Novel Machine Learning-Based Approach for Determining Milk Clotting Time Using Sheep Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Milk Sampling
2.2. Milk Composition Analysis
2.3. Preparation of the Commercial Microbial Rennet
2.4. Milk-Clotting Time (MCT) Determination
- Viscosimetry-based (Visc)
- Berridge’s operator-based (BOB)
- Machine-learning prediction model (ML)
2.5. Monitoring the Enzymatic Coagulation
2.6. Statistical Methodology
3. Results
3.1. Milk Composition
3.2. Comparative Evaluation of MCT
3.3. Effect of Milk Properties on MCT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fox, P.F.; McSweeney, P.L.H. Cheese Chemistry, Physics & Microbiology, 4th ed.; Academic Press: London, UK, 2017; pp. 5–21. [Google Scholar]
- Kübarsepp, I.; Henno, M.; Kärt, O.; Tupasela, T. A comparison of the methods for determination of the rennet coagulation properties of milk. Acta Agric. Scand. A Anim. Sci. 2005, 55, 145–148. [Google Scholar] [CrossRef]
- Lucey, J.A. Encyclopedia of Dairy Sciences, 1st ed.; Academic Press: London, UK, 2002; pp. 286–293. [Google Scholar]
- Zhang, W.; Zheng, S.; Gao, P.; Ren, Q.; Zhang, Y.; Chen, B.; Hettinga, K.; Pang, X.; Lv, J.; Zhang, S. Identification of the coagulation properties of Chinese Holstein bovine milk: Effects of milk compositions, milk protein polymorphism, and phosphorylation levels on milk coagulation ability. Food Hydrocoll. 2023, 145, 109112. [Google Scholar] [CrossRef]
- Silva, S.V.; Allmere, T.; Malcata, F.X.; Andrén, A. Comparative studies on the gelling properties of cardosins extracted from Cynara cardunculus and chymosin on cow’s skim milk. Int. Dairy J. 2003, 13, 559–564. [Google Scholar] [CrossRef]
- Budelli, E.; Pérez, N.; Negreira, C.; Lema, P. Evaluation of Ultrasonic Techniques for On-Line Coagulation Monitoring in Cheesemaking. J. Food Eng. 2017, 209, 83–88. [Google Scholar] [CrossRef]
- McMahon, D.J.; Brown, R.J.; Ernstrom, C.A. Enzymic coagulation of milk casein micelles. J. Dairy Sci. 1984, 67, 745–748. [Google Scholar] [CrossRef]
- Sommer, H.; Matsen, H. The relation of mastitis to rennet coagulability and curd strength of milk. J. Dairy Sci. 1935, 18, 741–749. [Google Scholar] [CrossRef]
- Gomes, S.; Pina, I.; Fernandes, J.; Dias, J.; Reboredo, F.; Martins, A.P.L.; Alvarenga, N. Comparative Study of Coagulation Dynamics: Cardoon Flower Extract vs. Chymosin. Dairy 2024, 5, 817–827. [Google Scholar] [CrossRef]
- Berridge, N.J. Some observations on the determination of the activity of rennet. Analyst 1952, 77, 57b–62. [Google Scholar] [CrossRef]
- Berridge, N.J. An improved method of observing the clotting of milk containing rennin. J. Dairy Res. 1952, 19, 328–329. [Google Scholar] [CrossRef]
- Tabayehnejad, N.; Castillo, M.; Payne, F.A. Comparison of total milk-clotting activity measurement precision using the Berridge clotting time method and a proposed optical method. J. Food Eng. 2012, 108, 549–556. [Google Scholar] [CrossRef]
- Arango, O.; Castillo, M. A method for the inline measurement of milk gel firmness using an optical sensor. J. Dairy Sci. 2018, 101, 3910–3917. [Google Scholar] [CrossRef]
- Abdelgawad, A.R.; Guamis, B.; Castillo, M. Using a fiber optic sensor for cutting time prediction in cheese manufacture from a mixture of cow, sheep and goat milk. J. Food Eng. 2014, 125, 157–168. [Google Scholar] [CrossRef]
- Castillo, M.; Payne, F.A.; Hicks, C.L.; Lopez, M.B. Predicting cutting and clotting time of coagulating goat’s milk using diffuse reflectance: Effect of pH, temperature and enzyme concentration. Int. Dairy J. 2000, 10, 551–562. [Google Scholar] [CrossRef]
- Fagan, C.C.; Castillo, M.; Payne, F.A.; O’Donnell, C.P.; Leedy, M.; O’Callaghan, D.J. Novel online sensor technology for continuous monitoring of milk coagulation and whey separation in cheesemaking. J. Agric. Food Chem. 2007, 55, 8836–8844. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.J.; O’Callaghan, D.J.; Everard, C.D.; Fagan, C.C.; Castillo, M.; Payne, F.A.; O’Donnell, C.P. Influence of curd cutting programme and stirring speed on the prediction of syneresis indices in cheese-making using NIR light backscatter. LWT 2009, 42, 950–955. [Google Scholar] [CrossRef]
- Leite Júnior, B.R.C.; Tribst, A.A.L.; Cristianini, M. Comparative study among rheological, near-infrared light backscattering and confocal microscopy methodologies in enzymatic milk coagulation: Impact of different enzyme and protein concentrations. Food Hydrocoll. 2017, 62, 73–82. [Google Scholar] [CrossRef]
- Strani, L.; Grassi, S.; Alamprese, C.; Casiraghi, E.; Ghiglietti, R.; Locci, F.; Pricca, N.; De Juan, A. Effect of physicochemical factors and use of milk powder on milk rennet-coagulation: Process understanding by near infrared spectroscopy and chemometrics. Food Control 2021, 119, 107494. [Google Scholar] [CrossRef]
- Andrewes, P.; Bullock, S.; Turnbull, R.; Coolbear, T. Chemical instrumental analysis versus human evaluation to measure sensory properties of dairy products: What is fit for purpose? Int. Dairy J. 2021, 121, 105098. [Google Scholar] [CrossRef]
- Arango, O.; Trujillo, A.J.; Castillo, M. Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation, and syneresis of milk gels. J. Dairy Sci. 2013, 96, 1984–1996. [Google Scholar] [CrossRef]
- Arango, O.; Trujillo, A.J.; Castillo, M. Predicting coagulation and syneresis parameters of milk gels when inulin is added as fat substitute using infrared light backscatter. J. Food Eng. 2015, 157, 63–10605569. [Google Scholar] [CrossRef]
- Fagan, C.C.; Leedy, M.; Castillo, M.; Payne, F.A.; O’Donnell, C.P.; O’Callaghan, D.J. Development of a light scatter sensor technology for on-line monitoring of milk coagulation and whey separation. J. Food Eng. 2007, 83, 61–67. [Google Scholar] [CrossRef]
- Payne, F.A.; Castillo, M. Light Backscatter Sensor Applications in Milk Coagulation. In Encyclopedia of Agricultural, Food, and Biological Engineering; Heldman, D.R., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2007; Available online: https://www.researchgate.net/publication/257366181_Light_Backscatter_Sensor_Applications_in_Milk_Coagulation (accessed on 2 May 2025).
- Reflectronics Inc. Available online: https://reflectronics.com/ (accessed on 2 May 2025).
- Caeiro, J.J.; Martins, J.C.; Alvarenga, N.; Gomes, S.; Martins, A.P.L.; Reboredo, F.; Dias, J. Comparison of milk-clotting activity measurement using the Berridge’s operator-based approach and a proposed digital method. Int. Dairy J. 2024, 159, 106055. [Google Scholar] [CrossRef]
- Queiroz Macedo, I.; Faro, C.J.; Pires, E.M. Caseinolytic specificity of cardosin, an aspartic protease from the cardoon Cynara cardunculus L.: Action on bovine αs- and β-casein and comparison with chymosin. J. Agric. Food Chem. 1996, 44, 42–47. [Google Scholar] [CrossRef]
- Pino, A.; Prados, F.; Galán, E.; McSweeney, P.L.H.; Fernández-, J. Proteolysis during the ripening of goats’ milk cheese made with plant coagulant or calf rennet. Food Res. Int. 2009, 42, 324–330. [Google Scholar] [CrossRef]
- Juan, B.; Trujillo, A.-J. Acid and Rennet Coagulation Properties of A2 Milk. Foods 2022, 11, 3648. [Google Scholar] [CrossRef]
- Salguero Conceição, C.; Martins, P.; Alvarenga, N.; Dias, J.; Lamy, E.; Garrido, L.; Gomes, S.; Freitas, S.; Belo, A.; Brás, T.; et al. Cynara cardunculus: Use in Cheesemaking and Pharmaceutical Applications; Technological Approaches for Novel Applications in Dairy Processing; InTech: Tokyo, Japan, 2018; pp. 73–107. [Google Scholar] [CrossRef]
- Taifi, N.; Bakkali, F.; Faiz, B.; Moudden, A.; Maze, G.; Décultot, D. Characterization of the syneresis and the firmness of the milk gel using an ultrasonic technique. Meas. Sci. Technol. 2005, 17, 281–287. [Google Scholar] [CrossRef]
- Ay, C.; Gunasekaran, S. Ultrasonic attenuation measurements for estimating milk coagulation time. Am. Soc. Agric. Eng. 1994, 37, 857–862. [Google Scholar] [CrossRef]
- Koc, A.B.; Ozer, B. Nondestructive monitoring of renetted whole milk during cheese manufacturing. Food Res. Int. 2008, 41, 745–750. [Google Scholar] [CrossRef]
- Bakkali, F.; Moudden, A.; Faiz, B.; Amghar, A.; Maze, G.; Espinosa, F.M.; Akhnak, M. Ultrasonic measurement of milk coagulation time. Meas. Sci. Technol. 2001, 12, 2154–2159. [Google Scholar] [CrossRef]
- Wang, Q.; Bulca, S.; Kulozik, U. A Comparison of Low-Intensity Ultrasound and Oscillating Rheology to Assess the Renneting Properties of Casein Solutions after UHT Heat Pre-Treatment. Int. Dairy J. 2007, 17, 50–58. [Google Scholar] [CrossRef]
- Aldalur, A.; Bustamante, M.Á.; Barron, L.J.R. Characterization of curd grain size and shape by 2-dimensional image analysis during the cheesemaking process in artisanal sheep dairies. J. Dairy Sci. 2019, 102, 1083–1095. [Google Scholar] [CrossRef]
- Djaowé, G.; Bitjoka, L.; Boukar, O.; Libouga, D.G.; Waldogo, B. Measurement of the rennet clotting time of milk by digital image sequences (2D + t) processing. J. Food Eng. 2013, 114, 235–241. [Google Scholar] [CrossRef]
- Lagaude, A.; Fernandez, L.; Cuq, J.-L.; Marchesseau, S. Characterization of curd formation during the rennet coagulation of milk by an optical microscopic method. Int. Dairy J. 2004, 14, 1033–1039. [Google Scholar] [CrossRef]
- ISO 23058:2006|IDF 199:2006; Milk and Milk Products—Ovine and Caprine Rennets—Determination of Total Milk-Clotting Activity. International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2006.
- Taneja, A.; Nair, G.; Joshi, M.; Sharma, S.; Sharma, S.; Jambrak, A.R.; Roselló-Soto, E.; Barba, F.J.; Castagnini, J.M.; Leksawasdi, N.; et al. Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy 2023, 13, 1397. [Google Scholar] [CrossRef]
- Kutyauripo, I.; Rushambwa, M.; Chiwazi, L. Artificial intelligence applications in the agrifood sectors. J. Agric. Food Res. 2023, 11, 100502. [Google Scholar] [CrossRef]
- Esmaeily, R.; Razavi, M.A.; Razavi, S.H. A step forward in food science, technology and industry using artificial intelligence. Trends Food Sci. Technol. 2024, 143, 104286. [Google Scholar] [CrossRef]
- Mengucci, C.; Ferranti, P.; Romano, A.; Masi, P.; Picone, G.; Capozzi, F. Food structure, function and artificial intelligence. Trends Food Sci. Technol. 2022, 123, 251–263. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.-T.; Bachmann, H.-P.; Schmidt, R.S. Classification of cheese varieties from Switzerland using machine learning methods: Free volatile carboxylic acids. LWT 2023, 184, 115095. [Google Scholar] [CrossRef]
- Farah, J.S.; Cavalcanti, R.N.; Guimarães, J.T.; Balthazar, C.F.; Coimbra, P.T.; Pimentel, T.C.; Esmerino, E.A.; Duarte, M.C.K.H.; Freitas, M.Q.; Granato, D.; et al. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control 2021, 121, 107585. [Google Scholar] [CrossRef]
- Iymen, G.; Tanriver, G.; Hayirlioglu, Y.Z.; Ergen, O. Artificial intelligence-based identification of butter variations as a model study for detecting food adulteration. Innov. Food Sci. Emerg. Technol. 2020, 66, 102527. [Google Scholar] [CrossRef]
- Lima, J.S.; Ribeiro, D.C.S.Z.; Asseiss Neto, H.; Campos, S.V.A.; Leite, M.O.; Fortini, M.E.R.; Carvalho, B.P.M.; Almeida, M.V.O.; Fonseca, L.M. A machine learning proposal method to detect milk tainted with cheese whey. J. Dairy Sci. 2022, 105, 9496–9508. [Google Scholar] [CrossRef]
- Rocha, R.S.; Calvalcanti, R.N.; Silva, R.; Guimarães, J.T.; Balthazar, C.F.; Pimentel, T.C.; Esmerino, E.A.; Freitas, M.Q.; Granato, D.; Costa, R.G.B.; et al. Consumer acceptance and sensory drivers of liking of Minas Frescal Minas cheese manufactured using milk subjected to ohmic heating: Performance of machine learning methods. LWT 2020, 126, 109342. [Google Scholar] [CrossRef]
- AOAC 947.05; Acidity of Milk-Titrimetric Method. Association of Official Analytical Collaboration: Rockville, MD, USA, 1997.
- ISO 6731|IDF 21: 2010; Milk, Cream and Evaporated Milk—Determination of Total Solids Content (Reference Method). International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2010.
- ISO 19662|IDF 238: 2018; Milk—Determination of Fat Content—Acido-butyrometric (Gerber Method). International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2018.
- ISO 8968-1&2:2014|IDF 20-1&2:2014; Milk and Milk Products—Determination of Nitrogen Content. International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2014.
- ISO 17997-1|IDF 29-1: 2004; Milk—Determination of the Casein-Nitrogen Content—Part 1: Indirect Method (Reference Method). International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2004.
- ISO-22662:2024|IDF 198:024; Milk and Milk Products—Determination of Lactose Content by High-Performance Liquid Chromatography (Reference Method). International Organisation for Standardisation: Geneva, Switzerland; International Dairy Federation: Brussels, Belgium, 2024.
- SciKit Learn. Available online: https://scikit-learn.org/stable/ (accessed on 2 May 2025).
- Gomes, S.; Belo, A.T.; Alvarenga, N.; Dias, J.; Lage, P.; Pinheiro, C.; Pinto-Cruz, C.; Brás, T.; Duarte, M.F.; Martins, A.P.L. Characterization of Cynara cardunculus L. flower from Alentejo as a coagulant agent for cheesemaking. Int. Dairy J. 2019, 91, 178–184. [Google Scholar] [CrossRef]
- Martins, A.P.L.; Belo, A.T.; Vasconcelos, M.M.; Fontes, A.L.; Pereira, E.A.; Belo, C.C. Characterisation of production system of Niza cheese (PDO): Effect of sheep breed on milk composition and coagulation properties. In Changes in Sheep and Goat Farming Systems at the Beginning of 21st Century; Morand-Fehr, P., Ed.; CIHEAM/DRAP-Norte/FAO: Zaragoza, Spain, 2009; pp. 221–225. [Google Scholar]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Bencini, R. Factors affecting the clotting properties of sheep milk. J. Sci. Food Agric. 2002, 82, 705–719. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Jiménez, A.; Rufo, M.; Paniagua, J.M.; Crespo, A.T.; Guerrero, M.P.; Riballo, M.J. Contributions to ultrasound monitoring of the process of milk curdling. Ultrasonics 2017, 76, 192–199. [Google Scholar] [CrossRef]
- Figueroa Sánchez, A.; Perea Muñoz, J.; Caballero-Villalobos, J.; Arias Sánchez, R.; Garzón, A.; Angón Sánchez de Pedro, E. Coagulation process in Manchega sheep milk from Spain: A path analysis approach. J. Dairy Sci. 2021, 104, 7544–7554. [Google Scholar] [CrossRef]
- Pazzola, M. Coagulation Traits of Sheep and Goat Milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef]
- Zikiou, A.; Esteves, A.C.; Esteves, E.; Rosa, N.; Gomes, S.; Martins, A.P.L.; Zidoune, M.N.; Barros, M. Algerian cardoon flowers express a large spectrum of coagulant enzymes with potential applications in cheesemaking. Int. Dairy J. 2020, 105, 104689. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science, 2nd ed.; Springer: New York, NY, USA, 2017; pp. 185–229. [Google Scholar]
- Jacob, M.; Schmidt, M.; Jaros, D.; Rohm, H. Measurement of milk clotting activity by rotational viscometry. J. Dairy Res. 2011, 78, 191–195. [Google Scholar] [CrossRef]
- López, M.B.; Jordán, M.J.; Granados, M.V.; Fernández, J.C.; Castillo, M.; Laencina, J. Viscosity changes during rennet coagulation of Murciano-Granadina goat milk. Int. J. Dairy Technol. 1999, 52, 102–106. [Google Scholar] [CrossRef]
- Salvador, D.; Acosta, Y.; Zamora, A.; Castillo, M. Rennet-Induced Casein Micelle Aggregation Models: A Review. Foods 2022, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, X.; Wei, G.; Tao, G.; Shi, Y.; Huang, A. Novel insights into the coagulation mechanism induced by Dregea sinensis protease: Rheological properties, molecular and microstructural changes. LWT 2025, 224, 117816. [Google Scholar] [CrossRef]
- Lomholt, S.B.; Qvist, K.B. Relationship between rheological properties and degree of k-casein proteolysis during renneting of milk. J. Dairy Res. 1997, 64, 541–549. [Google Scholar] [CrossRef]
- Lucey, J.A. Formation and physical properties of milk protein gels. J. Dairy Sci. 2002, 85, 281–294. [Google Scholar] [CrossRef]
- Shaker, R.R.; Jumah, R.Y.; Abu-Jdayil, B. Rheological properties of plain yogurt during coagulation process: Impact of fat content and preheat treatment of milk. J. Food Eng. 2000, 44, 175–180. [Google Scholar] [CrossRef]
- Arango, O.; Trujillo, A.J.; Castillo, M. Monitoring the effect of inulin, protein, and calcium on milk coagulation phases using a fibre optic sensor. Int. Dairy J. 2018, 81, 80–86. [Google Scholar] [CrossRef]
- Walstra, P.; Woulters, J.T.M.; Geurts, T.M. Dairy Science and Technology, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Caballero-Villalobos, J.; Perea, J.M.; Angón, E.; Arias, R.; Garzón, A. Coagulation efficiency and its determinant factors: A case study for Manchega ewe milk in the region of Castilla-La Mancha, Spain. J. Dairy Sci. 2018, 101, 3878–3886. [Google Scholar] [CrossRef]
- Alvarenga, N.; Martins, J.; Caeiro, J.; Garcia, J.; Pássaro, J.; Coelho, L.; Santos, M.T.; Lampreia, C.; Martins, A.; Dias, J. Applying Computational Fluid Dynamics in the Development of Smart Ripening Rooms for Traditional Cheeses. Foods 2021, 10, 1716. [Google Scholar] [CrossRef]
Parameters | Sheep Milk Samples | |||||
---|---|---|---|---|---|---|
CH6 | CH7 | CH9 | CH10 | CH11 | CH12 | |
Total solids (%, w/w) | 18.57 a ± 0.10 | 16.18 d ± 0.06 | 16.77 b ± 0.08 | 16.79 b ± 0.10 | 18.61 a ± 0.02 | 16.46 c ± 0.04 |
Fat (%, w/w) | 7.60 a ± 0.00 | 5.27 c ± 0.12 | 6.27 b ± 0.12 | 6.33 b ± 0.12 | 7.53 a ± 0.12 | 6.47 b ± 0.23 |
Lactose (%, w/w) | 4.90 a,b ± 0.32 | 4.91 a,b ± 0.24 | 4.86 a,b ± 0.41 | 4.46 b ± 0.54 | 5.77 a ± 0.32 | 5.38 a,b ± 0.10 |
Protein (%, w/w) | 5.75 a,b ± 0.36 | 5.51 a,b ± 0.22 | 5.11 b,c ± 0.23 | 5.15 a,b,c ± 0.00 | 5.78 a ± 0.08 | 4.52 c ± 0.10 |
Casein (%, w/w) | 4.54 b ± 0.00 | 4.36 c ± 0.01 | 4.01 e ± 0.00 | 4.07 d ± 0.00 | 4.62 a ± 0.04 | 3.47 f ± 0.02 |
Calcium (%, w/w) | 0.19 a ± 0.00 | 0.16 b ± 0.00 | 0.15 c ± 0.01 | 0.17 b ± 0.00 | 0.19 a ± 0.00 | 0.17 b ± 0.00 |
pH | 6.58 b,c ± 0.03 | 6.69 a ± 0.01 | 6.50 d ± 0.01 | 6.57 c ± 0.01 | 6.62 b ± 0.01 | 6.62 b ± 0.01 |
Technological Properties | Sheep Milk Samples | |||||
---|---|---|---|---|---|---|
CH6 | CH7 | CH9 | CH10 | CH11 | CH12 | |
R (s) | 810 b;c ± 7 | 849 b ± 0 | 733 d ± 0 | 789 c ± 7 | 961 a ± 27 | 805 c ± 13 |
AR (V) | 11.47 a ± 1.69 | 11.87 a ± 1.90 | 9.75 a ± 1.47 | 10.64 a ± 1.49 | 13.69 a ± 2.31 | 8.36 a ± 0.73 |
A2R (V) | 17.75 a ± 2.85 | 20.36 a ± 3.19 | 14.87 a ± 2.28 | 16.09 a ± 2.48 | 21.21 a ± 2.85 | 13.53 a ± 2.01 |
A20 (V) | 6.96 a ± 1.02 | 5.77 a ± 0.97 | 7.11 a ± 1.12 | 6.65 a ± 0.89 | 4.69 a ± 0.30 | 5.05 a ± 0.50 |
A40 (V) | 17.50 a ± 2.95 | 18.82 a ± 2.91 | 16.14 a ± 2.51 | 16.28 a ± 2.50 | 16.44 a ± 1.04 | 13.41 a ± 2.17 |
0K20 (s) | 117 a ± 19 | 133 a ± 22 | 132 a ± 25 | 131 a ± 20 | 118 a ± 18 | 172 a ± 17 |
MCT methods | ||||||
BOB (s) | 516 b ± 15 | 561 a,b ± 13 | 346 d ± 8 | 438 c ± 44 | 586 a ± 8 | 388 c;d ± 10 |
Visc (s) | 452 a,b ± 11 | 465 a,b ± 4 | 353 c ± 1 | 401 b,c ± 23 | 509 a ± 6 | 314 c ± 61 |
ML (s) | 533 a ± 7 | 565 a ± 17 | 349 c ± 11 | 440 b ± 43 | 590 a ± 9 | 386 b,c ± 10 |
Component | PC1 | PC2 | |
---|---|---|---|
MCT methods | Berridge’s operator-based (BOB) | −0.92 * | −0.29 |
Viscosimetry-based (Visc) | −0.92 * | −0.25 | |
Machine Learning prediction model (ML) | −0.93 * | −0.27 | |
Optigraph methods | R | −0.84 * | −0.14 |
A2R | −0.71 * | −0.45 | |
Physical–chemical composition | Total solids | −0.78 * | 0.59 |
Fat | −0.54 | 0.83 * | |
Casein | −0.88 * | −0.12 | |
Calcium | −0.78 * | 0.50 | |
Eigenvalue | 6.03 | 1.74 | |
% variance | 66.96 | 19.39 | |
% Cumulative variance | 66.96 | 86.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, J.; Gomes, S.; Silvério, K.S.; Freitas, D.; Fernandes, J.; Martins, J.; Jasnau Caeiro, J.; Lageiro, M.; Alvarenga, N. Novel Machine Learning-Based Approach for Determining Milk Clotting Time Using Sheep Milk. Appl. Sci. 2025, 15, 9843. https://doi.org/10.3390/app15179843
Dias J, Gomes S, Silvério KS, Freitas D, Fernandes J, Martins J, Jasnau Caeiro J, Lageiro M, Alvarenga N. Novel Machine Learning-Based Approach for Determining Milk Clotting Time Using Sheep Milk. Applied Sciences. 2025; 15(17):9843. https://doi.org/10.3390/app15179843
Chicago/Turabian StyleDias, João, Sandra Gomes, Karina S. Silvério, Daniela Freitas, Jaime Fernandes, João Martins, José Jasnau Caeiro, Manuela Lageiro, and Nuno Alvarenga. 2025. "Novel Machine Learning-Based Approach for Determining Milk Clotting Time Using Sheep Milk" Applied Sciences 15, no. 17: 9843. https://doi.org/10.3390/app15179843
APA StyleDias, J., Gomes, S., Silvério, K. S., Freitas, D., Fernandes, J., Martins, J., Jasnau Caeiro, J., Lageiro, M., & Alvarenga, N. (2025). Novel Machine Learning-Based Approach for Determining Milk Clotting Time Using Sheep Milk. Applied Sciences, 15(17), 9843. https://doi.org/10.3390/app15179843