9514E+032.9346E+032.9286E+032.9213E+032.9340E+032.9360E+03
Std4.2770E+014.2770E+012.0191E+013.5185E+013.5084E+011.9936E+011.9592E+01
Rank6642135
F25Best2.9572E+032.9572E+032.9000E+032.9002E+032.9027E+032.9024E+032.9113E+03
Avg3.1784E+033.1784E+032.9908E+032.9230E+032.9129E+032.9270E+032.9430E+03
Std1.2692E+021.2692E+021.0853E+023.9557E+011.2724E+012.8823E+012.6207E+01
Rank6652134
F26Best3.0909E+033.0909E+033.0894E+033.0894E+033.0909E+033.0911E+033.0929E+03
Avg3.1142E+033.1142E+033.1005E+033.0991E+033.1041E+033.0970E+033.0994E+03
Std2.6483E+012.6483E+011.5908E+011.6515E+012.4439E+014.1964E+007.7354E+00
Rank6642513
F27Best3.2654E+033.2654E+033.1778E+033.1687E+033.1550E+033.1859E+033.3073E+03
Avg3.4302E+033.4302E+033.3868E+033.3706E+033.3722E+033.3821E+033.4074E+03
Std6.8223E+016.8223E+018.1829E+019.8072E+018.3396E+016.6498E+013.0778E+01
Rank6641235
F28Best3.1360E+033.1360E+033.1509E+033.1556E+033.1782E+033.1633E+033.1534E+03
Avg3.2112E+033.2112E+033.1934E+033.2025E+033.2137E+033.2209E+033.2122E+03
Std6.0581E+016.0581E+013.3077E+013.2331E+012.1876E+013.3264E+013.2422E+01
Rank3312564
F29Best6.2676E+036.2676E+033.6511E+033.7610E+033.7521E+033.6571E+034.0333E+03
Avg4.1484E+054.1484E+053.2335E+056.3152E+055.8273E+052.8142E+053.4140E+05
Std3.5198E+053.5198E+054.9806E+051.0372E+061.1270E+064.6953E+055.1143E+05
Rank4426513
Table A2. Experimental results of ERBMO with different P (D = 30).
Table A2. Experimental results of ERBMO with different P (D = 30).
No.IndexRBMOP = 5DP = 10DP = 15DP = 20DP = 25DP = 30D
F1Best4.8595E+044.8595E+041.0763E+029.4699E+023.9914E+031.9278E+048.4037E+03
Avg1.9123E+061.9123E+066.1492E+031.7517E+044.8399E+054.9668E+057.9832E+06
Std4.3461E+064.3461E+067.6330E+034.2886E+047.7810E+055.5473E+059.6802E+06
Rank5512346
F2Best3.0242E+023.0242E+023.0000E+023.0001E+023.0024E+023.0190E+023.0086E+02
Avg3.0229E+033.0229E+034.0358E+023.0347E+027.9393E+023.5153E+023.9217E+02
Std3.7665E+033.7665E+032.3704E+021.0456E+011.8443E+031.2587E+021.4431E+02
Rank6641523
F3Best4.0058E+024.0058E+024.0180E+024.0346E+024.0486E+024.0285E+024.0504E+02
Avg4.1157E+024.1157E+024.0516E+024.0503E+024.0560E+024.0605E+024.0717E+02
Std2.4411E+012.4411E+011.8355E+009.7697E−016.1410E−011.3397E+002.2543E+00
Rank6621345
F4Best5.0612E+025.0612E+025.0301E+025.1582E+025.1504E+025.0594E+025.1237E+02
Avg5.2157E+025.2157E+025.1216E+025.2575E+025.2907E+025.2476E+025.2828E+02
Std8.6368E+008.6368E+006.4400E+005.6800E+007.4053E+007.5196E+009.2499E+00
Rank2214635
F5Best6.0295E+026.0295E+026.0001E+026.0018E+026.0081E+026.0061E+026.0202E+02
Avg6.0909E+026.0909E+026.0202E+026.0043E+026.0183E+026.0218E+026.0454E+02
Std4.5711E+004.5711E+003.3227E+003.6358E−017.7587E−011.2081E+001.6609E+00
Rank6631245
F6Best7.1924E+027.1924E+027.1620E+027.2143E+027.3322E+027.2249E+027.2952E+02
Avg7.3863E+027.3863E+027.2902E+027.3799E+027.4284E+027.4257E+027.4279E+02
Std1.2719E+011.2719E+011.0369E+017.6167E+005.5781E+008.9606E+001.0005E+01
Rank3312645
F7Best8.0340E+028.0340E+028.0510E+028.1230E+028.1695E+028.0941E+028.2126E+02
Avg8.1352E+028.1352E+028.1147E+028.2517E+028.2651E+028.2581E+028.3387E+02
Std6.1569E+006.1569E+005.0650E+005.5161E+007.0147E+009.7016E+008.8162E+00
Rank2213546
F8Best9.1818E+029.1818E+029.0000E+029.0000E+029.0030E+029.0003E+029.0150E+02
Avg1.0713E+031.0713E+039.0940E+029.0073E+029.1313E+029.0675E+029.0810E+02
Std1.5316E+021.5316E+022.3728E+011.8366E+004.6510E+016.5648E+009.6271E+00
Rank6641523
F9Best1.4081E+031.4081E+031.6475E+031.7746E+032.1070E+031.9598E+031.5376E+03
Avg2.1563E+032.1563E+032.1775E+032.2668E+032.4329E+032.4066E+032.2734E+03
Std4.1512E+024.1512E+023.3064E+022.8930E+022.5572E+022.8808E+023.0560E+02
Rank1123654
F10Best1.1071E+031.1071E+031.1048E+031.1035E+031.1069E+031.1068E+031.1069E+03
Avg1.1681E+031.1681E+031.1226E+031.1155E+031.1132E+031.1257E+031.1241E+03
Std5.9867E+015.9867E+011.3765E+011.2798E+014.7963E+004.2826E+011.3995E+01
Rank6632154
F11Best2.3525E+032.3525E+031.3422E+031.5929E+032.8385E+033.6268E+033.6692E+03
Avg1.6594E+061.6594E+065.8179E+034.5646E+051.6254E+052.1813E+041.2329E+05
Std5.4052E+065.4052E+068.1754E+031.7416E+065.6720E+051.9068E+042.0884E+05
Rank6615423
F12Best1.3787E+031.3787E+031.3516E+031.3372E+031.3406E+031.3669E+031.6952E+03
Avg2.4121E+032.4121E+031.6045E+031.5285E+031.5196E+031.7626E+033.2664E+03
Std1.1576E+031.1576E+033.5796E+022.2942E+022.1092E+022.6638E+022.9867E+03
Rank5532146
F13Best1.4230E+031.4230E+031.4041E+031.4164E+031.4192E+031.4225E+031.4245E+03
Avg1.4371E+031.4371E+031.4261E+031.4281E+031.4287E+031.4290E+031.4385E+03
Std1.0260E+011.0260E+019.9050E+006.9769E+003.9787E+004.6537E+007.2611E+00
Rank5512346
F14Best1.5063E+031.5063E+031.5002E+031.5032E+031.5091E+031.5095E+031.5089E+03
Avg1.6518E+031.6518E+031.5285E+031.5204E+031.5216E+031.5234E+031.5526E+03
Std1.5990E+021.5990E+021.7736E+011.8269E+011.0545E+019.5723E+004.2394E+01
Rank6641235
F15Best1.6023E+031.6023E+031.6049E+031.6176E+031.6545E+031.6148E+031.6136E+03
Avg1.7508E+031.7508E+031.6427E+031.6565E+031.7184E+031.6937E+031.7261E+03
Std2.6290E+022.6290E+025.7058E+013.1351E+015.3756E+017.0774E+017.2044E+01
Rank6612435
F16Best1.7261E+031.7261E+031.7287E+031.7485E+031.7472E+031.7590E+031.7683E+03
Avg1.7576E+031.7576E+031.7640E+031.7701E+031.7858E+031.7780E+031.7929E+03
Std4.0995E+014.0995E+011.8687E+011.4271E+012.1839E+011.4121E+012.0678E+01
Rank1123546
F17Best1.8450E+031.8450E+031.8279E+031.8271E+031.8555E+031.9132E+031.9449E+03
Avg6.4087E+036.4087E+031.8997E+031.8840E+031.9201E+032.0905E+033.1689E+03
Std7.0102E+037.0102E+038.1512E+018.6589E+017.1315E+011.4029E+022.0460E+03
Rank6621345
F18Best1.9064E+031.9064E+031.9025E+031.9040E+031.9053E+031.9059E+031.9071E+03
Avg2.0149E+032.0149E+031.9076E+031.9061E+031.9073E+031.9097E+031.9189E+03
Std3.4349E+023.4349E+025.3305E+002.0609E+001.3595E+002.3615E+009.3895E+00
Rank6631245
F19Best2.0227E+032.0227E+032.0264E+032.0591E+032.0740E+032.0266E+032.0700E+03
Avg2.0862E+032.0862E+032.0718E+032.0955E+032.1293E+032.1215E+032.1232E+03
Std4.6870E+014.6870E+012.9628E+013.5544E+013.6273E+014.2822E+014.0521E+01
Rank2213645
F20Best2.2062E+032.2062E+032.2056E+032.2066E+032.2044E+032.2089E+032.2059E+03
Avg2.2872E+032.2872E+032.3081E+032.2943E+032.2911E+032.2939E+032.2802E+03
Std4.8298E+014.8298E+012.9635E+014.1245E+015.7039E+014.7961E+015.2861E+01
Rank2265341
F21Best2.2431E+032.2431E+032.3000E+032.2121E+032.2265E+032.2157E+032.2172E+03
Avg2.3085E+032.3085E+032.3028E+032.2846E+032.3037E+032.2876E+032.3099E+03
Std2.0642E+012.0642E+013.3049E+003.3724E+012.1425E+013.5405E+012.7207E+01
Rank5531426
F22Best2.6059E+032.6059E+032.6053E+032.6074E+032.6160E+032.6156E+032.6234E+03
Avg2.6319E+032.6319E+032.6192E+032.6225E+032.6286E+032.6301E+032.6329E+03
Std2.5433E+012.5433E+012.4610E+011.2546E+017.2161E+001.4344E+017.2166E+00
Rank5512346
F23Best2.7347E+032.7347E+032.7295E+032.6808E+032.5246E+032.6111E+032.5780E+03
Avg2.7513E+032.7513E+032.7385E+032.7449E+032.7381E+032.7373E+032.7449E+03
Std1.8318E+011.8318E+017.4868E+001.8709E+016.0590E+014.4556E+015.0939E+01
Rank6634215
F24Best2.8984E+032.8984E+032.8978E+032.8977E+032.8980E+032.8990E+032.8983E+03
Avg2.9514E+032.9514E+032.9346E+032.9286E+032.9213E+032.9340E+032.9360E+03
Std4.2770E+014.2770E+012.0191E+013.5185E+013.5084E+011.9936E+011.9592E+01
Rank6642135
F25Best2.9572E+032.9572E+032.9000E+032.9002E+032.9027E+032.9024E+032.9113E+03
Avg3.1784E+033.1784E+032.9908E+032.9230E+032.9129E+032.9270E+032.9430E+03
Std1.2692E+021.2692E+021.0853E+023.9557E+011.2724E+012.8823E+012.6207E+01
Rank6652134
F26Best3.0909E+033.0909E+033.0894E+033.0894E+033.0909E+033.0911E+033.0929E+03
Avg3.1142E+033.1142E+033.1005E+033.0991E+033.1041E+033.0970E+033.0994E+03
Std2.6483E+012.6483E+011.5908E+011.6515E+012.4439E+014.1964E+007.7354E+00
Rank6642513
F27Best3.2654E+033.2654E+033.1778E+033.1687E+033.1550E+033.1859E+033.3073E+03
Avg3.4302E+033.4302E+033.3868E+033.3706E+033.3722E+033.3821E+033.4074E+03
Std6.8223E+016.8223E+018.1829E+019.8072E+018.3396E+016.6498E+013.0778E+01
Rank6641235
F28Best3.1360E+033.1360E+033.1509E+033.1556E+033.1782E+033.1633E+033.1534E+03
Avg3.2112E+033.2112E+033.1934E+033.2025E+033.2137E+033.2209E+033.2122E+03
Std6.0581E+016.0581E+013.3077E+013.2331E+012.1876E+013.3264E+013.2422E+01
Rank3312564
F29Best6.2676E+036.2676E+033.6511E+033.7610E+033.7521E+033.6571E+034.0333E+03
Avg4.1484E+054.1484E+053.2335E+056.3152E+055.8273E+052.8142E+053.4140E+05
Std3.5198E+053.5198E+054.9806E+051.0372E+061.1270E+064.6953E+055.1143E+05
Rank4426513
Table A3. Experimental results of ERBMO with different P (D = 50).
Table A3. Experimental results of ERBMO with different P (D = 50).
No.IndexRBMOP = 5DP = 10DP = 15DP = 20DP = 25DP = 30D
F1Best4.8595E+044.8595E+041.0763E+029.4699E+023.9914E+031.9278E+048.4037E+03
Avg1.9123E+061.9123E+066.1492E+031.7517E+044.8399E+054.9668E+057.9832E+06
Std4.3461E+064.3461E+067.6330E+034.2886E+047.7810E+055.5473E+059.6802E+06
Rank5512346
F2Best3.0242E+023.0242E+023.0000E+023.0001E+023.0024E+023.0190E+023.0086E+02
Avg3.0229E+033.0229E+034.0358E+023.0347E+027.9393E+023.5153E+023.9217E+02
Std3.7665E+033.7665E+032.3704E+021.0456E+011.8443E+031.2587E+021.4431E+02
Rank6641523
F3Best4.0058E+024.0058E+024.0180E+024.0346E+024.0486E+024.0285E+024.0504E+02
Avg4.1157E+024.1157E+024.0516E+024.0503E+024.0560E+024.0605E+024.0717E+02
Std2.4411E+012.4411E+011.8355E+009.7697E−016.1410E−011.3397E+002.2543E+00
Rank6621345
F4Best5.0612E+025.0612E+025.0301E+025.1582E+025.1504E+025.0594E+025.1237E+02
Avg5.2157E+025.2157E+025.1216E+025.2575E+025.2907E+025.2476E+025.2828E+02
Std8.6368E+008.6368E+006.4400E+005.6800E+007.4053E+007.5196E+009.2499E+00
Rank2214635
F5Best6.0295E+026.0295E+026.0001E+026.0018E+026.0081E+026.0061E+026.0202E+02
Avg6.0909E+026.0909E+026.0202E+026.0043E+026.0183E+026.0218E+026.0454E+02
Std4.5711E+004.5711E+003.3227E+003.6358E−017.7587E−011.2081E+001.6609E+00
Rank6631245
F6Best7.1924E+027.1924E+027.1620E+027.2143E+027.3322E+027.2249E+027.2952E+02
Avg7.3863E+027.3863E+027.2902E+027.3799E+027.4284E+027.4257E+027.4279E+02
Std1.2719E+011.2719E+011.0369E+017.6167E+005.5781E+008.9606E+001.0005E+01
Rank3312645
F7Best8.0340E+028.0340E+028.0510E+028.1230E+028.1695E+028.0941E+028.2126E+02
Avg8.1352E+028.1352E+028.1147E+028.2517E+028.2651E+028.2581E+028.3387E+02
Std6.1569E+006.1569E+005.0650E+005.5161E+007.0147E+009.7016E+008.8162E+00
Rank2213546
F8Best9.1818E+029.1818E+029.0000E+029.0000E+029.0030E+029.0003E+029.0150E+02
Avg1.0713E+031.0713E+039.0940E+029.0073E+029.1313E+029.0675E+029.0810E+02
Std1.5316E+021.5316E+022.3728E+011.8366E+004.6510E+016.5648E+009.6271E+00
Rank6641523
F9Best1.4081E+031.4081E+031.6475E+031.7746E+032.1070E+031.9598E+031.5376E+03
Avg2.1563E+032.1563E+032.1775E+032.2668E+032.4329E+032.4066E+032.2734E+03
Std4.1512E+024.1512E+023.3064E+022.8930E+022.5572E+022.8808E+023.0560E+02
Rank1123654
F10Best1.1071E+031.1071E+031.1048E+031.1035E+031.1069E+031.1068E+031.1069E+03
Avg1.1681E+031.1681E+031.1226E+031.1155E+031.1132E+031.1257E+031.1241E+03
Std5.9867E+015.9867E+011.3765E+011.2798E+014.7963E+004.2826E+011.3995E+01
Rank6632154
F11Best2.3525E+032.3525E+031.3422E+031.5929E+032.8385E+033.6268E+033.6692E+03
Avg1.6594E+061.6594E+065.8179E+034.5646E+051.6254E+052.1813E+041.2329E+05
Std5.4052E+065.4052E+068.1754E+031.7416E+065.6720E+051.9068E+042.0884E+05
Rank6615423
F12Best1.3787E+031.3787E+031.3516E+031.3372E+031.3406E+031.3669E+031.6952E+03
Avg2.4121E+032.4121E+031.6045E+031.5285E+031.5196E+031.7626E+033.2664E+03
Std1.1576E+031.1576E+033.5796E+022.2942E+022.1092E+022.6638E+022.9867E+03
Rank5532146
F13Best1.4230E+031.4230E+031.4041E+031.4164E+031.4192E+031.4225E+031.4245E+03
Avg1.4371E+031.4371E+031.4261E+031.4281E+031.4287E+031.4290E+031.4385E+03
Std1.0260E+011.0260E+019.9050E+006.9769E+003.9787E+004.6537E+007.2611E+00
Rank5512346
F14Best1.5063E+031.5063E+031.5002E+031.5032E+031.5091E+031.5095E+031.5089E+03
Avg1.6518E+031.6518E+031.5285E+031.5204E+031.5216E+031.5234E+031.5526E+03
Std1.5990E+021.5990E+021.7736E+011.8269E+011.0545E+019.5723E+004.2394E+01
Rank6641235
F15Best1.6023E+031.6023E+031.6049E+031.6176E+031.6545E+031.6148E+031.6136E+03
Avg1.7508E+031.7508E+031.6427E+031.6565E+031.7184E+031.6937E+031.7261E+03
Std2.6290E+022.6290E+025.7058E+013.1351E+015.3756E+017.0774E+017.2044E+01
Rank6612435
F16Best1.7261E+031.7261E+031.7287E+031.7485E+031.7472E+031.7590E+031.7683E+03
Avg1.7576E+031.7576E+031.7640E+031.7701E+031.7858E+031.7780E+031.7929E+03
Std4.0995E+014.0995E+011.8687E+011.4271E+012.1839E+011.4121E+012.0678E+01
Rank1123546
F17Best1.8450E+031.8450E+031.8279E+031.8271E+031.8555E+031.9132E+031.9449E+03
Avg6.4087E+036.4087E+031.8997E+031.8840E+031.9201E+032.0905E+033.1689E+03
Std7.0102E+037.0102E+038.1512E+018.6589E+017.1315E+011.4029E+022.0460E+03
Rank6621345
F18Best1.9064E+031.9064E+031.9025E+031.9040E+031.9053E+031.9059E+031.9071E+03
Avg2.0149E+032.0149E+031.9076E+031.9061E+031.9073E+031.9097E+031.9189E+03
Std3.4349E+023.4349E+025.3305E+002.0609E+001.3595E+002.3615E+009.3895E+00
Rank6631245
F19Best2.0227E+032.0227E+032.0264E+032.0591E+032.0740E+032.0266E+032.0700E+03
Avg2.0862E+032.0862E+032.0718E+032.0955E+032.1293E+032.1215E+032.1232E+03
Std4.6870E+014.6870E+012.9628E+013.5544E+013.6273E+014.2822E+014.0521E+01
Rank2213645
F20Best2.2062E+032.2062E+032.2056E+032.2066E+032.2044E+032.2089E+032.2059E+03
Avg2.2872E+032.2872E+032.3081E+032.2943E+032.2911E+032.2939E+032.2802E+03
Std4.8298E+014.8298E+012.9635E+014.1245E+015.7039E+014.7961E+015.2861E+01
Rank2265341
F21Best2.2431E+032.2431E+032.3000E+032.2121E+032.2265E+032.2157E+032.2172E+03
Avg2.3085E+032.3085E+032.3028E+032.2846E+032.3037E+032.2876E+032.3099E+03
Std2.0642E+012.0642E+013.3049E+003.3724E+012.1425E+013.5405E+012.7207E+01
Rank5531426
F22Best2.6059E+032.6059E+032.6053E+032.6074E+032.6160E+032.6156E+032.6234E+03
Avg2.6319E+032.6319E+032.6192E+032.6225E+032.6286E+032.6301E+032.6329E+03
Std2.5433E+012.5433E+012.4610E+011.2546E+017.2161E+001.4344E+017.2166E+00
Rank5512346
F23Best2.7347E+032.7347E+032.7295E+032.6808E+032.5246E+032.6111E+032.5780E+03
Avg2.7513E+032.7513E+032.7385E+032.7449E+032.7381E+032.7373E+032.7449E+03
Std1.8318E+011.8318E+017.4868E+001.8709E+016.0590E+014.4556E+015.0939E+01
Rank6634215
F24Best2.8984E+032.8984E+032.8978E+032.8977E+032.8980E+032.8990E+032.8983E+03
Avg2.9514E+032.9514E+032.9346E+032.9286E+032.9213E+032.9340E+032.9360E+03
Std4.2770E+014.2770E+012.0191E+013.5185E+013.5084E+011.9936E+011.9592E+01
Rank6642135
F25Best2.9572E+032.9572E+032.9000E+032.9002E+032.9027E+032.9024E+032.9113E+03
Avg3.1784E+033.1784E+032.9908E+032.9230E+032.9129E+032.9270E+032.9430E+03
Std1.2692E+021.2692E+021.0853E+023.9557E+011.2724E+012.8823E+012.6207E+01
Rank6652134
F26Best3.0909E+033.0909E+033.0894E+033.0894E+033.0909E+033.0911E+033.0929E+03
Avg3.1142E+033.1142E+033.1005E+033.0991E+033.1041E+033.0970E+033.0994E+03
Std2.6483E+012.6483E+011.5908E+011.6515E+012.4439E+014.1964E+007.7354E+00
Rank6642513
F27Best3.2654E+033.2654E+033.1778E+033.1687E+033.1550E+033.1859E+033.3073E+03
Avg3.4302E+033.4302E+033.3868E+033.3706E+033.3722E+033.3821E+033.4074E+03
Std6.8223E+016.8223E+018.1829E+019.8072E+018.3396E+016.6498E+013.0778E+01
Rank6641235
F28Best3.1360E+033.1360E+033.1509E+033.1556E+033.1782E+033.1633E+033.1534E+03
Avg3.2112E+033.2112E+033.1934E+033.2025E+033.2137E+033.2209E+033.2122E+03
Std6.0581E+016.0581E+013.3077E+013.2331E+012.1876E+013.3264E+013.2422E+01
Rank3312564
F29Best6.2676E+036.2676E+033.6511E+033.7610E+033.7521E+033.6571E+034.0333E+03
Avg4.1484E+054.1484E+053.2335E+056.3152E+055.8273E+052.8142E+053.4140E+05
Std3.5198E+053.5198E+054.9806E+051.0372E+061.1270E+064.6953E+055.1143E+05
Rank4426513
Table A4. Experimental results of ERBMO with different P (D = 100).
Table A4. Experimental results of ERBMO with different P (D = 100).
No.IndexRBMOP = 5DP = 10DP = 15DP = 20DP = 25DP = 30D
F1Best4.8595E+044.8595E+041.0763E+029.4699E+023.9914E+031.9278E+048.4037E+03
Avg1.9123E+061.9123E+066.1492E+031.7517E+044.8399E+054.9668E+057.9832E+06
Std4.3461E+064.3461E+067.6330E+034.2886E+047.7810E+055.5473E+059.6802E+06
Rank5512346
F2Best3.0242E+023.0242E+023.0000E+023.0001E+023.0024E+023.0190E+023.0086E+02
Avg3.0229E+033.0229E+034.0358E+023.0347E+027.9393E+023.5153E+023.9217E+02
Std3.7665E+033.7665E+032.3704E+021.0456E+011.8443E+031.2587E+021.4431E+02
Rank6641523
F3Best4.0058E+024.0058E+024.0180E+024.0346E+024.0486E+024.0285E+024.0504E+02
Avg4.1157E+024.1157E+024.0516E+024.0503E+024.0560E+024.0605E+024.0717E+02
Std2.4411E+012.4411E+011.8355E+009.7697E−016.1410E−011.3397E+002.2543E+00
Rank6621345
F4Best5.0612E+025.0612E+025.0301E+025.1582E+025.1504E+025.0594E+025.1237E+02
Avg5.2157E+025.2157E+025.1216E+025.2575E+025.2907E+025.2476E+025.2828E+02
Std8.6368E+008.6368E+006.4400E+005.6800E+007.4053E+007.5196E+009.2499E+00
Rank2214635
F5Best6.0295E+026.0295E+026.0001E+026.0018E+026.0081E+026.0061E+026.0202E+02
Avg6.0909E+026.0909E+026.0202E+026.0043E+026.0183E+026.0218E+026.0454E+02
Std4.5711E+004.5711E+003.3227E+003.6358E−017.7587E−011.2081E+001.6609E+00
Rank6631245
F6Best7.1924E+027.1924E+027.1620E+027.2143E+027.3322E+027.2249E+027.2952E+02
Avg7.3863E+027.3863E+027.2902E+027.3799E+027.4284E+027.4257E+027.4279E+02
Std1.2719E+011.2719E+011.0369E+017.6167E+005.5781E+008.9606E+001.0005E+01
Rank3312645
F7Best8.0340E+028.0340E+028.0510E+028.1230E+028.1695E+028.0941E+028.2126E+02
Avg8.1352E+028.1352E+028.1147E+028.2517E+028.2651E+028.2581E+028.3387E+02
Std6.1569E+006.1569E+005.0650E+005.5161E+007.0147E+009.7016E+008.8162E+00
Rank2213546
F8Best9.1818E+029.1818E+029.0000E+029.0000E+029.0030E+029.0003E+029.0150E+02
Avg1.0713E+031.0713E+039.0940E+029.0073E+029.1313E+029.0675E+029.0810E+02
Std1.5316E+021.5316E+022.3728E+011.8366E+004.6510E+016.5648E+009.6271E+00
Rank6641523
F9Best1.4081E+031.4081E+031.6475E+031.7746E+032.1070E+031.9598E+031.5376E+03
Avg2.1563E+032.1563E+032.1775E+032.2668E+032.4329E+032.4066E+032.2734E+03
Std4.1512E+024.1512E+023.3064E+022.8930E+022.5572E+022.8808E+023.0560E+02
Rank1123654
F10Best1.1071E+031.1071E+031.1048E+031.1035E+031.1069E+031.1068E+031.1069E+03
Avg1.1681E+031.1681E+031.1226E+031.1155E+031.1132E+031.1257E+031.1241E+03
Std5.9867E+015.9867E+011.3765E+011.2798E+014.7963E+004.2826E+011.3995E+01
Rank6632154
F11Best2.3525E+032.3525E+031.3422E+031.5929E+032.8385E+033.6268E+033.6692E+03
Avg1.6594E+061.6594E+065.8179E+034.5646E+051.6254E+052.1813E+041.2329E+05
Std5.4052E+065.4052E+068.1754E+031.7416E+065.6720E+051.9068E+042.0884E+05
Rank6615423
F12Best1.3787E+031.3787E+031.3516E+031.3372E+031.3406E+031.3669E+031.6952E+03
Avg2.4121E+032.4121E+031.6045E+031.5285E+031.5196E+031.7626E+033.2664E+03
Std1.1576E+031.1576E+033.5796E+022.2942E+022.1092E+022.6638E+022.9867E+03
Rank5532146
F13Best1.4230E+031.4230E+031.4041E+031.4164E+031.4192E+031.4225E+031.4245E+03
Avg1.4371E+031.4371E+031.4261E+031.4281E+031.4287E+031.4290E+031.4385E+03
Std1.0260E+011.0260E+019.9050E+006.9769E+003.9787E+004.6537E+007.2611E+00
Rank5512346
F14Best1.5063E+031.5063E+031.5002E+031.5032E+031.5091E+031.5095E+031.5089E+03
Avg1.6518E+031.6518E+031.5285E+031.5204E+031.5216E+031.5234E+031.5526E+03
Std1.5990E+021.5990E+021.7736E+011.8269E+011.0545E+019.5723E+004.2394E+01
Rank6641235
F15Best1.6023E+031.6023E+031.6049E+031.6176E+031.6545E+031.6148E+031.6136E+03
Avg1.7508E+031.7508E+031.6427E+031.6565E+031.7184E+031.6937E+031.7261E+03
Std2.6290E+022.6290E+025.7058E+013.1351E+015.3756E+017.0774E+017.2044E+01
Rank6612435
F16Best1.7261E+031.7261E+031.7287E+031.7485E+031.7472E+031.7590E+031.7683E+03
Avg1.7576E+031.7576E+031.7640E+031.7701E+031.7858E+031.7780E+031.7929E+03
Std4.0995E+014.0995E+011.8687E+011.4271E+012.1839E+011.4121E+012.0678E+01
Rank1123546
F17Best1.8450E+031.8450E+031.8279E+031.8271E+031.8555E+031.9132E+031.9449E+03
Avg6.4087E+036.4087E+031.8997E+031.8840E+031.9201E+032.0905E+033.1689E+03
Std7.0102E+037.0102E+038.1512E+018.6589E+017.1315E+011.4029E+022.0460E+03
Rank6621345
F18Best1.9064E+031.9064E+031.9025E+031.9040E+031.9053E+031.9059E+031.9071E+03
Avg2.0149E+032.0149E+031.9076E+031.9061E+031.9073E+031.9097E+031.9189E+03
Std3.4349E+023.4349E+025.3305E+002.0609E+001.3595E+002.3615E+009.3895E+00
Rank6631245
F19Best2.0227E+032.0227E+032.0264E+032.0591E+032.0740E+032.0266E+032.0700E+03
Avg2.0862E+032.0862E+032.0718E+032.0955E+032.1293E+032.1215E+032.1232E+03
Std4.6870E+014.6870E+012.9628E+013.5544E+013.6273E+014.2822E+014.0521E+01
Rank2213645
F20Best2.2062E+032.2062E+032.2056E+032.2066E+032.2044E+032.2089E+032.2059E+03
Avg2.2872E+032.2872E+032.3081E+032.2943E+032.2911E+032.2939E+032.2802E+03
Std4.8298E+014.8298E+012.9635E+014.1245E+015.7039E+014.7961E+015.2861E+01
Rank2265341
F21Best2.2431E+032.2431E+032.3000E+032.2121E+032.2265E+032.2157E+032.2172E+03
Avg2.3085E+032.3085E+032.3028E+032.2846E+032.3037E+032.2876E+032.3099E+03
Std2.0642E+012.0642E+013.3049E+003.3724E+012.1425E+013.5405E+012.7207E+01
Rank5531426
F22Best2.6059E+032.6059E+032.6053E+032.6074E+032.6160E+032.6156E+032.6234E+03
Avg2.6319E+032.6319E+032.6192E+032.6225E+032.6286E+032.6301E+032.6329E+03
Std2.5433E+012.5433E+012.4610E+011.2546E+017.2161E+001.4344E+017.2166E+00
Rank5512346
F23Best2.7347E+032.7347E+032.7295E+032.6808E+032.5246E+032.6111E+032.5780E+03
Avg2.7513E+032.7513E+032.7385E+032.7449E+032.7381E+032.7373E+032.7449E+03
Std1.8318E+011.8318E+017.4868E+001.8709E+016.0590E+014.4556E+015.0939E+01
Rank6634215
F24Best2.8984E+032.8984E+032.8978E+032.8977E+032.8980E+032.8990E+032.8983E+03
Avg2.9514E+032.9514E+032.9346E+032.9286E+032.9213E+032.9340E+032.9360E+03
Std4.2770E+014.2770E+012.0191E+013.5185E+013.5084E+011.9936E+011.9592E+01
Rank6642135
F25Best2.9572E+032.9572E+032.9000E+032.9002E+032.9027E+032.9024E+032.9113E+03
Avg3.1784E+033.1784E+032.9908E+032.9230E+032.9129E+032.9270E+032.9430E+03
Std1.2692E+021.2692E+021.0853E+023.9557E+011.2724E+012.8823E+012.6207E+01
Rank6652134
F26Best3.0909E+033.0909E+033.0894E+033.0894E+033.0909E+033.0911E+033.0929E+03
Avg3.1142E+033.1142E+033.1005E+033.0991E+033.1041E+033.0970E+033.0994E+03
Std2.6483E+012.6483E+011.5908E+011.6515E+012.4439E+014.1964E+007.7354E+00
Rank6642513
F27Best3.2654E+033.2654E+033.1778E+033.1687E+033.1550E+033.1859E+033.3073E+03
Avg3.4302E+033.4302E+033.3868E+033.3706E+033.3722E+033.3821E+033.4074E+03
Std6.8223E+016.8223E+018.1829E+019.8072E+018.3396E+016.6498E+013.0778E+01
Rank6641235
F28Best3.1360E+033.1360E+033.1509E+033.1556E+033.1782E+033.1633E+033.1534E+03
Avg3.2112E+033.2112E+033.1934E+033.2025E+033.2137E+033.2209E+033.2122E+03
Std6.0581E+016.0581E+013.3077E+013.2331E+012.1876E+013.3264E+013.2422E+01
Rank3312564
F29Best6.2676E+036.2676E+033.6511E+033.7610E+033.7521E+033.6571E+034.0333E+03
Avg4.1484E+054.1484E+053.2335E+056.3152E+055.8273E+052.8142E+053.4140E+05
Std3.5198E+053.5198E+054.9806E+051.0372E+061.1270E+064.6953E+055.1143E+05
Rank4426513
Table A5. Experimental results of ERBMO with different strategies (D = 10).
Table A5. Experimental results of ERBMO with different strategies (D = 10).
No.IndexRBMODRBMOPRBMOERBMO
F1Min7.1002E+031.1708E+021.0000E+021.0000E+02
Avg1.1200E+051.6527E+031.0017E+021.0004E+02
Std1.4890E+051.7843E+039.3064E−012.4024E−01
Rank4321
F2Best3.0218E+023.0000E+023.0000E+023.0000E+02
Avg4.7568E+023.0001E+023.0000E+023.0000E+02
Std1.2889E+021.1697E−021.5404E−109.3142E−09
Rank4312
F3Best4.0303E+024.0000E+024.0000E+024.0000E+02
Avg4.0953E+024.0449E+024.0013E+024.0000E+02
Std1.0640E+011.3602E+007.2785E−011.7662E−12
Rank4321
F4Best5.0505E+025.0303E+025.0497E+025.0298E+02
Avg5.1769E+025.1138E+025.1685E+025.1078E+02
Std8.5445E+005.7685E+008.1960E+005.6951E+00
Rank4231
F5Best6.0016E+026.0004E+026.0016E+026.0002E+02
Avg6.0110E+026.0019E+026.0103E+026.0017E+02
Std9.5631E−011.0506E−018.8274E−011.0257E−01
Rank4231
F6Best7.1329E+027.1310E+027.1286E+027.1072E+02
Avg7.2679E+027.2121E+027.2569E+027.1951E+02
Std6.0918E+004.5164E+006.0832E+004.6670E+00
Rank4231
F7Best8.0972E+028.0558E+028.0895E+028.0398E+02
Avg8.1907E+028.1154E+028.1798E+028.1104E+02
Std7.7645E+004.2171E+006.6149E+004.4138E+00
Rank4231
F8Best9.0027E+029.0000E+029.0000E+029.0000E+02
Avg9.0491E+029.0006E+029.0440E+029.0004E+02
Std4.8763E+001.0959E−014.6523E+009.1327E−02
Rank4231
F9Best1.0659E+031.1909E+031.0219E+031.1584E+03
Avg1.7605E+031.7498E+031.6884E+031.6804E+03
Std2.6692E+022.3358E+022.5713E+022.1666E+02
Rank4321
F10Best1.1028E+031.1012E+031.1020E+031.1000E+03
Avg1.1203E+031.1051E+031.1172E+031.1023E+03
Std1.6984E+011.9034E+001.7136E+011.5750E+00
Rank4231
F11Best3.0566E+031.2142E+031.3349E+031.2002E+03
Avg1.5166E+051.4241E+031.6757E+031.3987E+03
Std7.2602E+051.5771E+022.1927E+021.6017E+02
Rank4231
F12Best1.3980E+031.3041E+031.3405E+031.3010E+03
Avg1.8712E+031.3107E+031.6999E+031.3070E+03
Std2.9972E+023.7774E+002.4182E+024.0517E+00
Rank4231
F13Best1.4192E+031.4034E+031.4120E+031.4015E+03
Avg1.4459E+031.4144E+031.4404E+031.4133E+03
Std1.2674E+018.5524E+001.2822E+019.1865E+00
Rank4231
F14Best1.5324E+031.5006E+031.5017E+031.5001E+03
Avg1.6123E+031.5042E+031.5653E+031.5027E+03
Std4.9701E+015.4503E+004.8430E+015.5833E+00
Rank4231
F15Best1.6017E+031.6021E+031.6012E+031.6012E+03
Avg1.6619E+031.6231E+031.6387E+031.6106E+03
Std6.5476E+012.8606E+016.3068E+012.3817E+01
Rank4231
F16Best1.7240E+031.7245E+031.7227E+031.7212E+03
Avg1.7555E+031.7439E+031.7521E+031.7419E+03
Std2.1439E+011.4873E+012.1232E+011.5076E+01
Rank4231
F17Best1.9194E+031.8025E+031.8217E+031.8011E+03
Avg2.7894E+031.8190E+031.8908E+031.8171E+03
Std1.0332E+037.8932E+007.3157E+017.8714E+00
Rank4231
F18Best1.9112E+031.9012E+031.9057E+031.9012E+03
Avg1.9351E+031.9030E+031.9307E+031.9028E+03
Std1.7186E+019.3929E−011.8796E+019.6429E−01
Rank4231
F19Best2.0217E+032.0215E+032.0207E+032.0209E+03
Avg2.0615E+032.0441E+032.0584E+032.0427E+03
Std4.3580E+011.7493E+014.3519E+011.7319E+01
Rank4231
F20Best2.2024E+032.2000E+032.2000E+032.2000E+03
Avg2.2757E+032.2462E+032.2732E+032.2458E+03
Std5.8810E+015.7657E+016.0122E+015.7394E+01
Rank4231
F21Best2.2221E+032.2001E+032.2200E+032.2000E+03
Avg2.3009E+032.2982E+032.3003E+032.2979E+03
Std1.4971E+011.8537E+011.5258E+011.8491E+01
Rank4231
F22Best2.6048E+032.6045E+032.6048E+032.6044E+03
Avg2.6224E+032.6179E+032.6190E+032.6160E+03
Std7.6667E+007.6482E+007.5340E+007.5567E+00
Rank4231
F23Best2.5082E+032.5002E+032.5000E+032.5000E+03
Avg2.7345E+032.7096E+032.7319E+032.7089E+03
Std5.9540E+018.3554E+016.3397E+018.3482E+01
Rank4231
F24Best2.8983E+032.8977E+032.8980E+032.8977E+03
Avg2.9372E+032.9088E+032.9370E+032.9088E+03
Std2.2128E+011.9639E+012.2277E+011.9632E+01
Rank4231
F25Best2.9007E+032.9001E+032.8000E+032.9000E+03
Avg2.9817E+032.9031E+032.9472E+032.9028E+03
Std1.2520E+021.5661E+015.7171E+011.5377E+01
Rank4231
F26Best3.0897E+033.0890E+033.0884E+033.0884E+03
Avg3.0948E+033.0920E+033.0932E+033.0912E+03
Std5.3588E+005.3996E+004.4834E+005.4627E+00
Rank4231
F27Best3.1529E+033.1001E+033.1000E+033.1000E+03
Avg3.3255E+033.1810E+033.2075E+033.1355E+03
Std1.0843E+021.2315E+028.1564E+016.4819E+01
Rank4231
F28Best3.1438E+033.1401E+033.1377E+033.1362E+03
Avg3.1868E+033.1676E+033.1801E+033.1604E+03
Std3.2361E+012.1425E+013.1560E+012.0189E+01
Rank4231
F29Best3.7905E+033.4075E+033.2588E+033.2377E+03
Avg4.7647E+053.1212E+043.5650E+033.3417E+03
Std6.1227E+051.4926E+056.5659E+027.2574E+01
Rank4321
Table A6. Experimental results of ERBMO with different strategies (D = 30).
Table A6. Experimental results of ERBMO with different strategies (D = 30).
No.IndexRBMODRBMOPRBMOERBMO
F1Min2.7381E+083.6999E+061.0000E+021.0000E+02
Avg8.6658E+081.9816E+071.0001E+021.0008E+02
Std4.9476E+081.2950E+076.5667E−024.3531E−01
Rank4312
F2Best1.6133E+043.8464E+023.0000E+023.0000E+02
Avg2.7655E+047.4576E+023.0000E+023.0000E+02
Std5.7764E+033.1544E+029.6955E−056.8726E−06
Rank4321
F3Best5.4586E+024.7382E+024.0000E+024.0000E+02
Avg6.2965E+025.2062E+024.0106E+024.0133E+02
Std5.5968E+011.9350E+011.7931E+001.9114E+00
Rank4312
F4Best5.9414E+025.7438E+025.4179E+025.2885E+02
Avg6.2756E+026.0193E+025.8640E+025.5562E+02
Std2.0109E+011.3533E+012.0996E+011.2777E+01
Rank4321
F5Best6.0885E+026.0286E+026.0792E+026.0239E+02
Avg6.1664E+026.0522E+026.1472E+026.0441E+02
Std4.8735E+001.5166E+004.6151E+001.3659E+00
Rank4231
F6Best8.5194E+027.9908E+028.1083E+027.5036E+02
Avg9.0557E+028.2608E+028.5769E+027.7545E+02
Std3.2731E+011.7591E+013.3525E+011.5416E+01
Rank4231
F7Best8.9450E+028.6485E+028.5373E+028.2487E+02
Avg9.2970E+028.9787E+028.8848E+028.5097E+02
Std2.0750E+011.8674E+012.1967E+011.4867E+01
Rank4321
F8Best1.2349E+039.1353E+021.1657E+039.0836E+02
Avg1.9336E+039.5399E+021.6704E+039.3898E+02
Std3.5516E+023.6803E+012.6486E+022.6321E+01
Rank4231
F9Best4.2557E+034.5456E+033.3720E+033.5113E+03
Avg5.7211E+036.2292E+034.6662E+034.8199E+03
Std7.8239E+026.3952E+026.6079E+026.8165E+02
Rank3412
F10Best1.3031E+031.1510E+031.1627E+031.1249E+03
Avg1.4244E+031.1949E+031.2455E+031.1372E+03
Std8.9461E+012.7097E+015.6090E+011.0465E+01
Rank4231
F11Best2.1413E+061.2778E+041.7580E+031.5608E+03
Avg2.8943E+072.9143E+052.9852E+032.5382E+03
Std3.4161E+073.3738E+056.8049E+024.8067E+02
Rank4321
F12Best2.8591E+043.2870E+032.2883E+031.9505E+03
Avg2.2092E+056.4935E+037.5322E+033.7281E+03
Std3.2469E+052.0132E+038.7551E+039.3293E+02
Rank4231
F13Best1.6721E+031.4422E+031.4853E+031.4330E+03
Avg3.2024E+031.4691E+031.6090E+031.4499E+03
Std1.8831E+031.3487E+011.0815E+021.1778E+01
Rank4231
F14Best2.0534E+041.6497E+031.6378E+031.5347E+03
Avg5.8458E+041.7752E+032.8040E+031.6192E+03
Std2.6361E+046.5385E+011.7747E+034.7566E+01
Rank4231
F15Best2.0231E+031.9417E+031.7387E+031.6147E+03
Avg2.8015E+032.5645E+032.4187E+032.1752E+03
Std3.8976E+023.2524E+023.4478E+023.0958E+02
Rank4321
F16Best1.9069E+031.8151E+031.8138E+031.7818E+03
Avg2.1690E+032.0582E+032.1102E+032.0087E+03
Std1.7306E+021.4995E+021.8338E+021.4009E+02
Rank4231
F17Best4.2829E+041.8584E+032.0207E+031.8249E+03
Avg1.3088E+051.9583E+039.2005E+031.8878E+03
Std5.9776E+045.5559E+019.6577E+033.5274E+01
Rank4231
F18Best2.8416E+031.9460E+032.1873E+031.9321E+03
Avg3.3074E+041.9771E+037.3161E+031.9642E+03
Std4.0581E+042.2063E+017.2640E+032.0407E+01
Rank4231
F19Best2.1259E+032.1814E+032.0771E+032.1543E+03
Avg2.4398E+032.4028E+032.3900E+032.3544E+03
Std1.5885E+021.2640E+021.5131E+021.2178E+02
Rank4321
F20Best2.3831E+032.3666E+032.3501E+032.3312E+03
Avg2.4276E+032.3900E+032.3862E+032.3497E+03
Std1.9662E+011.6139E+011.8554E+011.5804E+01
Rank4321
F21Best2.4273E+032.3218E+032.3000E+032.3000E+03
Avg3.6277E+032.5279E+033.0892E+032.4347E+03
Std1.8795E+039.5503E+021.6171E+037.3108E+02
Rank4231
F22Best2.7329E+032.7104E+032.7023E+032.6730E+03
Avg2.7840E+032.7514E+032.7404E+032.7050E+03
Std2.4955E+012.1167E+012.2654E+011.8020E+01
Rank4321
F23Best2.9068E+032.8862E+032.8717E+032.8422E+03
Avg2.9497E+032.9179E+032.9042E+032.8723E+03
Std2.3477E+012.2337E+011.8877E+011.6534E+01
Rank4321
F24Best2.9403E+032.8926E+032.8757E+032.8754E+03
Avg2.9921E+032.9070E+032.8847E+032.8802E+03
Std3.9076E+011.2482E+011.7108E+012.4133E+00
Rank4321
F25Best3.7132E+033.1102E+032.9000E+032.9000E+03
Avg5.1770E+034.3159E+034.6323E+033.9343E+03
Std3.8724E+025.0296E+024.0693E+025.0521E+02
Rank4231
F26Best3.2169E+033.2066E+033.1645E+033.1194E+03
Avg3.2462E+033.2199E+033.1855E+033.1724E+03
Std1.9480E+019.7124E+001.3506E+011.2133E+01
Rank4321
F27Best3.3389E+033.2248E+033.1000E+033.1000E+03
Avg3.4808E+033.2661E+033.1791E+033.1507E+03
Std1.8192E+022.2817E+017.4568E+016.0538E+01
Rank4321
F28Best3.5916E+033.5233E+033.4056E+033.2093E+03
Avg3.9322E+033.7814E+033.8097E+033.6819E+03
Std2.1825E+021.6129E+022.0788E+021.7866E+02
Rank4231
F29Best6.5026E+047.1501E+033.3978E+033.3716E+03
Avg5.2510E+051.2005E+044.2787E+033.8919E+03
Std3.5853E+057.0467E+031.2792E+035.4254E+02
Rank4321
Table A7. Experimental results of ERBMO with different strategies (D = 50).
Table A7. Experimental results of ERBMO with different strategies (D = 50).
No.IndexRBMODRBMOPRBMOERBMO
F1Min6.0331E+093.3773E+081.0000E+021.0000E+02
Avg9.4115E+097.1869E+081.0000E+021.0061E+02
Std1.9344E+092.1537E+082.4574E−032.6101E+00
Rank4312
F2Best5.8864E+044.2541E+033.0001E+023.0000E+02
Avg8.8086E+041.0378E+043.2824E+023.0192E+02
Std1.5224E+043.7998E+037.3493E+019.9523E+00
Rank4321
F3Best9.9116E+026.4432E+024.0000E+024.0000E+02
Avg1.3552E+037.2370E+024.1023E+024.0574E+02
Std2.2177E+024.0796E+011.4169E+017.5705E+00
Rank4321
F4Best7.5406E+026.9771E+026.1541E+025.5771E+02
Avg8.2023E+027.3761E+026.9806E+026.0361E+02
Std3.8181E+012.0022E+014.3788E+011.8110E+01
Rank4321
F5Best6.1958E+026.0771E+026.1483E+026.0607E+02
Avg6.3039E+026.1221E+026.2463E+026.0972E+02
Std7.6101E+002.9763E+006.2291E+002.2628E+00
Rank4231
F6Best1.0884E+039.3415E+021.0018E+037.8687E+02
Avg1.3111E+039.8446E+021.1671E+038.3890E+02
Std1.0891E+022.7279E+011.0292E+022.4067E+01
Rank4231
F7Best1.0351E+039.6968E+029.1243E+028.5970E+02
Avg1.1228E+031.0314E+039.9458E+028.9724E+02
Std3.5855E+012.5817E+014.0128E+012.0849E+01
Rank4321
F8Best3.7765E+031.2941E+032.3347E+031.1532E+03
Avg6.5377E+031.7660E+034.3391E+031.4005E+03
Std2.0190E+033.9625E+021.3097E+032.2722E+02
Rank4231
F9Best9.9778E+038.4887E+035.9182E+035.4831E+03
Avg1.1309E+041.1217E+047.9591E+037.7795E+03
Std9.8513E+028.1240E+021.1166E+039.3272E+02
Rank4321
F10Best1.7881E+031.2715E+031.2274E+031.1527E+03
Avg2.1319E+031.3562E+031.3300E+031.2128E+03
Std2.0001E+025.2641E+016.7027E+014.1216E+01
Rank4321
F11Best1.4041E+086.8945E+062.7940E+034.1327E+03
Avg4.8286E+082.1737E+074.7765E+041.5975E+04
Std2.8754E+081.0257E+075.1218E+041.1160E+04
Rank4321
F12Best3.6295E+054.1590E+042.8223E+033.0936E+03
Avg1.6642E+067.9114E+047.3454E+035.3383E+03
Std1.0710E+063.2822E+045.8072E+031.2717E+03
Rank4321
F13Best1.7389E+041.5735E+031.6015E+031.4856E+03
Avg8.9412E+041.6390E+036.3425E+031.5356E+03
Std5.1102E+043.3141E+011.1487E+043.0610E+01
Rank4231
F14Best3.7181E+042.8876E+032.0592E+031.6909E+03
Avg1.1255E+055.4574E+036.5099E+031.9934E+03
Std4.9934E+042.4046E+037.5176E+033.7555E+02
Rank4231
F15Best2.9759E+032.7105E+032.1970E+031.9951E+03
Avg3.6347E+033.4912E+032.9689E+032.8382E+03
Std4.1664E+023.9127E+023.9824E+023.2203E+02
Rank4321
F16Best2.4935E+032.2980E+032.4352E+032.1565E+03
Avg3.3451E+032.9045E+033.2025E+032.7520E+03
Std3.5810E+022.9639E+023.5740E+022.9992E+02
Rank4231
F17Best2.8243E+052.3109E+032.1151E+031.9177E+03
Avg1.2801E+062.5223E+031.6403E+042.0624E+03
Std1.2393E+061.4627E+021.5293E+048.4575E+01
Rank4231
F18Best4.7014E+042.1690E+032.4878E+032.0790E+03
Avg7.2180E+054.0444E+031.0994E+043.2304E+03
Std9.7924E+054.3045E+039.7495E+031.9629E+03
Rank4231
F19Best2.5566E+032.6992E+032.4553E+032.6044E+03
Avg3.3377E+033.2167E+033.1775E+033.0635E+03
Std3.8043E+022.2747E+023.8183E+022.1865E+02
Rank4321
F20Best2.5496E+032.5092E+032.4190E+032.3694E+03
Avg2.5968E+032.5454E+032.4660E+032.4097E+03
Std3.3005E+012.7836E+013.2274E+012.4251E+01
Rank4321
F21Best1.0211E+041.0652E+047.3574E+036.8831E+03
Avg1.2394E+041.2771E+049.2005E+039.2190E+03
Std1.0235E+038.4468E+021.0346E+039.0983E+02
Rank3412
F22Best2.9971E+032.9314E+032.8699E+032.7956E+03
Avg3.0880E+032.9789E+032.9529E+032.8426E+03
Std4.1045E+012.8823E+014.2158E+013.0601E+01
Rank4321
F23Best3.1492E+033.0968E+033.0148E+032.9756E+03
Avg3.2546E+033.1550E+033.1214E+033.0240E+03
Std5.7388E+012.9093E+015.5210E+012.6631E+01
Rank4321
F24Best3.3920E+033.1121E+032.9312E+032.9312E+03
Avg3.8937E+033.1558E+032.9508E+032.9591E+03
Std2.8965E+022.9339E+011.9186E+012.5971E+01
Rank4312
F25Best6.5093E+035.6291E+035.4409E+034.5226E+03
Avg7.5054E+036.1546E+036.1714E+034.9901E+03
Std6.8584E+022.5020E+026.3425E+022.5223E+02
Rank4231
F26Best3.3941E+033.3253E+033.1407E+033.1248E+03
Avg3.5723E+033.4673E+033.2466E+033.2457E+03
Std1.0277E+029.9072E+011.1530E+027.7985E+01
Rank4321
F27Best3.8491E+033.3782E+033.2709E+033.2393E+03
Avg5.4813E+033.4497E+033.2990E+033.2776E+03
Std1.2630E+036.7619E+015.3081E+002.5224E+01
Rank4321
F28Best4.3527E+033.9920E+033.8470E+033.4621E+03
Avg4.9837E+034.5116E+034.3621E+033.9035E+03
Std3.6870E+022.6028E+023.2239E+022.5257E+02
Rank4321
F29Best1.4680E+074.1167E+063.5242E+033.4058E+03
Avg3.7992E+076.7810E+067.0962E+034.7423E+03
Std1.7559E+071.7294E+063.3999E+031.3096E+03
Rank4321
Table A8. Experimental results of ERBMO with different strategies (D = 100).
Table A8. Experimental results of ERBMO with different strategies (D = 100).
No.IndexRBMODRBMOPRBMOERBMO
F1Min6.4004E+101.1980E+101.0000E+021.0000E+02
Avg7.7533E+101.6102E+101.0006E+021.0015E+02
Std1.1181E+103.0678E+093.4260E−017.6732E−01
Rank4312
F2Best2.2049E+059.4000E+046.3357E+024.6408E+02
Avg2.7225E+051.2597E+051.6236E+031.1585E+03
Std2.5224E+041.5426E+049.7497E+028.4385E+02
Rank4321
F3Best5.8067E+031.6677E+034.0004E+024.0000E+02
Avg9.0835E+032.2173E+034.5896E+024.2287E+02
Std2.0074E+033.0261E+023.7001E+013.1363E+01
Rank4321
F4Best1.3255E+031.0874E+039.0196E+026.6317E+02
Avg1.4353E+031.1833E+031.0216E+037.4907E+02
Std5.5471E+015.0708E+016.4094E+014.1101E+01
Rank4321
F5Best6.4482E+026.2221E+026.2996E+026.1613E+02
Avg6.5708E+026.2805E+026.4170E+026.2022E+02
Std7.4802E+003.1013E+005.7337E+002.3057E+00
Rank4231
F6Best2.5144E+031.4108E+031.9872E+039.5490E+02
Avg2.9404E+031.5382E+032.4639E+031.0910E+03
Std2.6348E+025.9182E+012.6229E+025.8696E+01
Rank4231
F7Best1.6161E+031.3901E+031.2189E+039.9800E+02
Avg1.7576E+031.4921E+031.3435E+031.0656E+03
Std7.2348E+014.8800E+017.0144E+014.0584E+01
Rank4321
F8Best1.8162E+045.6359E+038.2256E+032.8378E+03
Avg3.1021E+047.6800E+031.4600E+043.8257E+03
Std6.4737E+031.3079E+032.7271E+036.9294E+02
Rank4231
F9Best2.3380E+042.2395E+041.1988E+041.2538E+04
Avg2.5570E+042.5615E+041.5624E+041.5526E+04
Std1.3376E+031.2410E+031.4279E+031.3225E+03
Rank3421
F10Best2.2241E+042.7723E+031.8273E+031.7001E+03
Avg3.3267E+043.6379E+032.3284E+031.9874E+03
Std8.0844E+034.3123E+025.5257E+021.4249E+02
Rank4321
F11Best6.4645E+096.1661E+081.1950E+046.7055E+03
Avg8.8429E+099.3083E+081.0638E+053.7651E+04
Std1.7410E+092.2250E+081.2780E+053.7894E+04
Rank4321
F12Best4.6843E+071.4017E+066.1158E+035.3695E+03
Avg2.1165E+084.4236E+061.3597E+047.7289E+03
Std1.4035E+081.4865E+066.8629E+032.0210E+03
Rank4321
F13Best3.6439E+052.3829E+033.4672E+031.7030E+03
Avg2.0695E+062.8524E+034.6736E+041.9115E+03
Std9.5729E+053.6145E+023.6214E+041.2877E+02
Rank4231
F14Best5.3399E+057.7685E+042.0382E+031.7502E+03
Avg1.0002E+071.4196E+058.7070E+034.6081E+03
Std2.0410E+075.7193E+049.2621E+034.2235E+03
Rank4321
F15Best5.9416E+035.6567E+033.9399E+033.5791E+03
Avg7.6010E+036.9640E+035.2599E+034.8452E+03
Std8.4885E+026.3314E+026.7337E+026.3060E+02
Rank4321
F16Best4.5737E+034.4959E+034.2514E+033.9440E+03
Avg6.0029E+035.1982E+035.5174E+034.6359E+03
Std6.1800E+024.6472E+026.2685E+024.2266E+02
Rank4231
F17Best1.6493E+061.3300E+041.2225E+042.1322E+03
Avg4.0486E+062.2821E+045.0673E+044.1820E+03
Std1.4349E+065.7478E+032.8364E+041.4149E+03
Rank4231
F18Best4.6066E+063.4270E+052.6514E+032.5730E+03
Avg2.7036E+078.2545E+057.8382E+036.7707E+03
Std1.3367E+075.1750E+055.6383E+033.9798E+03
Rank4321
F19Best4.8187E+034.8372E+034.3413E+033.8702E+03
Avg5.8825E+035.4780E+035.2733E+034.8614E+03
Std5.1798E+023.9441E+025.0945E+024.0840E+02
Rank4321
F20Best3.2207E+032.9083E+032.7709E+032.4894E+03
Avg3.3150E+033.0226E+032.9023E+032.5887E+03
Std5.7105E+015.4054E+017.1008E+014.4524E+01
Rank4321
F21Best2.5472E+042.5705E+041.6063E+041.5187E+04
Avg2.7532E+042.7960E+041.7943E+041.7757E+04
Std1.3447E+031.0384E+031.2775E+031.3806E+03
Rank3421
F22Best3.7979E+033.5175E+033.4127E+033.1471E+03
Avg3.9378E+033.6305E+033.5497E+033.2389E+03
Std8.7157E+016.1277E+018.5468E+015.7527E+01
Rank4321
F23Best4.4315E+034.0482E+033.9662E+033.6283E+03
Avg4.6327E+034.2661E+034.2036E+033.8502E+03
Std1.2860E+021.0030E+021.2706E+029.6198E+01
Rank4321
F24Best7.1903E+034.2770E+033.1062E+033.1056E+03
Avg1.0068E+044.6653E+033.2434E+033.2137E+03
Std1.3363E+032.3893E+026.5652E+015.8221E+01
Rank4321
F25Best1.5960E+041.2438E+041.2237E+048.3505E+03
Avg1.9351E+041.3899E+041.5214E+049.7972E+03
Std1.5640E+035.7689E+021.5245E+035.9085E+02
Rank4231
F26Best3.8458E+033.6632E+033.2000E+033.2000E+03
Avg4.0876E+033.7997E+033.5117E+033.5255E+03
Std1.2576E+027.1043E+012.3827E+021.1163E+02
Rank4312
F27Best9.3188E+034.0891E+033.2618E+033.2344E+03
Avg1.4892E+044.8212E+033.2962E+033.2951E+03
Std3.6113E+034.5144E+021.2897E+011.7467E+01
Rank4321
F28Best7.8634E+036.7059E+036.1036E+034.8663E+03
Avg9.2607E+037.5913E+036.9328E+035.8272E+03
Std7.2004E+024.9423E+025.2131E+024.6625E+02
Rank4321
F29Best5.6716E+077.5145E+064.2342E+033.9250E+03
Avg1.7473E+081.7235E+079.2773E+035.5812E+03
Std1.0212E+087.7226E+064.4851E+031.3954E+03
Rank4321
Table A9. Experimental results of ERBMO and competing algorithms (D = 10).
Table A9. Experimental results of ERBMO and competing algorithms (D = 10).
No.IndexERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAEPSCACFOACFOA
F1Min1.0000E+028.7626E+039.9849E+039.6795E+061.8422E+031.0166E+051.4641E+021.6826E+072.7342E+028.0087E+066.8101E+05
Avg1.0004E+023.4021E+043.3073E+043.1200E+075.0537E+045.9250E+052.6645E+031.5933E+082.6356E+031.5354E+082.9322E+06
Std2.4024E−011.8702E+041.4866E+041.3280E+071.0192E+055.4654E+052.9650E+031.5054E+082.9658E+031.7581E+082.2236E+06
Rank1549673112108
F2Min3.0000E+026.1794E+023.0000E+026.1555E+023.4388E+026.5273E+023.1987E+025.9274E+028.2691E+027.0110E+028.2010E+02
Avg3.0000E+021.1874E+033.0104E+021.3116E+031.1183E+031.3868E+031.1140E+032.2425E+031.6012E+034.3447E+031.8638E+03
Std9.3142E−093.3857E+023.2456E+005.2871E+025.4262E+027.0350E+021.1726E+031.6145E+035.3491E+022.2826E+037.8426E+02
Rank1526473108119
F3Min4.0000E+024.0577E+024.0326E+024.0675E+024.0264E+024.0078E+024.0588E+024.0807E+024.0002E+024.0692E+024.0398E+02
Avg4.0000E+024.0631E+024.0417E+024.0861E+024.0715E+024.1054E+024.0901E+024.2362E+024.0567E+024.2631E+024.0690E+02
Std1.7662E−122.7777E−014.5597E−015.6142E−011.9867E+001.6186E+011.0263E+011.5239E+011.8633E+002.1077E+018.9873E−01
Rank1427698103115
F4Min5.0298E+025.1036E+025.2017E+025.1622E+025.0199E+025.1071E+025.0001E+025.0941E+025.0707E+025.1804E+025.1004E+02
Avg5.1078E+025.2910E+025.2756E+025.3877E+025.1556E+025.2844E+025.0970E+025.2298E+025.2321E+025.3464E+025.2311E+02
Std5.6951E+006.4744E+004.4897E+008.3720E+006.5061E+008.5895E+007.2428E+008.5082E+007.8352E+001.0360E+017.0930E+00
Rank2971138146105
F5Min6.0002E+026.0013E+026.0046E+026.0274E+026.0004E+026.0068E+026.0000E+026.0587E+026.0002E+026.0639E+026.0070E+02
Avg6.0017E+026.0023E+026.0107E+026.0397E+026.0051E+026.0168E+026.0001E+026.1542E+026.0011E+026.1371E+026.0176E+02
Std1.0257E−016.2402E−022.7348E−018.0155E−015.0704E−016.8327E−011.9164E−024.9757E+001.5621E−015.8246E+008.1023E−01
Rank3469571112108
F6Min7.1072E+027.3282E+027.3000E+027.4410E+027.1762E+027.3438E+027.1455E+027.2014E+027.2074E+027.2200E+027.2592E+02
Avg7.1951E+027.4136E+027.4336E+027.5677E+027.2629E+027.4684E+027.1961E+027.3484E+027.4311E+027.4416E+027.3887E+02
Std4.6670E+004.6647E+006.9261E+007.4088E+006.7336E+006.1477E+003.7103E+008.9816E+009.1558E+001.2796E+016.4404E+00
Rank1681131024795
F7Min8.0398E+028.1638E+028.1149E+028.1902E+028.0697E+028.1031E+028.0298E+028.0924E+028.0733E+028.1105E+028.1176E+02
Avg8.1104E+028.2786E+028.2885E+028.3091E+028.1651E+028.2149E+028.1019E+028.1831E+028.2567E+028.2810E+028.2153E+02
Std4.4138E+005.6623E+006.5405E+007.8644E+006.4412E+007.2380E+004.8627E+005.2511E+008.8941E+007.5282E+004.9614E+00
Rank2810113514796
F8Min9.0000E+029.0001E+029.0006E+029.0248E+029.0003E+029.0015E+029.0000E+029.0768E+029.0000E+029.1249E+029.0034E+02
Avg9.0004E+029.0005E+029.0053E+029.0570E+029.0369E+029.0076E+029.0024E+029.5988E+029.0004E+021.0155E+039.0255E+02
Std9.1327E−022.7097E−023.5611E−012.8828E+005.8632E+004.4637E−016.2761E−013.2584E+011.0963E−017.3932E+013.0046E+00
Rank2359864101117
F9Min1.1584E+031.9643E+031.6722E+031.4834E+031.0565E+031.8615E+031.0517E+031.3750E+031.6520E+031.3799E+031.7835E+03
Avg1.6804E+032.5550E+032.1581E+032.1611E+031.5137E+032.5106E+031.6433E+031.9486E+032.0742E+032.0117E+032.2085E+03
Std2.1666E+022.0079E+022.1576E+023.6027E+022.2576E+022.4094E+022.8742E+022.6743E+022.3988E+022.9047E+021.9841E+02
Rank3117811024659
F10Min1.1000E+031.1086E+031.1058E+031.1197E+031.1050E+031.1069E+031.1021E+031.1131E+031.1073E+031.1128E+031.1094E+03
Avg1.1023E+031.1128E+031.1116E+031.1321E+031.1204E+031.1142E+031.1133E+031.1785E+031.1137E+031.1897E+031.1192E+03
Std1.5750E+002.1400E+003.1231E+006.9992E+001.0561E+013.4890E+004.0840E+017.4731E+014.4698E+004.5982E+017.3135E+00
Rank1329864105117
F11Min1.2002E+034.2460E+043.0674E+031.2892E+051.8607E+042.6696E+042.8828E+038.9757E+038.4867E+037.5710E+031.0665E+05
Avg1.3987E+031.1048E+057.3378E+031.5774E+061.2975E+064.0815E+052.6234E+049.1623E+051.2733E+054.9252E+065.2996E+05
Std1.6017E+025.0410E+042.6726E+031.8860E+061.6991E+067.0829E+052.0969E+049.0534E+051.6888E+054.6075E+063.2333E+05
Rank1421096385117
F12Min1.3010E+031.7230E+031.3274E+032.8930E+031.5361E+031.4212E+031.3157E+031.7980E+031.4170E+031.9795E+031.9112E+03
Avg1.3070E+033.1968E+031.3639E+031.5743E+049.9025E+031.5837E+031.2068E+047.7430E+033.6232E+037.7778E+033.9235E+03
Std4.0517E+009.2401E+021.8358E+011.1539E+048.9077E+031.4613E+021.0116E+045.7220E+031.4070E+036.3959E+031.5274E+03
Rank1421193107586
F13Min1.4015E+031.4526E+031.4237E+031.4826E+031.4249E+031.4242E+031.4126E+031.4656E+031.4452E+031.4505E+031.4394E+03
Avg1.4133E+031.4911E+031.4304E+032.1885E+031.7619E+031.4308E+033.5884E+031.5289E+031.4681E+031.4854E+031.4814E+03
Std9.1865E+001.7371E+013.5543E+001.0068E+036.1621E+022.8454E+003.8576E+034.1378E+011.4277E+012.9436E+011.5280E+01
Rank1721093118465
F14Min1.5001E+031.5703E+031.5057E+031.7288E+031.5101E+031.5091E+031.5229E+031.6158E+031.5789E+031.5841E+031.5966E+03
Avg1.5027E+031.7683E+031.5099E+032.4891E+031.6644E+031.5194E+035.7867E+032.2352E+031.7732E+031.7702E+031.7654E+03
Std5.5833E+001.3618E+022.8875E+009.4365E+021.6689E+026.6691E+006.5779E+034.3312E+021.7020E+022.4225E+021.4698E+02
Rank1621043119875
F15Min1.6012E+031.6396E+031.6287E+031.6133E+031.6020E+031.6092E+031.6014E+031.6113E+031.6063E+031.6052E+031.6114E+03
Avg1.6106E+031.7118E+031.6598E+031.6768E+031.6519E+031.6847E+031.6654E+031.7289E+031.6726E+031.7772E+031.6467E+03
Std2.3817E+014.5827E+011.8899E+015.7653E+017.2970E+017.5834E+018.0531E+011.0419E+026.6855E+011.0634E+022.9222E+01
Rank1947385106112
F16Min1.7212E+031.7588E+031.7421E+031.7482E+031.7078E+031.7339E+031.7037E+031.7355E+031.7402E+031.7315E+031.7307E+03
Avg1.7419E+031.7873E+031.7616E+031.7684E+031.7313E+031.7617E+031.7439E+031.7616E+031.7607E+031.7557E+031.7614E+03
Std1.5076E+011.3806E+011.0023E+011.5261E+011.2574E+011.5928E+013.7500E+012.0662E+011.3132E+011.5808E+011.4986E+01
Rank2117101938546
F17Min1.8011E+032.6144E+031.8466E+036.5864E+031.9105E+031.8677E+031.9491E+032.4556E+032.2688E+032.0135E+032.8614E+03
Avg1.8171E+036.3476E+031.8809E+033.8657E+041.8594E+042.1602E+032.1340E+041.4286E+048.7029E+031.9578E+049.8111E+03
Std7.8714E+002.3316E+033.6423E+011.8677E+041.5521E+044.1721E+021.6781E+041.1927E+046.4955E+031.3699E+046.2814E+03
Rank1421183107596
F18Min1.9012E+031.9428E+031.9051E+031.9503E+031.9073E+031.9058E+031.9056E+031.9267E+031.9228E+031.9170E+031.9493E+03
Avg1.9028E+032.0887E+031.9078E+038.4059E+032.4790E+031.9091E+036.7428E+032.5352E+032.3559E+032.0247E+032.0832E+03
Std9.6429E−011.1742E+021.2892E+006.2283E+038.2008E+021.9800E+006.5177E+036.9147E+021.5190E+038.4778E+011.0993E+02
Rank1621183109745
F19Min2.0209E+032.0415E+032.0343E+032.0311E+032.0186E+032.0396E+032.0000E+032.0268E+032.0280E+032.0310E+032.0279E+03
Avg2.0427E+032.0790E+032.0510E+032.0671E+032.0247E+032.0694E+032.0583E+032.0740E+032.0562E+032.0817E+032.0569E+03
Std1.7319E+011.3076E+019.4392E+001.7398E+015.2007E+001.5124E+015.5260E+013.3914E+012.0683E+012.8728E+011.5020E+01
Rank2103718694115
F20Min2.2000E+032.2175E+032.2023E+032.2029E+032.2020E+032.2010E+032.2026E+032.2038E+032.2014E+032.2049E+032.2023E+03
Avg2.2458E+032.2991E+032.2382E+032.2697E+032.2421E+032.2097E+032.2803E+032.2307E+032.2730E+032.2136E+032.2195E+03
Std5.7394E+014.6206E+014.4731E+016.5891E+014.7620E+012.2804E+015.0668E+013.2587E+016.1275E+017.3464E+003.5468E+01
Rank7115861104923
F21Min2.2000E+032.3024E+032.3043E+032.2325E+032.2206E+032.2376E+032.2116E+032.2400E+032.2114E+032.2691E+032.2140E+03
Avg2.2979E+032.3048E+032.3061E+032.3041E+032.2905E+032.3058E+032.2958E+032.3181E+032.2972E+032.3225E+032.2886E+03
Std1.8491E+011.1752E+009.6956E−012.4091E+012.8245E+011.2993E+012.1484E+011.9882E+012.1253E+012.0735E+013.4296E+01
Rank5796283104111
F22Min2.6044E+032.6136E+032.6154E+032.6228E+032.6083E+032.6104E+032.6063E+032.6154E+032.6116E+032.6130E+032.6097E+03
Avg2.6160E+032.6265E+032.6255E+032.6383E+032.6171E+032.6235E+032.6163E+032.6311E+032.6244E+032.6330E+032.6215E+03
Std7.5567E+006.3421E+005.2719E+006.3690E+006.2089E+008.2103E+007.0100E+009.4801E+008.8440E+001.2392E+017.2683E+00
Rank1871135296104
F23Min2.5000E+032.6734E+032.5575E+032.5073E+032.5001E+032.5037E+032.5006E+032.5248E+032.5025E+032.5290E+032.5193E+03
Avg2.7089E+032.7493E+032.7326E+032.7307E+032.6877E+032.6731E+032.7362E+032.6738E+032.7357E+032.6199E+032.6153E+03
Std8.3482E+011.6311E+015.5786E+018.9468E+011.0520E+021.1540E+024.5155E+018.9026E+016.2530E+018.1470E+017.9714E+01
Rank6118753104921
F24Min2.8977E+032.8994E+032.8986E+032.9083E+032.8980E+032.8995E+032.8985E+032.9064E+032.8977E+032.9097E+032.8995E+03
Avg2.9088E+032.9447E+032.9323E+032.9432E+032.9282E+032.9262E+032.9285E+032.9473E+032.9234E+032.9526E+032.9195E+03
Std1.9632E+018.6282E+002.0075E+011.3716E+012.2284E+012.2696E+012.3724E+011.5333E+012.3382E+011.6514E+011.9585E+01
Rank1978546103112
F25Min2.9000E+032.9004E+032.9004E+032.8881E+032.9002E+032.9037E+032.9000E+032.9385E+032.8003E+032.9156E+032.9071E+03
Avg2.9028E+032.9014E+032.9007E+032.9521E+032.9399E+032.9172E+032.9821E+033.0373E+032.9253E+033.0268E+032.9286E+03
Std1.5377E+019.0652E−012.4032E−012.2809E+013.1014E+011.3031E+012.1078E+025.9112E+015.0556E+015.3244E+011.8238E+01
Rank3218749115106
F26Min3.0884E+033.0915E+033.0898E+033.0927E+033.0897E+033.0931E+033.0890E+033.0913E+033.0893E+033.0930E+033.0901E+03
Avg3.0912E+033.0948E+033.0909E+033.0957E+033.0920E+033.0998E+033.0918E+033.0986E+033.0919E+033.0986E+033.0935E+03
Std5.4627E+001.2491E+007.8545E−011.7629E+001.8831E+003.0894E+002.7522E+004.1809E+002.3787E+003.7061E+002.2323E+00
Rank2718511310496
F27Min3.1000E+033.1141E+033.1020E+033.1723E+033.1001E+033.1093E+033.1705E+033.1216E+033.1115E+033.1887E+033.1285E+03
Avg3.1355E+033.2379E+033.1425E+033.2798E+033.2413E+033.1902E+033.3447E+033.2463E+033.2769E+033.2546E+033.1728E+03
Std6.4819E+011.0768E+027.5876E+011.0380E+021.0376E+028.9554E+019.2866E+016.1892E+011.1831E+026.2508E+011.3378E+01
Rank1521064117983
F28Min3.1362E+033.1864E+033.1593E+033.1724E+033.1461E+033.1777E+033.1360E+033.1572E+033.1661E+033.1517E+033.1585E+03
Avg3.1604E+033.2163E+033.2159E+033.2314E+033.1824E+033.2204E+033.1997E+033.2111E+033.2099E+033.2075E+033.2017E+03
Std2.0189E+011.6112E+011.8789E+013.9051E+012.7484E+012.2763E+014.8544E+012.5878E+012.7987E+014.0325E+011.9602E+01
Rank1981121037654
F29Min3.2377E+035.3278E+043.6320E+031.8046E+043.9008E+031.4733E+045.4352E+034.7797E+036.6980E+034.6003E+031.1901E+04
Avg3.3417E+033.8369E+056.6092E+045.7088E+054.0480E+052.8430E+055.7058E+053.5802E+055.0761E+053.7757E+051.3663E+05
Std7.2574E+013.1207E+052.1741E+056.7634E+054.3521E+055.2254E+054.3337E+054.9146E+053.0622E+055.0902E+051.1289E+05
Rank1721184105963
Table A10. Experimental results of ERBMO and competing algorithms (D = 30).
Table A10. Experimental results of ERBMO and competing algorithms (D = 30).
No.IndexERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAEPSCACFOACFOA
F1Min1.0000E+021.3641E+071.2549E+063.0437E+091.3449E+084.7464E+071.3915E+066.3210E+092.3236E+053.3003E+091.8358E+08
Avg1.0008E+022.1465E+072.4187E+064.2792E+094.3181E+081.8419E+085.1654E+061.0753E+101.2973E+068.9827E+094.4113E+08
Std4.3531E−015.7086E+066.7761E+057.6752E+082.1443E+087.8950E+074.5185E+062.1835E+098.7728E+052.6231E+091.5860E+08
Rank1539764112108
F2Min3.0000E+024.3734E+042.5595E+035.4658E+042.4045E+044.4551E+043.1258E+043.2880E+042.4934E+043.8200E+043.6009E+04
Avg3.0000E+026.0787E+041.5729E+046.4927E+043.4548E+046.5759E+047.5324E+044.6434E+044.7659E+045.8552E+045.6417E+04
Std6.8726E−061.0421E+042.6154E+045.8617E+036.1625E+031.2661E+042.1161E+047.7863E+039.6956E+031.2003E+041.1636E+04
Rank1829310114576
F3Min4.0000E+025.2246E+024.8867E+026.6055E+025.2710E+025.2702E+024.9007E+021.2041E+034.7700E+027.7686E+025.4313E+02
Avg4.0133E+025.3360E+024.9214E+028.2610E+025.8607E+025.8802E+025.2096E+022.0742E+035.1890E+021.1599E+035.9956E+02
Std1.9114E+006.5803E+002.4529E+007.8458E+013.2688E+013.5989E+011.9944E+015.0388E+022.4009E+013.2834E+022.5866E+01
Rank1529674113108
F4Min5.2885E+026.6413E+026.6459E+027.2330E+025.7203E+026.4935E+025.2185E+026.6545E+025.9916E+026.5063E+026.1688E+02
Avg5.5562E+026.8507E+026.9042E+027.5047E+026.1346E+026.9203E+025.4522E+027.1110E+026.6830E+027.1830E+026.4985E+02
Std1.2777E+019.6851E+001.0928E+011.4522E+012.1790E+012.3444E+011.1546E+012.8542E+013.3376E+013.4260E+012.0545E+01
Rank2671138195104
F5Min6.0239E+026.0206E+026.0183E+026.2326E+026.0353E+026.1119E+026.0051E+026.3563E+026.0203E+026.3336E+026.0641E+02
Avg6.0441E+026.0310E+026.0257E+026.2906E+026.0877E+026.1756E+026.0131E+026.4614E+026.0530E+026.4547E+026.1127E+02
Std1.3659E+006.9252E−013.6010E−013.3637E+002.8469E+004.4747E+005.5821E−014.7282E+002.4850E+006.8662E+002.2402E+00
Rank4329681115107
F6Min7.5036E+028.8210E+029.0597E+021.0028E+038.0651E+029.1096E+027.6401E+029.5148E+028.6526E+029.3472E+028.8282E+02
Avg7.7545E+029.1994E+029.2905E+021.0396E+038.5239E+029.5723E+027.8975E+021.0171E+039.3307E+021.0434E+039.1928E+02
Std1.5416E+011.4103E+011.1073E+012.3158E+012.5430E+011.9953E+011.8543E+013.5760E+012.6426E+015.7607E+011.9565E+01
Rank1561038297114
F7Min8.2487E+029.6529E+029.6642E+021.0197E+038.7029E+029.3578E+028.3021E+029.1487E+028.8725E+029.4385E+028.9651E+02
Avg8.5097E+029.8695E+029.9423E+021.0365E+038.9917E+029.7431E+028.4886E+029.8025E+029.6447E+021.0016E+039.4143E+02
Std1.4867E+018.8385E+001.0205E+011.2319E+011.6416E+012.4877E+011.2963E+012.6944E+013.1397E+012.9829E+011.9587E+01
Rank2891136175104
F8Min9.0836E+029.1032E+029.0828E+022.1061E+031.1255E+031.1276E+039.0628E+023.0914E+039.1427E+022.4518E+031.0615E+03
Avg9.3898E+029.2673E+029.1330E+022.8442E+031.9059E+031.5107E+039.4250E+024.0821E+031.0938E+034.3583E+031.3337E+03
Std2.6321E+011.0321E+013.6323E+004.9130E+025.9411E+023.7612E+022.8864E+017.7461E+021.2889E+028.9237E+021.7523E+02
Rank3219874105116
F9Min3.5113E+037.7933E+037.5691E+037.6160E+033.9934E+038.0431E+033.2367E+034.9824E+036.1614E+035.1172E+036.9196E+03
Avg4.8199E+038.4282E+038.3696E+038.4291E+035.0527E+038.5582E+034.6454E+036.5559E+037.9751E+036.0609E+037.8270E+03
Std6.8165E+023.0452E+023.3899E+023.4244E+025.6653E+022.6010E+025.3147E+027.5312E+027.4707E+025.2211E+023.8341E+02
Rank2981031115746
F10Min1.1249E+031.4121E+031.2012E+031.6507E+031.2344E+031.3498E+031.1442E+031.4945E+031.4446E+031.6631E+031.3824E+03
Avg1.1372E+031.4903E+031.2453E+031.9046E+031.3641E+031.4364E+031.2350E+032.7056E+031.5258E+032.6051E+031.5747E+03
Std1.0465E+014.9036E+012.2048E+011.5085E+027.1431E+015.5688E+014.7289E+018.6701E+025.9850E+015.7256E+028.3923E+01
Rank1639452117108
F11Min1.5608E+031.8991E+063.0841E+051.5343E+084.8347E+063.9818E+061.6005E+051.1979E+081.6348E+058.0616E+073.9584E+06
Avg2.5382E+033.4631E+065.7019E+054.1529E+082.2296E+071.2718E+071.6822E+065.6387E+082.0279E+064.2894E+081.5204E+07
Std4.8067E+027.3166E+051.4804E+051.3002E+081.8368E+077.5761E+061.5979E+062.8971E+081.4010E+063.2555E+089.4590E+06
Rank1529863114107
F12Min1.9505E+033.9817E+045.4506E+044.1257E+071.5205E+046.1968E+041.5730E+031.3983E+061.3684E+049.3125E+051.7260E+05
Avg3.7281E+035.6006E+049.7889E+041.2264E+088.7467E+041.4509E+052.0469E+045.3866E+074.5182E+043.1211E+075.8321E+05
Std9.3293E+021.0506E+042.8594E+045.0355E+075.8701E+046.6706E+042.2711E+046.5712E+072.7982E+045.5791E+074.5680E+05
Rank1461157210398
F13Min1.4330E+035.6331E+031.6792E+033.0032E+045.8621E+035.7658E+032.8589E+033.2084E+033.3277E+032.2130E+035.1521E+03
Avg1.4499E+032.0205E+041.8412E+031.6128E+059.7674E+043.5155E+046.5903E+045.0531E+042.2545E+047.3427E+042.2429E+04
Std1.1778E+018.7941E+031.1127E+021.1436E+051.0409E+051.9411E+048.3860E+045.5591E+041.6803E+046.6578E+041.1634E+04
Rank1321110687594
F14Min1.5347E+031.3238E+047.7559E+034.3698E+055.9460E+037.4198E+031.5905E+031.7199E+049.7630E+031.2169E+041.6868E+04
Avg1.6192E+031.8814E+041.4087E+042.5043E+061.8714E+042.5508E+048.5890E+032.9073E+052.5495E+043.1665E+051.0508E+05
Std4.7566E+014.3462E+034.4625E+032.0087E+061.4466E+041.0728E+041.0765E+044.0114E+051.2942E+049.3085E+058.0962E+04
Rank1531147296108
F15Min1.6147E+032.9066E+032.6247E+032.9538E+031.8899E+032.2876E+031.7921E+032.2168E+032.0615E+032.2938E+032.4269E+03
Avg2.1752E+033.2710E+033.1977E+033.5054E+032.4699E+033.0809E+032.2302E+032.8143E+032.9939E+033.1535E+032.9028E+03
Std3.0958E+021.7429E+021.9072E+022.0213E+022.4386E+023.4831E+023.3466E+023.2440E+023.3273E+023.7406E+022.1375E+02
Rank1109113724685
F16Min1.7818E+032.1089E+032.0173E+031.9319E+031.7751E+031.8330E+031.7478E+031.8697E+031.9244E+031.9947E+031.8453E+03
Avg2.0087E+032.3354E+032.2976E+032.2587E+031.9621E+032.0275E+032.0296E+032.2730E+032.0947E+032.3222E+032.0131E+03
Std1.4009E+027.7385E+011.3091E+021.9275E+021.1107E+021.1755E+022.1783E+021.9770E+021.1047E+021.8322E+021.2107E+02
Rank2119714586103
F17Min1.8249E+031.3064E+058.8787E+034.3005E+055.8233E+042.1953E+059.1897E+041.0060E+059.0439E+049.2361E+041.6583E+05
Avg1.8878E+033.0806E+052.0571E+042.3060E+065.4857E+058.8079E+051.4805E+067.2876E+054.7512E+057.8722E+056.4520E+05
Std3.5274E+011.0697E+055.5701E+031.4587E+063.5196E+055.4780E+051.4522E+066.3727E+053.5012E+056.1225E+055.0280E+05
Rank1321159107486
F18Min1.9321E+031.3676E+043.5507E+031.8843E+063.7821E+031.1654E+041.9173E+031.1807E+043.3412E+035.9999E+049.6290E+03
Avg1.9642E+032.8839E+047.7444E+038.5866E+066.7758E+043.3063E+049.5838E+031.5210E+061.3325E+044.1182E+062.7313E+05
Std2.0407E+011.2419E+042.0437E+034.6899E+066.4094E+041.7914E+041.1145E+042.8794E+061.0701E+044.2039E+062.2920E+05
Rank1521176394108
F19Min2.1543E+032.4857E+032.4772E+032.3310E+032.0863E+032.3536E+032.0363E+032.2305E+032.2421E+032.2264E+032.2387E+03
Avg2.3544E+032.7345E+032.7750E+032.5567E+032.2938E+032.6591E+032.3787E+032.4648E+032.6116E+032.5876E+032.4340E+03
Std1.2178E+028.9035E+011.2188E+021.6518E+021.2441E+021.5048E+021.8710E+021.2963E+021.8062E+021.1666E+021.0789E+02
Rank2101161935874
F20Min2.3312E+032.4584E+032.4579E+032.4930E+032.3597E+032.4435E+032.3303E+032.4146E+032.3876E+032.4381E+032.4104E+03
Avg2.3497E+032.4798E+032.4824E+032.5287E+032.3911E+032.4825E+032.3474E+032.4884E+032.4619E+032.5073E+032.4356E+03
Std1.5804E+011.1522E+011.2025E+011.2781E+011.8528E+012.2069E+011.2869E+012.8223E+013.2174E+012.9620E+011.5466E+01
Rank2671138195104
F21Min2.3000E+032.3222E+032.3151E+032.6613E+032.3704E+032.3563E+032.3145E+033.2506E+032.3062E+033.0211E+032.3534E+03
Avg2.4347E+032.3276E+032.3185E+032.8569E+032.4331E+032.3729E+033.9983E+033.8448E+032.5664E+033.6388E+032.4134E+03
Std7.3108E+023.8123E+001.4123E+001.0238E+023.5950E+011.2519E+011.7631E+034.1746E+021.3540E+033.7450E+022.5799E+01
Rank6218531110794
F22Min2.6730E+032.7479E+032.8076E+032.8652E+032.7151E+032.8135E+032.6761E+032.8053E+032.7383E+032.8241E+032.7642E+03
Avg2.7050E+032.8279E+032.8360E+032.9094E+032.7523E+032.8757E+032.6997E+032.9270E+032.8058E+032.9203E+032.7938E+03
Std1.8020E+012.7132E+011.2196E+011.8040E+012.0773E+013.2016E+011.5041E+015.2193E+013.6351E+014.9784E+012.1394E+01
Rank2679381115104
F23Min2.8422E+032.9057E+032.9673E+033.0451E+032.8957E+032.9781E+032.8385E+033.0162E+032.8885E+032.9891E+032.9074E+03
Avg2.8723E+032.9894E+033.0044E+033.0713E+032.9329E+033.0351E+032.8700E+033.0809E+032.9547E+033.0874E+032.9569E+03
Std1.6534E+012.9542E+011.1375E+011.4991E+012.4261E+013.3610E+011.7263E+013.4881E+014.7911E+015.3514E+012.0102E+01
Rank2679381104115
F24Min2.8754E+032.9004E+032.8875E+032.9986E+032.9433E+032.9092E+032.8901E+033.1774E+032.8886E+033.1303E+032.9281E+03
Avg2.8802E+032.9250E+032.8890E+033.0529E+032.9968E+032.9564E+032.9092E+033.2927E+032.9222E+033.2781E+032.9729E+03
Std2.4133E+001.1211E+018.2534E−013.1976E+012.5194E+012.2044E+011.3159E+015.7002E+012.3739E+018.5517E+012.1906E+01
Rank1529863114107
F25Min2.9000E+034.9235E+035.1767E+035.7550E+033.4099E+033.0321E+033.8666E+033.8389E+033.2593E+033.8667E+034.5698E+03
Avg3.9343E+035.3682E+035.4273E+036.2228E+034.3781E+035.1637E+034.1531E+036.4405E+034.9096E+035.6757E+035.0793E+03
Std5.0521E+021.6113E+021.0444E+022.1366E+024.8342E+021.0872E+032.1965E+027.8966E+025.9087E+028.6922E+022.2783E+02
Rank1781036211495
F26Min3.1194E+033.2322E+033.2137E+033.2410E+033.2205E+033.2975E+033.2023E+033.2739E+033.2051E+033.2624E+033.2394E+03
Avg3.1724E+033.2492E+033.2240E+033.2703E+033.2352E+033.3585E+033.2209E+033.3573E+033.2279E+033.3340E+033.2733E+03
Std1.2133E+018.4142E+005.0896E+001.6980E+011.0001E+013.6782E+011.0812E+014.0035E+011.2498E+013.8521E+011.8683E+01
Rank1637511210498
F27Min3.1000E+033.2761E+033.2200E+033.4805E+033.2931E+033.2823E+033.2603E+033.6433E+033.2236E+033.5557E+033.2648E+03
Avg3.1507E+033.2987E+033.2353E+033.5448E+033.3578E+033.3490E+033.2921E+033.9314E+033.2678E+033.8142E+033.3469E+03
Std6.0538E+011.1860E+011.1686E+014.8712E+013.4571E+013.9448E+012.8746E+012.0559E+022.2990E+012.0102E+023.7372E+01
Rank1529874113106
F28Min3.2093E+033.8819E+033.8195E+034.0371E+033.5468E+033.6969E+033.3149E+033.9742E+033.7639E+033.6742E+033.5898E+03
Avg3.6819E+034.1404E+034.0404E+034.4233E+033.7734E+034.0197E+033.7049E+034.4172E+033.9916E+034.1927E+033.9098E+03
Std1.7866E+021.1850E+021.2931E+022.1413E+021.3726E+022.0809E+022.3157E+021.9857E+021.4246E+022.3473E+021.6017E+02
Rank1871136210594
F29Min3.3716E+031.1347E+052.4643E+048.0575E+066.7421E+042.3598E+057.1409E+031.9710E+062.0814E+042.2402E+061.2635E+05
Avg3.8919E+032.6078E+054.3814E+042.4794E+071.2587E+069.9136E+051.6271E+047.1492E+061.2665E+051.7755E+072.3463E+06
Std5.4254E+021.1195E+051.2528E+041.0477E+071.0153E+066.5063E+055.7157E+034.0119E+061.1058E+051.8171E+071.7544E+06
Rank1531176294108
Table A11. Experimental results of ERBMO and competing algorithms (D = 50).
Table A11. Experimental results of ERBMO and competing algorithms (D = 50).
No.IndexERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAEPSCACFOACFOA
F1Min1.0000E+021.8236E+088.6586E+061.2680E+102.3778E+097.5777E+081.0603E+082.1376E+104.1704E+071.6136E+101.7270E+09
Avg1.0061E+022.7227E+081.2702E+071.7084E+105.5197E+091.3227E+093.4295E+083.8500E+101.2502E+082.9296E+103.3787E+09
Std2.6101E+006.1078E+071.8111E+062.2468E+092.0447E+093.4529E+082.1934E+085.3931E+096.0019E+076.4440E+091.0130E+09
Rank1429865113107
F2Min3.0000E+021.0928E+051.8325E+041.0385E+056.7809E+041.1304E+057.8595E+048.4171E+049.2870E+049.0907E+041.0432E+05
Avg3.0192E+021.4294E+054.6201E+041.4107E+059.4995E+041.5037E+051.7696E+051.0622E+051.1617E+051.2611E+051.3473E+05
Std9.9523E+001.6003E+042.7359E+041.4450E+041.5369E+041.9297E+045.1296E+041.4629E+041.1267E+041.9610E+041.7977E+04
Rank1928310114567
F3Min4.0000E+026.8843E+025.5140E+021.5125E+038.0686E+027.8643E+026.0322E+025.0595E+035.8203E+022.0765E+038.4391E+02
Avg4.0574E+027.2376E+026.1607E+022.4138E+031.1410E+039.2463E+026.7570E+026.9198E+036.8196E+024.2923E+039.9964E+02
Std7.5705E+002.0575E+012.1510E+014.3102E+022.5978E+027.1598E+013.3559E+011.0300E+035.9834E+011.6162E+031.1334E+02
Rank1529863114107
F4Min5.5771E+028.4495E+028.2782E+029.4505E+027.1142E+028.0250E+025.9788E+028.4623E+027.1108E+028.8382E+027.7478E+02
Avg6.0361E+028.7932E+028.6858E+029.9748E+027.9725E+028.7977E+026.3386E+029.1669E+028.6003E+029.6717E+028.1865E+02
Std1.8110E+011.3444E+011.4100E+012.4604E+014.8135E+013.2667E+012.0973E+013.3235E+015.9483E+014.1275E+012.9216E+01
Rank1761138295104
F5Min6.0607E+026.0449E+026.0278E+026.3144E+026.1246E+026.2067E+026.0295E+026.5142E+026.0974E+026.4828E+026.1761E+02
Avg6.0972E+026.0629E+026.0314E+026.4408E+026.2037E+026.3233E+026.0503E+026.6419E+026.1713E+026.6142E+026.2241E+02
Std2.2628E+007.9388E−012.8713E−015.4041E+005.3920E+005.7245E+001.3874E+004.7213E+003.2061E+007.3327E+003.0349E+00
Rank4319682115107
F6Min7.8687E+021.1136E+031.0588E+031.3328E+031.0151E+031.1688E+038.6765E+021.2987E+031.0837E+031.3070E+031.0951E+03
Avg8.3890E+021.1537E+031.1200E+031.3990E+031.0773E+031.2524E+039.2777E+021.4329E+031.1923E+031.5399E+031.1631E+03
Std2.4067E+011.8846E+012.0559E+013.0173E+013.9778E+013.7338E+013.9884E+015.1707E+014.1754E+011.0245E+023.5505E+01
Rank1549382107116
F7Min8.5970E+021.1207E+031.1362E+031.2540E+031.0413E+031.1108E+038.8683E+021.1599E+039.9045E+021.1559E+031.0787E+03
Avg8.9724E+021.1799E+031.1687E+031.3065E+031.0967E+031.1823E+039.2346E+021.2392E+031.1647E+031.2646E+031.1293E+03
Std2.0849E+011.9706E+011.0645E+012.4493E+013.5409E+014.0366E+011.9229E+013.4294E+016.5248E+014.9349E+012.7634E+01
Rank1761138295104
F8Min1.1532E+031.1652E+039.2442E+027.2093E+032.8911E+033.2912E+031.0998E+031.0706E+041.7811E+031.0192E+041.9994E+03
Avg1.4005E+031.3122E+039.3858E+021.1264E+048.0266E+037.3626E+031.4455E+031.6311E+044.0613E+031.6320E+044.5035E+03
Std2.2722E+029.7517E+017.8686E+002.2868E+033.1844E+032.0235E+032.1524E+023.8825E+031.3272E+033.4737E+031.5437E+03
Rank3219874105116
F9Min5.4831E+031.3688E+041.3368E+041.2275E+046.9070E+031.3960E+045.0110E+039.1960E+031.2560E+049.8892E+031.2606E+04
Avg7.7795E+031.4609E+041.4741E+041.4345E+048.9908E+031.4745E+047.8802E+031.1606E+041.4592E+041.0980E+041.3648E+04
Std9.3272E+024.7301E+024.9679E+026.0709E+028.5393E+023.9849E+021.0900E+031.1181E+037.2185E+025.8959E+024.9391E+02
Rank1910731125846
F10Min1.1527E+032.4290E+031.3434E+034.3660E+031.6290E+031.7592E+031.3358E+033.6685E+032.6599E+034.1721E+032.4299E+03
Avg1.2128E+033.1285E+031.4086E+036.1266E+032.2397E+032.1448E+031.6567E+037.6786E+034.0830E+037.8565E+033.5748E+03
Std4.1216E+013.6063E+022.8705E+018.9433E+023.9474E+021.9388E+023.0601E+022.7035E+037.7664E+022.1019E+037.5354E+02
Rank1629543108117
F11Min4.1327E+032.4905E+074.3417E+061.7574E+095.2523E+077.1995E+073.1817E+063.9370E+093.8324E+061.2361E+099.7089E+07
Avg1.5975E+043.9748E+077.2307E+064.0642E+092.0270E+081.5353E+081.9194E+078.1728E+092.0224E+074.3781E+092.0590E+08
Std1.1160E+048.3975E+062.1540E+061.1401E+091.0847E+085.4730E+071.1756E+072.3844E+091.3925E+072.1469E+097.8709E+07
Rank1529763114108
F12Min3.0936E+034.3898E+053.2898E+054.9875E+081.0990E+051.1112E+064.2596E+031.5549E+083.3841E+041.2178E+081.7137E+06
Avg5.3383E+038.1050E+055.7119E+059.4631E+082.2065E+063.7811E+061.4201E+041.2695E+097.6559E+048.7903E+086.6443E+06
Std1.2717E+032.2713E+051.6559E+052.7691E+084.7844E+061.9995E+068.6170E+038.6283E+083.9887E+045.8253E+083.0385E+06
Rank1541067211398
F13Min1.4856E+036.7796E+042.9628E+035.0741E+051.7925E+056.9827E+042.4015E+045.2213E+043.5262E+047.3886E+045.9348E+04
Avg1.5356E+031.6892E+055.8202E+031.9762E+066.9782E+053.6615E+053.3279E+059.3149E+051.6890E+051.2316E+062.3437E+05
Std3.0610E+015.5783E+041.6298E+038.0761E+054.3947E+053.1268E+053.5580E+055.8157E+059.7399E+049.3847E+051.3731E+05
Rank1421187693105
F14Min1.6909E+034.9670E+045.9094E+043.6354E+079.3477E+036.1985E+041.7479E+036.8299E+056.5813E+031.1386E+069.0802E+04
Avg1.9934E+039.3808E+041.1287E+058.5701E+074.4796E+041.2517E+058.4787E+036.7106E+072.3140E+042.5612E+073.7724E+05
Std3.7555E+022.9406E+043.3123E+042.9674E+073.3307E+044.1307E+046.5134E+036.5916E+071.1175E+043.3869E+072.7759E+05
Rank1561147210398
F15Min1.9951E+033.7938E+034.2969E+034.5739E+032.4809E+032.8151E+031.8559E+033.2401E+032.8977E+033.7065E+033.1613E+03
Avg2.8382E+034.3544E+034.7648E+035.2951E+033.0935E+033.6244E+033.0155E+034.0829E+033.9700E+034.4020E+033.6451E+03
Std3.2203E+022.5821E+022.1861E+022.9398E+023.6866E+024.7788E+024.3291E+023.7533E+025.4737E+023.5934E+023.0558E+02
Rank1810113427695
F16Min2.1565E+033.2775E+033.4285E+033.3220E+032.4880E+032.4115E+032.0801E+033.2691E+032.5903E+032.7426E+032.4186E+03
Avg2.7520E+033.7283E+033.7512E+034.2021E+032.8738E+033.2034E+032.7036E+033.7880E+033.5534E+033.6387E+033.1272E+03
Std2.9992E+021.9686E+021.4787E+023.0164E+022.2226E+023.5736E+023.5405E+023.3724E+024.0156E+023.9729E+023.0252E+02
Rank2891135110674
F17Min1.9177E+039.7479E+054.2163E+042.3653E+067.6707E+057.2172E+052.0671E+059.6672E+054.0011E+051.0758E+066.1031E+05
Avg2.0624E+031.9789E+067.4142E+041.1661E+073.3200E+063.0333E+063.5099E+065.7399E+062.4948E+065.8972E+062.6888E+06
Std8.4575E+015.3327E+051.6304E+046.4526E+062.4313E+061.7728E+063.0976E+064.3882E+061.4558E+064.1609E+061.5400E+06
Rank1321176894105
F18Min2.0790E+035.2902E+042.7110E+042.8178E+073.4713E+035.5710E+042.0252E+036.1788E+053.3044E+033.1299E+066.4917E+04
Avg3.2304E+031.0164E+055.6441E+047.3144E+073.2233E+051.1908E+051.2873E+043.0769E+071.6478E+043.5702E+077.7785E+05
Std1.9629E+032.1584E+041.5530E+043.0208E+073.3709E+054.1635E+048.9188E+033.8770E+078.5618E+032.4237E+075.3374E+05
Rank1541176293108
F19Min2.6044E+033.4344E+033.4456E+033.2202E+032.5556E+033.0143E+032.3438E+032.7613E+033.1107E+032.8067E+032.7905E+03
Avg3.0635E+033.8898E+033.9864E+033.6955E+032.8707E+033.7924E+032.7739E+033.3609E+033.6991E+033.3072E+033.3510E+03
Std2.1865E+021.5170E+021.6242E+022.5285E+021.8570E+023.0056E+022.8055E+022.5830E+022.8009E+022.2162E+022.3224E+02
Rank3101172916845
F20Min2.3694E+032.6165E+032.6313E+032.7062E+032.4520E+032.6067E+032.3893E+032.6867E+032.5090E+032.7013E+032.5383E+03
Avg2.4097E+032.6660E+032.6714E+032.7780E+032.5230E+032.6694E+032.4210E+032.7595E+032.6277E+032.7777E+032.6081E+03
Std2.4251E+011.8364E+011.6453E+012.4449E+014.1097E+013.6782E+012.1271E+014.2627E+016.1915E+015.0433E+012.8291E+01
Rank1681137295104
F21Min6.8831E+035.8281E+035.9983E+034.2239E+033.4985E+032.6894E+037.7050E+039.1647E+031.3807E+047.1087E+034.8876E+03
Avg9.2190E+031.5880E+041.5848E+048.9031E+031.0578E+041.0629E+049.4253E+031.2757E+041.5871E+041.1955E+041.4565E+04
Std9.0983E+021.9842E+032.0404E+035.6226E+031.4766E+035.7369E+037.6808E+021.2737E+038.6224E+022.2077E+032.3184E+03
Rank2119145371068
F22Min2.7956E+032.9938E+033.0519E+033.1860E+032.9243E+033.1253E+032.8078E+033.2427E+032.9291E+033.2391E+032.9961E+03
Avg2.8426E+033.1059E+033.0961E+033.2669E+032.9799E+033.2512E+032.8577E+033.3701E+033.0800E+033.3488E+033.0649E+03
Std3.0601E+012.8390E+011.6622E+012.9369E+013.1614E+016.0502E+012.0247E+017.5236E+015.6817E+017.6936E+013.3763E+01
Rank1769382115104
F23Min2.9756E+033.1426E+033.2082E+033.3530E+033.0446E+033.3360E+032.9925E+033.3249E+033.0532E+033.3275E+033.1277E+03
Avg3.0240E+033.2304E+033.2578E+033.4060E+033.1439E+033.4343E+033.0206E+033.5210E+033.2266E+033.5365E+033.2037E+03
Std2.6631E+013.6795E+011.4930E+012.6397E+014.5616E+015.3958E+011.9096E+018.5592E+016.9686E+019.4501E+012.9246E+01
Rank2678391105114
F24Min2.9312E+033.1595E+033.0341E+034.1211E+033.4182E+033.2402E+033.0990E+034.8272E+033.0999E+034.8465E+033.2955E+03
Avg2.9591E+033.2100E+033.0495E+034.4592E+033.6402E+033.3830E+033.1635E+036.6238E+033.1859E+036.1537E+033.5107E+03
Std2.5971E+012.3759E+015.9714E+001.8557E+021.6559E+029.1183E+014.0847E+016.3731E+025.6779E+011.0040E+031.4307E+02
Rank1529863114107
F25Min4.5226E+036.5201E+036.9350E+038.2376E+034.4811E+034.3150E+034.4772E+031.0172E+044.4408E+037.0541E+036.3987E+03
Avg4.9901E+037.4808E+037.2078E+039.2391E+035.5138E+037.3174E+035.0619E+031.2076E+046.9818E+039.4360E+037.0269E+03
Std2.5223E+022.4238E+021.4525E+023.5022E+026.4256E+021.9064E+032.8763E+028.1218E+029.0721E+021.0625E+033.3182E+02
Rank1869372114105
F26Min3.1248E+033.4402E+033.2584E+033.5521E+033.4212E+033.8648E+033.3103E+033.7015E+033.3133E+033.6698E+033.5101E+03
Avg3.2457E+033.5300E+033.3007E+033.6680E+033.5465E+034.0767E+033.4290E+034.0888E+033.4596E+033.9199E+033.6518E+03
Std7.7985E+014.4535E+013.2904E+016.2281E+017.5861E+011.4808E+028.1444E+011.6802E+021.0015E+021.9569E+026.9491E+01
Rank1528610311497
F27Min3.2393E+033.4696E+033.2942E+034.1266E+033.7629E+033.5682E+033.4476E+035.4391E+033.3948E+034.6914E+033.7207E+03
Avg3.2776E+033.5633E+033.3227E+034.7011E+034.2981E+033.8730E+033.6060E+036.6486E+033.5263E+035.9314E+034.1410E+03
Std2.5224E+015.1547E+011.5981E+012.8296E+022.9004E+021.3656E+021.2241E+025.1273E+026.0625E+016.2909E+022.2348E+02
Rank1429865113107
F28Min3.4621E+034.8516E+034.6973E+035.5879E+033.8873E+034.3546E+033.6585E+035.4254E+034.1075E+035.3291E+034.0276E+03
Avg3.9035E+035.2563E+034.9086E+036.2528E+034.4656E+035.1013E+033.9983E+036.7942E+034.7547E+036.2869E+034.7416E+03
Std2.5257E+021.6137E+021.2593E+022.9460E+023.0675E+023.6064E+022.0154E+028.1901E+024.3329E+027.3600E+023.1469E+02
Rank1869372115104
F29Min3.4058E+031.0176E+073.0986E+061.3373E+082.5735E+072.2555E+079.7596E+058.5344E+074.4570E+068.7991E+074.4545E+07
Avg4.7423E+031.6403E+074.3744E+062.6909E+086.1553E+073.7415E+071.6991E+062.1215E+088.6560E+061.9241E+088.2111E+07
Std1.3096E+032.4829E+067.5768E+057.6641E+072.7071E+079.5130E+065.5509E+057.4930E+072.4807E+068.1199E+072.1762E+07
Rank1531176210498
Table A12. Experimental results of ERBMO and competing algorithms (D = 100).
Table A12. Experimental results of ERBMO and competing algorithms (D = 100).
No.IndexERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAEPSCACFOACFOA
F1Min1.0000E+022.3911E+098.7455E+076.0688E+103.1476E+101.0502E+104.9398E+091.2251E+113.0634E+091.0467E+112.0888E+10
Avg1.0015E+023.6438E+091.2124E+087.8419E+104.7111E+101.4546E+109.1598E+091.4191E+115.6622E+091.3359E+113.1580E+10
Std7.6732E−014.8619E+081.8355E+078.6176E+098.5150E+092.2202E+092.1333E+098.6902E+091.5277E+091.7636E+105.2299E+09
Rank1329865114107
F2Min4.6408E+023.0273E+051.4269E+052.6783E+052.3581E+053.0977E+052.7598E+052.1301E+052.2005E+052.5097E+052.8819E+05
Avg1.1585E+033.3027E+053.2620E+053.2187E+052.5531E+053.6368E+055.1712E+052.7041E+052.8546E+053.0062E+053.6458E+05
Std8.4385E+021.3988E+048.2633E+041.8558E+041.2889E+042.8931E+048.6227E+042.3057E+042.2239E+042.7003E+043.3404E+04
Rank1876291134510
F3Min4.0000E+021.2403E+037.1199E+027.6380E+033.2207E+032.1421E+031.2393E+031.8432E+041.2707E+031.4837E+042.4501E+03
Avg4.2287E+021.3702E+037.4742E+021.0376E+045.4324E+032.8423E+031.5508E+032.5478E+041.5085E+032.3271E+043.5667E+03
Std3.1363E+015.8931E+011.6790E+011.2175E+031.1120E+033.7873E+021.6978E+023.7718E+031.3139E+024.2224E+036.1670E+02
Rank1329865114107
F4Min6.6317E+021.3527E+031.2776E+031.6429E+031.2307E+031.3866E+038.6692E+021.5845E+031.0943E+031.5570E+031.2709E+03
Avg7.4907E+021.4503E+031.3168E+031.7249E+031.3755E+031.4934E+039.5620E+021.6575E+031.4125E+031.7093E+031.3776E+03
Std4.1101E+013.4117E+011.9819E+014.0556E+018.6661E+016.8537E+014.7821E+014.1056E+011.2430E+028.9629E+015.4374E+01
Rank1731148296105
F5Min6.1613E+026.1231E+026.0368E+026.6061E+026.3431E+026.4499E+026.1186E+026.7517E+026.3084E+026.6807E+026.3626E+02
Avg6.2022E+026.1471E+026.0438E+026.6707E+026.4435E+026.5498E+026.1636E+026.8227E+026.4345E+026.7766E+026.4286E+02
Std2.3057E+001.2739E+002.3452E−013.8553E+006.2253E+004.5066E+002.3721E+003.8539E+005.9509E+005.2629E+003.3247E+00
Rank4219783116105
F6Min9.5490E+021.6964E+031.5770E+032.4794E+031.8153E+032.0080E+031.3794E+032.6854E+031.7996E+032.9310E+031.9156E+03
Avg1.0910E+031.7382E+031.6293E+032.6764E+032.1251E+032.1260E+031.5485E+032.9831E+032.0560E+033.2196E+032.1528E+03
Std5.8696E+012.2758E+012.1794E+018.7136E+011.7317E+026.7407E+017.7303E+011.1507E+027.7763E+011.6284E+021.0659E+02
Rank1439672105118
F7Min9.9800E+021.7036E+031.5839E+031.8819E+031.5117E+031.7011E+031.1955E+031.9016E+031.3685E+031.8538E+031.5755E+03
Avg1.0656E+031.7575E+031.6221E+032.0173E+031.6373E+031.7931E+031.2706E+032.0217E+031.7072E+032.0168E+031.6702E+03
Std4.0584E+012.1257E+011.8255E+014.1911E+016.5220E+015.2119E+013.8764E+015.7425E+011.5048E+028.7828E+015.1616E+01
Rank1731048211695
F8Min2.8378E+034.4494E+031.0560E+033.7823E+042.1893E+042.3893E+044.4333E+033.7188E+041.8729E+043.4145E+041.6698E+04
Avg3.8257E+035.5266E+031.1222E+035.1121E+043.5775E+043.8936E+046.5607E+034.7629E+043.0394E+044.7862E+042.7270E+04
Std6.9294E+027.3635E+024.0073E+015.0580E+035.9411E+037.7511E+031.1877E+038.1231E+035.7389E+036.8308E+036.0175E+03
Rank2311178496105
F9Min1.2538E+043.0419E+043.1131E+043.0346E+041.9104E+043.0408E+041.5134E+042.4093E+042.8918E+042.3636E+042.8809E+04
Avg1.5526E+043.1653E+043.2064E+043.1372E+042.0960E+043.1656E+041.8543E+042.6258E+043.1309E+042.5166E+042.9989E+04
Std1.3225E+035.0112E+024.1796E+024.9760E+021.0709E+036.2966E+021.3921E+031.3518E+038.7534E+029.1882E+026.5361E+02
Rank1911831025746
F10Min1.7001E+035.2551E+044.3400E+035.0906E+042.3406E+045.7158E+041.0456E+043.9034E+045.5690E+046.2751E+045.3771E+04
Avg1.9874E+037.4548E+045.8008E+038.0486E+043.7732E+048.2637E+042.2335E+046.4008E+047.6940E+049.0395E+047.3249E+04
Std1.4249E+029.4467E+031.5670E+031.2234E+048.7712E+031.1468E+047.7952E+031.1168E+041.0719E+042.1368E+041.2024E+04
Rank1729410358116
F11Min6.7055E+036.0692E+086.3539E+071.3949E+101.3764E+091.0350E+092.7476E+083.3246E+102.1187E+082.1277E+101.6318E+09
Avg3.7651E+047.7740E+081.0210E+081.9823E+104.3143E+091.9506E+095.7617E+085.0489E+104.6274E+083.5651E+102.6324E+09
Std3.7894E+047.3625E+071.9896E+072.9259E+091.7583E+095.1383E+081.8051E+088.7552E+091.5552E+088.3613E+096.4965E+08
Rank1529864113107
F12Min5.3695E+034.0310E+069.8269E+052.1453E+091.1119E+071.5788E+074.1447E+043.9259E+094.2401E+041.3900E+092.1192E+07
Avg7.7289E+036.1658E+061.3388E+062.9769E+091.0885E+082.7336E+071.4435E+058.1425E+099.5632E+043.0609E+094.2227E+07
Std2.0210E+031.5380E+062.5429E+054.1199E+081.2074E+087.8748E+061.2279E+052.1103E+092.5569E+041.0400E+091.1683E+07
Rank1549863112107
F13Min1.7030E+031.3872E+066.8978E+044.1631E+062.2709E+061.0853E+066.6247E+051.1975E+061.3042E+062.6970E+061.4886E+06
Avg1.9115E+032.9427E+061.2551E+051.2978E+075.9662E+063.3571E+062.9075E+069.7907E+063.3275E+061.0481E+074.7958E+06
Std1.2877E+027.2146E+052.3110E+044.7374E+062.6014E+061.5878E+061.5133E+063.7745E+061.3185E+066.5477E+061.7105E+06
Rank1421186395107
F14Min1.7502E+033.4028E+052.8511E+053.4710E+087.1551E+047.2798E+054.6098E+036.8468E+081.8741E+042.3202E+085.4953E+05
Avg4.6081E+037.4588E+055.1086E+057.5819E+086.6898E+062.0921E+061.0398E+041.7063E+094.7657E+046.3984E+083.8709E+06
Std4.2235E+032.1366E+051.0385E+051.9205E+082.6457E+076.2969E+055.3930E+036.1793E+081.6332E+043.4981E+082.0790E+06
Rank1541086211397
F15Min3.5791E+038.4095E+038.8620E+031.0157E+045.0350E+036.2430E+034.4349E+039.3330E+035.4542E+038.7891E+036.4157E+03
Avg4.8452E+039.5644E+039.6179E+031.1453E+046.3747E+037.6007E+035.2204E+031.0734E+047.1909E+031.0088E+047.5584E+03
Std6.3060E+024.0867E+022.9028E+024.1547E+026.2952E+028.4998E+025.6119E+026.7744E+021.1174E+038.0216E+026.1389E+02
Rank1781136210495
F16Min3.9440E+035.3142E+036.3172E+037.8852E+033.5160E+034.7991E+033.3306E+036.8607E+034.0466E+036.7722E+034.8283E+03
Avg4.6359E+036.7501E+036.8528E+039.0637E+035.0840E+036.2540E+034.3951E+031.3263E+045.6436E+038.4148E+035.5667E+03
Std4.2266E+023.7151E+022.2504E+024.0497E+025.8503E+028.4690E+025.3664E+026.8242E+037.5510E+021.3432E+033.8936E+02
Rank2781036111594
F17Min2.1322E+032.2425E+062.1830E+051.0364E+071.6010E+062.2379E+061.1980E+062.3932E+061.5863E+063.3058E+063.1638E+06
Avg4.1820E+033.4351E+062.9837E+052.1624E+076.1244E+064.1342E+066.6348E+069.6484E+064.0786E+061.5381E+076.4965E+06
Std1.4149E+034.2681E+054.5623E+044.9905E+062.5606E+061.2364E+065.2728E+065.4984E+061.5605E+066.8002E+062.6789E+06
Rank1321165894107
F18Min2.5730E+031.3948E+065.2712E+055.1915E+087.8054E+051.6931E+062.9973E+037.6875E+088.8741E+041.7645E+083.7636E+06
Avg6.7707E+031.9965E+067.2985E+057.2337E+089.0274E+063.6529E+067.4964E+031.7302E+093.1477E+057.2326E+088.6202E+06
Std3.9798E+033.0779E+051.1209E+051.4187E+081.5783E+071.2356E+063.8398E+037.4318E+081.7473E+054.1106E+083.5374E+06
Rank1541086211397
F19Min3.8702E+036.5924E+036.8374E+036.2686E+034.2247E+036.2682E+032.9747E+035.0242E+035.4118E+035.1595E+035.4032E+03
Avg4.8614E+037.1607E+037.4560E+037.2279E+035.0679E+037.2603E+034.5179E+035.9202E+037.0700E+035.9992E+036.4086E+03
Std4.0840E+022.1249E+022.1432E+022.9938E+024.8671E+023.9275E+025.0190E+023.8750E+024.7700E+023.8439E+024.9377E+02
Rank2811931014756
F20Min2.4894E+033.1709E+033.1095E+033.4564E+032.9358E+033.2647E+032.6617E+033.5779E+033.0425E+033.4882E+033.0426E+03
Avg2.5887E+033.2276E+033.1451E+033.5235E+033.0733E+033.3936E+032.7775E+033.7263E+033.2870E+033.6483E+033.1472E+03
Std4.4524E+012.6184E+011.8198E+014.1158E+016.6858E+016.0700E+015.3462E+011.0382E+021.0616E+028.8378E+014.5695E+01
Rank1649382117105
F21Min1.5187E+043.2825E+043.3344E+041.0709E+047.6792E+033.1311E+041.9002E+042.5546E+043.1531E+042.6152E+042.9960E+04
Avg1.7757E+043.3967E+043.4284E+043.1120E+042.3444E+043.4005E+042.1211E+042.8555E+043.3495E+042.7764E+043.2198E+04
Std1.3806E+035.0751E+025.2948E+026.7872E+033.2115E+031.0238E+039.2178E+021.9925E+037.1353E+027.9724E+029.9034E+02
Rank1911631025847
F22Min3.1471E+033.6800E+033.6405E+033.9775E+033.3607E+034.2180E+033.1361E+034.3409E+033.5372E+034.3105E+033.6621E+03
Avg3.2389E+033.7537E+033.6859E+034.1316E+033.5360E+034.4538E+033.2685E+034.5391E+033.7276E+034.6370E+033.7618E+03
Std5.7527E+013.6219E+012.0736E+015.0525E+017.2694E+011.1268E+025.3618E+011.1186E+021.1626E+021.2816E+025.2952E+01
Rank1648392105117
F23Min3.6283E+034.1171E+034.0318E+034.6488E+034.0017E+034.9881E+033.6922E+035.3198E+034.0647E+035.0984E+034.1877E+03
Avg3.8502E+034.1792E+034.1077E+034.7804E+034.1327E+035.4103E+033.7991E+035.7721E+034.3078E+035.7392E+034.3233E+03
Std9.6198E+013.1842E+012.6113E+016.4043E+018.0294E+012.1648E+025.6084E+012.1718E+021.2324E+022.6453E+026.2001E+01
Rank2538491116107
F24Min3.1056E+034.0264E+033.4864E+037.8337E+035.5937E+034.4938E+034.1948E+031.1468E+043.9807E+031.0442E+045.3623E+03
Avg3.2137E+034.2088E+033.5359E+039.4348E+036.6505E+035.0254E+034.4459E+031.3228E+044.2218E+031.3124E+045.8947E+03
Std5.8221E+011.0854E+022.1125E+016.6578E+026.2672E+022.4358E+021.5482E+029.2884E+021.5509E+021.3659E+033.5744E+02
Rank1329865114107
F25Min8.3505E+031.4092E+041.3577E+041.9881E+041.4033E+041.4063E+049.5010E+032.6309E+041.3457E+042.1162E+041.5103E+04
Avg9.7972E+031.4816E+041.3961E+042.0947E+041.8646E+042.0223E+041.0738E+043.2072E+041.5813E+042.6010E+041.6910E+04
Std5.9085E+023.4461E+022.0927E+026.7607E+023.0105E+031.7812E+035.1083E+022.2491E+031.2971E+032.9748E+031.3079E+03
Rank1439782115106
F26Min3.2000E+033.6199E+033.3783E+034.2860E+033.6027E+034.4790E+033.4930E+034.6917E+033.5152E+034.7203E+034.0329E+03
Avg3.5255E+033.7227E+033.4185E+034.5518E+033.9114E+034.9672E+033.6128E+035.5050E+033.7853E+035.3412E+034.2085E+03
Std1.1163E+026.2166E+011.6875E+011.4835E+021.3603E+023.0775E+027.8399E+012.9465E+021.2279E+023.4983E+021.0153E+02
Rank2418693115107
F27Min3.2344E+034.5412E+033.5172E+031.0628E+047.2589E+035.3633E+034.8277E+031.6301E+044.2645E+031.2267E+046.6247E+03
Avg3.2951E+034.8676E+033.5636E+031.2247E+048.7724E+035.8548E+036.1929E+031.8490E+044.9666E+031.6932E+047.8766E+03
Std1.7467E+012.0410E+022.1920E+016.8272E+029.0443E+024.3017E+022.0029E+031.0456E+034.4698E+022.0735E+037.1597E+02
Rank1329856114107
F28Min4.8663E+039.0457E+038.2191E+031.0692E+047.1605E+038.3679E+035.5291E+031.2771E+047.2867E+031.0302E+047.6773E+03
Avg5.8272E+039.7321E+038.7596E+031.2429E+048.4749E+039.5723E+036.2923E+031.5952E+048.4619E+031.3596E+048.5603E+03
Std4.6625E+022.9632E+022.5066E+026.7872E+026.8799E+026.2666E+025.2094E+022.1277E+035.9942E+022.0855E+034.9847E+02
Rank1869472113105
F29Min3.9250E+031.7493E+071.8040E+061.4654E+098.2437E+073.6324E+073.8460E+051.7071E+094.6388E+066.3400E+083.3205E+07
Avg5.5812E+032.8239E+073.0420E+062.3636E+091.6764E+086.1361E+071.2782E+065.8808E+091.2073E+072.1427E+091.1459E+08
Std1.3954E+034.9238E+066.0811E+054.5615E+087.2228E+071.7517E+077.1330E+052.5769E+094.2901E+068.0010E+084.6165E+07
Rank1531086211497

References

  1. Nadimi-Shahraki, M.H.; Taghian, S.; Javaheri, D.; Sadiq, A.S.; Khodadadi, N.; Mirjalili, S. MTV-SCA: Multi-Trial Vector-Based Sine Cosine Algorithm. Clust. Comput. 2024, 27, 13471–13515. [Google Scholar] [CrossRef]
  2. Tang, A.; Zhou, H.; Han, T.; Xie, L. A Modified Manta Ray Foraging Optimization for Global Optimization Problems. IEEE Access 2021, 9, 128702–128721. [Google Scholar] [CrossRef]
  3. Tang, A.D.; Tang, S.Q.; Han, T.; Zhou, H.; Xie, L. A Modified Slime Mould Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 2298215. [Google Scholar] [CrossRef]
  4. Li, Y.; Zhi, J.; Wang, X.; Shi, B. Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications. Biomimetics 2025, 10, 592. [Google Scholar] [CrossRef] [PubMed]
  5. Tang, A.D.; Han, T.; Zhou, H.; Xie, L. An Improved Equilibrium Optimizer with Application in Unmanned Aerial Vehicle Path Planning. Sensors 2021, 21, 1814. [Google Scholar] [CrossRef]
  6. Huang, L.; Guo, S.S.; Zhang, W.; Tang, H.T.; Wang, G.S.; Cui, J.Y. A Hybrid Optimization Algorithm for Large-Scale Flexible Job-Shop Scheduling Problems. Eng. Optim. 2025. [Google Scholar] [CrossRef]
  7. Shi, J.E.; Chen, Y.; Cai, Z.N.; Heidari, A.A.; Chen, H.L.; He, Q.X. Multi-Threshold Image Segmentation Using a Boosted Whale Optimization: Case Study of Breast Invasive Ductal Carcinomas. Clust. Comput. 2024, 27, 14891–14949. [Google Scholar] [CrossRef]
  8. Pan, H.; Chen, S.; Xiong, H. A High-Dimensional Feature Selection Method Based on Modified Gray Wolf Optimization. Appl. Soft Comput. 2023, 135, 110031. [Google Scholar] [CrossRef]
  9. Huang, W.; Xu, J. Particle Swarm Optimization. In Springer Tracts in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
  10. Dorigo, M.; Di Caro, G. Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, Washington, DC, USA, 6–9 July 1999. [Google Scholar]
  11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
  12. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
  13. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Futur. Gener. Comput. Syst. 2019, 97, 849–887. [Google Scholar] [CrossRef]
  14. Xie, L.; Han, T.; Zhou, H.; Zhang, Z.-R.; Han, B.; Tang, A. Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef]
  15. Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot Optimizer: Algorithm and Applications to Medical Problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
  16. Tian, A.Q.; Liu, F.F.; Lv, H.X. Snow Geese Algorithm: A Novel Migration-Inspired Meta-Heuristic Algorithm for Constrained Engineering Optimization Problems. Appl. Math. Model. 2024, 126, 327–347. [Google Scholar] [CrossRef]
  17. Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish Optimization Algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
  18. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
  19. Ahvanooey, M.T.; Li, Q.; Wu, M.; Wang, S. A Survey of Genetic Programming and Its Applications. KSII Trans. Internet Inf. Syst. 2019, 13, 1765–1794. [Google Scholar] [CrossRef]
  20. Opara, K.R.; Arabas, J. Differential Evolution: A Survey of Theoretical Analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
  21. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
  22. Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
  23. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
  24. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
  25. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
  26. Dong, Y.C.; Zhang, S.H.; Zhang, H.L.; Zhou, X.J.; Jiang, J.D. Chaotic Evolution Optimization: A Novel Metaheuristic Algorithm Inspired by Chaotic Dynamics. Chaos Solitons Fractals 2025, 192, 116049. [Google Scholar] [CrossRef]
  27. Jia, H.; Wen, Q.; Wang, Y.; Mirjalili, S. Catch Fish Optimization Algorithm: A New Human Behavior Algorithm for Solving Clustering Problems. Cluster Comput. 2024, 27, 13295–13332. [Google Scholar] [CrossRef]
  28. Tian, Z.; Gai, M. Football Team Training Algorithm: A Novel Sport-Inspired Meta-Heuristic Optimization Algorithm for Global Optimization. Expert Syst. Appl. 2024, 245, 123088. [Google Scholar] [CrossRef]
  29. Ouyang, K.; Fu, S.; Chen, Y.; Cai, Q.; Heidari, A.A.; Chen, H. Escape: An Optimization Method Based on Crowd Evacuation Behaviors. Artif. Intell. Rev. 2024, 58, 19. [Google Scholar] [CrossRef]
  30. Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-Billed Blue Magpie Optimizer: A Novel Metaheuristic Algorithm for 2D/3D UAV Path Planning and Engineering Design Problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
  31. Wang, Q.L.; Zhang, M.; Li, L.; Yan, W.B.; Liu, B.; Xia, Z.Y.; Tseng, M.L. Optimal Capacity Configuration of Coupled Photovoltaic and Energy Storage System: Multi-Objective Red-Billed Blue-Magpie Optimizer. J. Ind. Prod. Eng. 2025, 42, 495–515. [Google Scholar] [CrossRef]
  32. Liu, J.; Huang, X.A.; Deng, Y.H.; Xiao, C.J.; Li, Z.B. Robotic Positioning Accuracy Enhancement via Memory Red Billed Blue Magpie Optimizer and Adaptive Momentum PSO Tuned Graph Neural Network. Machines 2025, 13, 526. [Google Scholar] [CrossRef]
  33. Zhou, N.; Zhu, Z.B.; Qin, H.D.; Zhou, L.; Xue, Y.F.; Mu, X.K.; Bai, G.Q. Drift Trajectory Prediction and Search Area Optimization of Marine Targets Based on Hybrid Optimization Algorithm. Ocean Eng. 2025, 337, 121874. [Google Scholar] [CrossRef]
  34. Huang, X.Y.; Bie, F.F.; Li, Q.Q.; Su, W.S.; Ding, X.P.; Xing, Y.; Huang, W.Q. A Fault Feature Extraction Method for a Reciprocating Compressor Based on Optimized SVMD and CMFBSIE. J. Mech. Sci. Technol. 2025, 39, 5835–5849. [Google Scholar] [CrossRef]
  35. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
  36. Ye, M.J.; Wang, X.; Guo, Z.H.; Hu, B.; Wang, L. A Multi-Strategy Improved Red-Billed Blue Magpie Optimizer for Global Optimization. Biomimetics 2025, 10, 557. [Google Scholar] [CrossRef] [PubMed]
  37. Kong, W.L.; Zhou, M.R.; Hu, F.; Zhu, Z.W. Manuscript Title:Thermal-Electrical Scheduling of Low-Carbon Industrial Energy Systems with Rooftop PV: An Improved Red-Billed Blue Magpie Optimization Approach. Therm. Sci. Eng. Prog. 2025, 61, 103599. [Google Scholar] [CrossRef]
  38. Gao, H.; Zhang, Q.K. Alpha Evolution: An Efficient Evolutionary Algorithm with Evolution Path Adaptation and Matrix Generation. Eng. Appl. Artif. Intell. 2024, 137, 109202. [Google Scholar] [CrossRef]
  39. Mohamed, A.W.; Hadi, A.A.; Fattouh, A.M.; Jambi, K.M. LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES for Solving CEC 2017 Benchmark Problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia–San Sebastián, Spain, 5–8 June 2017. [Google Scholar]
  40. Deng, L.; Liu, S. Snow Ablation Optimizer: A Novel Metaheuristic Technique for Numerical Optimization and Engineering Design. Expert Syst. Appl. 2023, 225, 120069. [Google Scholar] [CrossRef]
  41. Batis, M.; Chen, Y.; Wang, M.J.; Liu, L.; Heidari, A.A.; Chen, H.L. ACGRIME: Adaptive Chaotic Gaussian RIME Optimizer for Global Optimization and Feature Selection. Clust. Comput. 2025, 28, 61. [Google Scholar] [CrossRef]
  42. Zhao, W.; Wang, L.; Zhang, Z.; Mirjalili, S.; Khodadadi, N.; Ge, Q. Quadratic Interpolation Optimization (QIO): A New Optimization Algorithm Based on Generalized Quadratic Interpolation and Its Applications to Real-World Engineering Problems. Comput. Methods Appl. Mech. Eng. 2023, 417, 116446. [Google Scholar] [CrossRef]
  43. Deng, L.Y.; Liu, S.Y. A Sine Cosine Algorithm Guided by Elite Pool Strategy for Global Optimization. Appl. Soft Comput. 2024, 164, 111946. [Google Scholar] [CrossRef]
  44. Zhang, Y.; Chi, A. Group Teaching Optimization Algorithm with Information Sharing for Numerical Optimization and Engineering Optimization. J. Intell. Manuf. 2023, 34, 1547–1571. [Google Scholar] [CrossRef]
  45. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A Nature-Inspired Metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
  46. Yin, S.; Luo, Q.; Zhou, Y. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems. Arab. J. Sci. Eng. 2022, 47, 10115–10146. [Google Scholar] [CrossRef]
  47. Pratticò, D.; Laganà, F. Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment. Signals 2025, 6, 38. [Google Scholar] [CrossRef]
  48. Lagana, F.; Pellicano, D.; Arruzzo, M.; Pratticò, D.; Pullano, S.A.; Fiorillo, A.S. FEM-Based Modelling and AI-Enhanced Monitoring System for Upper Limb Rehabilitation. Electronics 2025, 14, 2268. [Google Scholar] [CrossRef]
  49. Bibbò, L.; Angiulli, G.; Laganà, F.; Pratticò, D.; Cotroneo, F.; La Foresta, F.; Versaci, M. MEMS and IoT in HAR: Effective Monitoring for the Health of Older People. Appl. Sci. 2025, 15, 4306. [Google Scholar] [CrossRef]
  50. Laganà, F.; Bibbò, L.; Calcagno, S.; De Carlo, D.; Pullano, S.A.; Pratticò, D.; Angiulli, G. Smart Electronic Device-Based Monitoring of SAR and Temperature Variations in Indoor Human Tissue Interaction. Appl. Sci. 2025, 15, 2439. [Google Scholar] [CrossRef]
Figure 1. The classification of meta-heuristic algorithms.
Figure 1. The classification of meta-heuristic algorithms.
Biomimetics 10 00780 g001
Figure 2. The schematic of DTC.
Figure 2. The schematic of DTC.
Biomimetics 10 00780 g002
Figure 3. The flowchart of ERBMO.
Figure 3. The flowchart of ERBMO.
Biomimetics 10 00780 g003
Figure 4. Ranking of ERBMO with different P .
Figure 4. Ranking of ERBMO with different P .
Biomimetics 10 00780 g004
Figure 5. Ranking of ERBMO with different strategies.
Figure 5. Ranking of ERBMO with different strategies.
Biomimetics 10 00780 g005
Figure 6. Nemenyi post hoc test of ERBMO with different strategies.
Figure 6. Nemenyi post hoc test of ERBMO with different strategies.
Biomimetics 10 00780 g006
Figure 7. Ranking radar chart of ERBMO and competing algorithms.
Figure 7. Ranking radar chart of ERBMO and competing algorithms.
Biomimetics 10 00780 g007aBiomimetics 10 00780 g007b
Figure 8. Convergence curves of ERBMO and competing algorithms.
Figure 8. Convergence curves of ERBMO and competing algorithms.
Biomimetics 10 00780 g008aBiomimetics 10 00780 g008b
Figure 9. Boxplots of ERBMO and competing algorithms.
Figure 9. Boxplots of ERBMO and competing algorithms.
Biomimetics 10 00780 g009aBiomimetics 10 00780 g009b
Figure 10. The number of “+/=/−” obtained by ERBMO and competing algorithms.
Figure 10. The number of “+/=/−” obtained by ERBMO and competing algorithms.
Biomimetics 10 00780 g010aBiomimetics 10 00780 g010b
Figure 11. Ranking of ERBMO and competing algorithms.
Figure 11. Ranking of ERBMO and competing algorithms.
Biomimetics 10 00780 g011
Figure 12. Nemenyi post hoc test of ERBMO and competing algorithms.
Figure 12. Nemenyi post hoc test of ERBMO and competing algorithms.
Biomimetics 10 00780 g012
Table 1. CEC 2017 test suite detailed introduction.
Table 1. CEC 2017 test suite detailed introduction.
TypeNo.Functions NameMin
Unimodal functionsF1Shifted and Rotated Bent Cigar Function100
F3Shifted and Rotated Zakharov Function300
Multimodal functionsF4Shifted and Rotated Rosenbrock’s Function400
F5Shifted and Rotated Rastrigin’s Function500
F6Shifted and Rotated Expanded Scaffer’s F6 Function600
F7Shifted and Rotated Lunacek Bi_Rastrigin Function700
F8Shifted and Rotated Non-Continuous Rastrigin’s Function800
F9Shifted and Rotated Levy Function900
F10Shifted and Rotated Schwefel’s Function1000
Hybrid functionsF11Hybrid Function 1 (N=3)1100
F12Hybrid Function 2 (N = 3)1200
F13Hybrid Function 3 (N = 3)1300
F14Hybrid Function 4 (N = 4)1400
F15Hybrid Function 5 (N = 4)1500
F16Hybrid Function 6 (N = 4)1600
F17Hybrid Function 6 (N = 5)1700
F18Hybrid Function 6 (N = 5)1800
F19Hybrid Function 6 (N = 5)1900
F20Hybrid Function 6 (N = 6)2000
Composition functionsF21Composition Function 1 (N = 3)2100
F22Composition Function 2 (N = 3)2200
F23Composition Function 3 (N = 4)2300
F24Composition Function 4 (N = 4)2400
F25Composition Function 5 (N = 5)2500
F26Composition Function 6 (N = 5)2600
F27Composition Function 7 (N = 6)2700
F28Composition Function 8 (N = 6)2800
F29Composition Function 9 (N = 3)2900
F30Composition Function 10 (N = 3)3000
Table 2. Parameter setting of each algorithm.
Table 2. Parameter setting of each algorithm.
Algorithm Setting
ERBMO N = 30 D , δ = 0.2 , a = 10 , S = 3000 , A r = 30 D
RBMO N = 150 , δ = 0.2
AE N = 30 , a = 4
LSHADE-SPACMA N = 18 D , H = 6 , F = 0.5 , C R = 0.5
SAO N = 30 , a = 0.35 , β = 5 / 7
ACGRIME N = 30 , a = 4 , w = 5
QIO N = 30 , a = 0.7 , b = 0.15
EPSCA N = 30 , a = 2 , c = 90
CFOA N = 30
ISGTOA N = 50 , λ = 2
MPA N = 30 , F A D s = 0.2 , P = 0.5
EOSMA N = 30 , a 1 = 2 , a 2 = 1 , G P = 0.5 , z = 0.7
Table 3. Friedman test results of ERBMO with different strategies.
Table 3. Friedman test results of ERBMO with different strategies.
Test SuiteDimensionRBMODRBMOPRBMOERBMOp-Value
CEC 2017104.0002.1722.7931.0343.25E-17
303.9662.5862.3451.1031.71E-15
503.9662.7242.2071.1036.96E-16
1003.9312.8282.1721.0693.62E-16
Average rank3.9662.5782.3791.078
Overall rank4321
Table 4. Wilcoxon rank-sum test results of ERBMO and competing algorithms.
Table 4. Wilcoxon rank-sum test results of ERBMO and competing algorithms.
ERBMO vs. (+/=/−)DimensionAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAISGTOAMPAEOSMA
CEC 2017 test suite10D28/0/126/0/329/0/022/2/527/2/019/9/127/2/026/0/327/1/126/1/2
30D26/1/226/0/329/0/025/3/127/1/116/11/229/0/028/1/029/0/027/1/1
50D27/1/127/0/228/1/027/1/128/1/020/7/229/0/029/0/029/0/029/0/0
100D28/0/126/0/329/0/028/1/029/0/024/1/429/0/029/0/029/0/029/0/0
Table 5. Friedman test results of ERBMO and competing algorithms.
Table 5. Friedman test results of ERBMO and competing algorithms.
Test SuiteDimensionERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAISGTOAMPAEOSMAp-Value
CEC 2017101.9316.7244.4489.1385.1036.0345.6907.9315.5178.3455.1382.57E−18
301.6215.8284.6909.5864.7597.1033.3798.9664.8979.3455.8282.27E−31
501.3456.0344.7249.2075.0007.0343.0349.4484.9669.1726.0346.43E−33
1001.2765.3454.1039.1725.5867.3793.1729.4834.9319.1386.4143.57E−34
Average rank1.5435.9834.4919.2765.1126.8883.8198.9575.0789.0005.853
Overall rank1731048295116
Table 6. Details of engineering design optimization.
Table 6. Details of engineering design optimization.
ProblemNameDgh
RW01Tension/compression spring design problem330
RW02Pressure vessel design problem440
RW03Three-bar truss design problem230
RW04Welded beam design problem450
RW05Gear train design problem411
RW06Cantilever beam design problem510
RW07Step-cone pulley problem583
Table 7. Results of ERBMO and competing algorithms for engineering design optimization.
Table 7. Results of ERBMO and competing algorithms for engineering design optimization.
No.IndexERBMOAELSHADE-SPACMASAOACGRIMEQIOEPSCACFOAISGTOAMPAEOSMA
RW1Best1.2665E−021.2706E−021.2678E−021.2684E−021.2666E−021.2739E−021.2668E−021.2689E−021.2684E−021.2669E−021.2668E−02
Mean1.2789E−021.2894E−021.2802E−021.3560E−021.3570E−021.2992E−021.4256E−021.2832E−021.2889E−021.3210E−021.2843E−02
Std2.7743E−041.2984E−041.6821E−041.0424E−031.0615E−031.7389E−041.9198E−031.0249E−041.7816E−046.0253E−042.4980E−04
Rank1629107113584
RW2Best5.8699E+035.9464E+036.3145E+035.8702E+035.9176E+035.9953E+035.8701E+035.9155E+035.8822E+035.9294E+036.0259E+03
Mean5.9842E+036.1549E+036.6197E+036.3589E+036.5246E+036.3715E+036.3287E+038.6562E+036.2676E+038.1353E+036.4180E+03
Std1.9772E+021.3423E+023.6078E+024.4269E+024.2925E+022.3362E+024.9684E+024.8209E+033.8940E+021.8246E+032.8060E+02
Rank1295864113107
RW3Best2.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+022.6389E+02
Mean2.6389E+022.6389E+022.6389E+022.6393E+022.6428E+022.6389E+022.6407E+022.6392E+022.6389E+022.6404E+022.6390E+02
Std9.8456E−145.0411E−057.4121E−091.6411E−019.4923E−011.5163E−044.5541E−014.4870E−021.3866E−031.8984E−011.5036E−02
Rank1328114107596
RW4Best1.6928E+001.6976E+001.6957E+001.6941E+001.7013E+001.7053E+001.6929E+001.7049E+001.6974E+001.7144E+001.6970E+00
Mean1.6936E+001.7017E+001.7014E+001.7081E+001.9321E+001.7361E+001.7558E+001.9629E+001.7112E+001.9481E+001.7228E+00
Std2.1452E−033.1584E−035.4591E−033.0299E−022.5899E−012.4166E−021.0001E−011.9417E−018.7424E−031.7113E−013.0107E−02
Rank1324978115106
RW5Best2.7009E−122.7009E−122.7009E−122.3078E−112.7009E−122.7009E−122.3078E−112.3078E−112.7009E−122.3078E−112.7009E−12
Mean2.8642E−102.8945E−101.1750E−103.5673E−093.8317E−098.9422E−101.0833E−081.4412E−099.4150E−106.5431E−097.0914E−10
Std5.6256E−106.3717E−104.2655E−106.3578E−096.6441E−091.0004E−093.2254E−082.4419E−091.0243E−098.1094E−097.7716E−10
Rank2318951176104
RW6Best1.3400E+001.3401E+001.3401E+001.3401E+001.3401E+001.3401E+001.3400E+001.3472E+001.3405E+001.4232E+001.3402E+00
Mean1.3400E+001.3407E+001.3414E+001.3411E+001.3426E+001.3424E+001.3404E+002.0288E+001.3421E+001.7357E+001.3438E+00
Std2.1173E−043.7131E−049.0396E−048.1788E−043.2244E−031.6931E−035.5173E−044.8095E−011.3801E−032.3342E−013.8196E−03
Rank1354872116109
RW7Best1.6086E+011.6275E+011.6110E+011.6166E+011.6378E+011.6422E+011.6086E+011.6290E+011.6120E+011.6244E+011.6471E+01
Mean1.6136E+011.6537E+011.6205E+011.6869E+011.6819E+011.6719E+011.6473E+012.1216E+011.6751E+011.7836E+011.6974E+01
Std1.8206E−011.4733E−011.2652E−012.4615E−011.9114E−011.8381E−012.3611E−017.0197E+002.4848E−013.6928E+003.0791E−01
Rank1428753116109
Friedman Rank1.1433.4293.2866.5718.8575.8577.0008.7145.1439.5716.429
Wilcoxon rank−sum test (+/=/−)N/A6/1/06/1/07/0/07/0/07/0/07/0/07/0/07/0/07/0/06/1/0
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, S.; Kou, L. An Enhanced Red-Billed Blue Magpie Optimizer Based on Superior Data Driven for Numerical Optimization Problems. Biomimetics 2025, 10, 780. https://doi.org/10.3390/biomimetics10110780

AMA Style

Li S, Kou L. An Enhanced Red-Billed Blue Magpie Optimizer Based on Superior Data Driven for Numerical Optimization Problems. Biomimetics. 2025; 10(11):780. https://doi.org/10.3390/biomimetics10110780

Chicago/Turabian Style

Li, Siyan, and Lei Kou. 2025. "An Enhanced Red-Billed Blue Magpie Optimizer Based on Superior Data Driven for Numerical Optimization Problems" Biomimetics 10, no. 11: 780. https://doi.org/10.3390/biomimetics10110780

APA Style

Li, S., & Kou, L. (2025). An Enhanced Red-Billed Blue Magpie Optimizer Based on Superior Data Driven for Numerical Optimization Problems. Biomimetics, 10(11), 780. https://doi.org/10.3390/biomimetics10110780

Article Metrics

Back to TopTop