Open AccessReview
A Review of the Most Commonly Used Additive Manufacturing Techniques for Improving Mandibular Resection and Reconstruction Procedures
by
Paweł Turek, Małgorzata Zaborniak, Katarzyna Grzywacz-Danielewicz, Michał Bałuszyński, Bogumił Lewandowski, Janusz Kluczyński and Natalia Daniel
Appl. Sci. 2025, 15(17), 9228; https://doi.org/10.3390/app15179228 (registering DOI) - 22 Aug 2025
Abstract
Background: Mandibular defects caused by trauma or tumor resection pose significant challenges in both functional and aesthetic reconstruction. Additive manufacturing (AM) technologies offer promising solutions for surgical planning and personalized treatment. Objectives: This review aims to evaluate current trends in the application
[...] Read more.
Background: Mandibular defects caused by trauma or tumor resection pose significant challenges in both functional and aesthetic reconstruction. Additive manufacturing (AM) technologies offer promising solutions for surgical planning and personalized treatment. Objectives: This review aims to evaluate current trends in the application of AM technologies for mandibular resection and reconstruction, with a particular focus on material selection, clinical integration, and technology-specific advantages.
Methods: A structured literature review was performed using PubMed, Scopus, Web of Science, and Google Scholar. Studies published between January 2020 and May 2025 were screened using the following inclusion criteria: original peer-reviewed English-language research involving AM in mandibular surgery. The exclusion criteria included review articles, non-English sources, and non-mandibular studies. A total of 77 studies met the inclusion criteria and were analyzed in this review.
Results: Based on the literature review conducted from 2020 to 2025, the most common restorative methods for the mandible using additively manufactured models include reconstruction with a titanium surgical plate bent to the curvature of the edges and angle of the mandible or a personalized titanium or PEEK surgical plate made directly based on the patient’s diagnosis. Implants made of Ti-6AL-4V ELI and bioceramic scaffolds are also used in the reconstruction process. They are developed based on patient diagnostic data and effectively replace the loss of mandibular bone structure. In addition, based on models and surgical guides created using additive manufacturing techniques, the performance of autogenous grafts from the fibula or iliac crest has improved significantly when used with a titanium implant plate.
Conclusions: Additive manufacturing supports highly personalized and accurate mandibular reconstruction. The advantages of these methods include a reduced overall duration of procedures, a lower health risk for patients due to less reliance on general anesthesia, a near perfect match between the implant and the remaining hard tissues, and satisfactory aesthetic outcomes. However, success depends on the appropriate selection AM technology and material, particularly in load-bearing applications.
Full article
►▼
Show Figures