Previous Issue
Volume 9, June

Table of Contents

Cells, Volume 9, Issue 7 (July 2020) – 95 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessReview
“The Social Network” and Muscular Dystrophies: The Lesson Learnt About the Niche Environment as a Target for Therapeutic Strategies
Cells 2020, 9(7), 1659; https://doi.org/10.3390/cells9071659 (registering DOI) - 09 Jul 2020
Abstract
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell [...] Read more.
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage. Full article
Open AccessReview
Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review
Cells 2020, 9(7), 1658; https://doi.org/10.3390/cells9071658 (registering DOI) - 09 Jul 2020
Abstract
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and [...] Read more.
The maintenance of skeletal muscle mass plays a critical role in health and quality of life. One of the most potent regulators of skeletal muscle mass is mechanical loading, and numerous studies have led to a reasonably clear understanding of the macroscopic and microscopic changes that occur when the mechanical environment is altered. For instance, an increase in mechanical loading induces a growth response that is mediated, at least in part, by an increase in the cross-sectional area of the myofibers (i.e., myofiber hypertrophy). However, very little is known about the ultrastructural adaptations that drive this response. Even the most basic questions, such as whether mechanical load-induced myofiber hypertrophy is mediated by an increase in the size of the pre-existing myofibrils and/or an increase in the number myofibrils, have not been resolved. In this review, we thoroughly summarize what is currently known about the macroscopic, microscopic and ultrastructural changes that drive mechanical load-induced growth and highlight the critical gaps in knowledge that need to be filled. Full article
Show Figures

Graphical abstract

Open AccessReview
Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution
Cells 2020, 9(7), 1657; https://doi.org/10.3390/cells9071657 (registering DOI) - 09 Jul 2020
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair [...] Read more.
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer. Full article
(This article belongs to the Special Issue Double-Strand DNA Break Repair and Human Disease)
Show Figures

Figure 1

Open AccessReview
The Janus Face of p53-Targeting Ubiquitin Ligases
Cells 2020, 9(7), 1656; https://doi.org/10.3390/cells9071656 (registering DOI) - 09 Jul 2020
Abstract
The tumor suppressor p53 prevents tumorigenesis and cancer progression by maintaining genomic stability and inducing cell growth arrest and apoptosis. Because of the extremely detrimental nature of wild-type p53, cancer cells usually mutate the TP53 gene in favor of their survival and propagation. [...] Read more.
The tumor suppressor p53 prevents tumorigenesis and cancer progression by maintaining genomic stability and inducing cell growth arrest and apoptosis. Because of the extremely detrimental nature of wild-type p53, cancer cells usually mutate the TP53 gene in favor of their survival and propagation. Some of the mutant p53 proteins not only lose the wild-type activity, but also acquire oncogenic function, namely “gain-of-function”, to promote cancer development. Growing evidence has revealed that various E3 ubiquitin ligases are able to target both wild-type and mutant p53 for degradation or inactivation, and thus play divergent roles leading to cancer cell survival or death in the context of different p53 status. In this essay, we reviewed the recent progress in our understanding of the p53-targeting E3 ubiquitin ligases, and discussed the potential clinical implications of these E3 ubiquitin ligases in cancer therapy. Full article
(This article belongs to the Special Issue p53 Regulation Mechanisms)
Open AccessArticle
Regorafenib Regulates AD Pathology, Neuroinflammation, and Dendritic Spinogenesis in Cells and a Mouse Model of AD
Cells 2020, 9(7), 1655; https://doi.org/10.3390/cells9071655 (registering DOI) - 09 Jul 2020
Abstract
The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer’s disease (AD) pathology [...] Read more.
The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer’s disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aβ plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3β) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo. Full article
Show Figures

Figure 1

Open AccessArticle
Toxicoproteomic Profiling of hPXR Transgenic Mice Treated with Rifampicin and Isoniazid
Cells 2020, 9(7), 1654; https://doi.org/10.3390/cells9071654 (registering DOI) - 09 Jul 2020
Abstract
Tuberculosis is a global health threat that affects millions of people every year, and treatment-limiting toxicity remains a considerable source of treatment failure. Recent reports have characterized the nature of hPXR-mediated hepatotoxicity and the systemic toxicity of antitubercular drugs. The antitubercular drug [...] Read more.
Tuberculosis is a global health threat that affects millions of people every year, and treatment-limiting toxicity remains a considerable source of treatment failure. Recent reports have characterized the nature of hPXR-mediated hepatotoxicity and the systemic toxicity of antitubercular drugs. The antitubercular drug isoniazid plays a role in such pathologic states as acute intermittent porphyria, anemia, hepatotoxicity, hypercoagulable states (deep vein thrombosis, pulmonary embolism, or ischemic stroke), pellagra (vitamin B3 deficiency), peripheral neuropathy, and vitamin B6 deficiency. However, the mechanisms by which isoniazid administration leads to these states are unclear. To elucidate the mechanism of rifampicin- and isoniazid-induced liver and systemic injury, we performed tandem mass tag mass spectrometry-based proteomic screening of mPxr/ and hPXR mice treated with combinations of rifampicin and isoniazid. Proteomic profiling analysis suggested that the hPXR liver proteome is affected by antitubercular therapy to disrupt [Fe–S] cluster assembly machinery, [2Fe–2S] cluster-containing proteins, cytochrome P450 enzymes, heme biosynthesis, homocysteine catabolism, oxidative stress responses, vitamin B3 metabolism, and vitamin B6 metabolism. These novel findings provide insight into the etiology of some of these processes and potential targets for subsequent investigations. Data are available via ProteomeXchange with identifier PXD019505. Full article
(This article belongs to the Special Issue The Xenobiotic Receptors CAR and PXR in Health and Disease)
Open AccessArticle
The Role of Alveolar Macrophages in the Improved Protection against Respiratory Syncytial Virus and Pneumococcal Superinfection Induced by the Peptidoglycan of Lactobacillus rhamnosus CRL1505
Cells 2020, 9(7), 1653; https://doi.org/10.3390/cells9071653 (registering DOI) - 09 Jul 2020
Abstract
The nasal priming with nonviable Lactobacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulates the respiratory innate immune response in infant mice, improving their resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In association with the protection [...] Read more.
The nasal priming with nonviable Lactobacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulates the respiratory innate immune response in infant mice, improving their resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, it was found that NV1505 or PG1505 significantly enhance the numbers of CD11c+SiglecF+ alveolar macrophages (AMs) producing interferon (IFN)-β. In this work, we aimed to further advance in the characterization of the beneficial effects of NV1505 and PG1505 in the context of a respiratory superinfection by evaluating whether their immunomodulatory properties are dependent on AM functions. Macrophage depletion experiments and a detailed study of their production of cytokines and antiviral factors clearly demonstrated the key role of this immune cell population in the improvement of both the reduction of pathogens loads and the protection against lung tissue damage induced by the immunobiotic CRL1505 strain. Studies at basal conditions during primary RSV or S. pneumoniae infections, as well as during secondary pneumococcal pneumonia, brought the following five notable findings regarding the immunomodulatory effects of NV1505 and PG1505: (a) AMs play a key role in the beneficial modulation of the respiratory innate immune response and protection against RSV infection, (b) AMs are necessary for improved protection against primary and secondary pneumococcal pneumonia, (c) the generation of activated/trained AMs would be essential for the enhanced protection against respiratory pathogens, (d) other immune and nonimmune cell populations in the respiratory tract may contribute to the protection against bacterial and viral infections, and (e) the immunomodulatory properties of NV1505 and PG1505 are strain-specific. These findings significantly improve our knowledge about the immunological mechanisms involved in the modulation of respiratory immunity induced by beneficial microbes. Full article
Show Figures

Figure 1

Open AccessReview
COVID-19, Renin-Angiotensin System and Endothelial Dysfunction
Cells 2020, 9(7), 1652; https://doi.org/10.3390/cells9071652 (registering DOI) - 09 Jul 2020
Abstract
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, [...] Read more.
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1–9 and Ang 1–7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19. Full article
(This article belongs to the Special Issue COVID19, Renin-Angiotensin System and Endothelial Dysfunction)
Show Figures

Figure 1

Open AccessReview
CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer
Cells 2020, 9(7), 1651; https://doi.org/10.3390/cells9071651 (registering DOI) - 09 Jul 2020
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, [...] Read more.
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients. Full article
(This article belongs to the Special Issue Cancer Stem Cells and Resistance to Therapy)
Open AccessArticle
Radiation Response of Murine Embryonic Stem Cells
Cells 2020, 9(7), 1650; https://doi.org/10.3390/cells9071650 (registering DOI) - 09 Jul 2020
Abstract
To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for [...] Read more.
To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for viability determination after X-irradiation. Cell cycle progression was determined by flow cytometry of propidium iodide-stained cells, and DNA double strand break (DSB) induction and repair by γH2AX immunofluorescence. The radiosensitivity of mESCs was slightly higher compared to the murine osteoblast cell line OCT-1. The viability 72 h after X-irradiation decreased dose-dependently and was higher in the presence of leukemia inhibitory factor (LIF). Cells exposed to 2 or 7 Gy underwent a transient G2 arrest. X-irradiation induced γH2AX foci and they disappeared within 72 h. After 72 h of X-ray exposure, RNA was isolated and analyzed using genome-wide microarrays. The gene expression analysis revealed amongst others a regulation of developmental genes (Ada, Baz1a, Calcoco2, Htra1, Nefh, S100a6 and Rassf6), downregulation of genes involved in glycolysis and pyruvate metabolism whereas upregulation of genes related to the p53 signaling pathway. X-irradiated mESCs formed EBs and differentiated toward cardiomyocytes but their beating frequencies were lower compared to EBs from unirradiated cells. These results suggest that X-irradiation of mESCs deregulate genes related to the developmental process. The most significant biological processes found to be altered by X-irradiation in mESCs were the development of cardiovascular, nervous, circulatory and renal system. These results may explain the X-irradiation induced-embryonic lethality and malformations observed in animal studies. Full article
(This article belongs to the Special Issue Cellular Changes in Microgravity and Radiation)
Open AccessReview
MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton
Cells 2020, 9(7), 1649; https://doi.org/10.3390/cells9071649 (registering DOI) - 09 Jul 2020
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin–myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin–myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly [...] Read more.
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin–myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin–myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin–myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis. Full article
(This article belongs to the Special Issue Actin-Myosin Cytoskeleton Regulation and Function)
Open AccessArticle
A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models
Cells 2020, 9(7), 1648; https://doi.org/10.3390/cells9071648 (registering DOI) - 09 Jul 2020
Abstract
Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and [...] Read more.
Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and TAC5-e predominantly antagonized poly(I:C) (TLR3)-, imiquimod (TLR7)-, TL8-506 (TLR8)-, and CpG-oligodeoxynucleotide (TLR9)-induced signaling pathways. TAC5 and TAC5-a significantly hindered the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), reduced the phosphorylation of mitogen-activated protein kinases, and inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6. Besides, TAC5-a prevented the progression of psoriasis and systemic lupus erythematosus (SLE) in mice. Interestingly, TAC5 and TAC5-a did not affect Pam3CSK4 (TLR1/2)-, FSL-1 (TLR2/6)-, or lipopolysaccharide (TLR4)-induced TNF-α secretion, indicating their specificity towards endosomal TLRs (TLR3/7/8/9). Collectively, our data suggest that the TAC5 series of compounds are potential candidates for treating autoimmune diseases such as psoriasis or SLE. Full article
Open AccessReview
Interplay between Cellular and Molecular Mechanisms Underlying Inflammatory Bowel Diseases Development—A Focus on Ulcerative Colitis
Cells 2020, 9(7), 1647; https://doi.org/10.3390/cells9071647 (registering DOI) - 09 Jul 2020
Abstract
Inflammatory bowel diseases (IBD) are defined by the continuous inflammation of the gastrointestinal tract. During inflammation, the number of pathogens in the intestinal epithelium increases, leading to inflammasome assembly. Inflammasome activation is meant to protect the intestinal epithelial barrier from further damage by [...] Read more.
Inflammatory bowel diseases (IBD) are defined by the continuous inflammation of the gastrointestinal tract. During inflammation, the number of pathogens in the intestinal epithelium increases, leading to inflammasome assembly. Inflammasome activation is meant to protect the intestinal epithelial barrier from further damage by maintaining homeostasis. Although its purpose is to protect the cells, excessive nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome assembly is responsible for the synthesis of a high number of pro-inflammatory cytokines. The activation of two crucial pathways, autophagy process, and unfolded protein response, is initiated for restoring homeostasis. Aberrant expression of miRNAs and lncRNAs also interfere with the pathogenic mechanisms of IBD, as these non-coding transcripts play key roles in regulation of biological processes, such as inflammation and immunity. This review thoroughly describes the cellular and molecular mechanism that trigger and perpetuate inflammation in ulcerative colitis (UC) patients. Full article
Show Figures

Figure 1

Open AccessPerspective
Size-Regulated Symmetry Breaking in Reaction-Diffusion Models of Developmental Transitions
Cells 2020, 9(7), 1646; https://doi.org/10.3390/cells9071646 (registering DOI) - 09 Jul 2020
Abstract
The development of multicellular organisms proceeds through a series of morphogenetic and cell-state transitions, transforming homogeneous zygotes into complex adults by a process of self-organisation. Many of these transitions are achieved by spontaneous symmetry breaking mechanisms, allowing cells and tissues to acquire pattern [...] Read more.
The development of multicellular organisms proceeds through a series of morphogenetic and cell-state transitions, transforming homogeneous zygotes into complex adults by a process of self-organisation. Many of these transitions are achieved by spontaneous symmetry breaking mechanisms, allowing cells and tissues to acquire pattern and polarity by virtue of local interactions without an upstream supply of information. The combined work of theory and experiment has elucidated how these systems break symmetry during developmental transitions. Given that such transitions are multiple and their temporal ordering is crucial, an equally important question is how these developmental transitions are coordinated in time. Using a minimal mass-conserved substrate-depletion model for symmetry breaking as our case study, we elucidate mechanisms by which cells and tissues can couple reaction–diffusion-driven symmetry breaking to the timing of developmental transitions, arguing that the dependence of patterning mode on system size may be a generic principle by which developing organisms measure time. By analysing different regimes of our model, simulated on growing domains, we elaborate three distinct behaviours, allowing for clock-, timer- or switch-like dynamics. Relating these behaviours to experimentally documented case studies of developmental timing, we provide a minimal conceptual framework to interrogate how developing organisms coordinate developmental transitions. Full article
(This article belongs to the Special Issue Symmetry Breaking in Cells and Tissues)
Show Figures

Figure 1

Open AccessReview
Immuno-Surgical Management of Pancreatic Cancer with Analysis of Cancer Exosomes
Cells 2020, 9(7), 1645; https://doi.org/10.3390/cells9071645 (registering DOI) - 09 Jul 2020
Viewed by 67
Abstract
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on [...] Read more.
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine. Full article
Show Figures

Figure 1

Open AccessReview
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney
Cells 2020, 9(7), 1644; https://doi.org/10.3390/cells9071644 (registering DOI) - 09 Jul 2020
Viewed by 105
Abstract
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the [...] Read more.
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure. Full article
(This article belongs to the Special Issue Physiopathology of Signaling Transmission in Renal Diseases)
Show Figures

Figure 1

Open AccessArticle
The E2F Pathway Score as a Predictive Biomarker of Response to Neoadjuvant Therapy in ER+/HER2− Breast Cancer
Cells 2020, 9(7), 1643; https://doi.org/10.3390/cells9071643 (registering DOI) - 08 Jul 2020
Viewed by 151
Abstract
E2F transcription factors play critical roles in the cell cycle. Therefore, their activity is expected to reflect tumor aggressiveness and responsiveness to therapy. We scored 3905 tumors of nine breast cancer cohorts for this activity based on their gene expression for the Hallmark [...] Read more.
E2F transcription factors play critical roles in the cell cycle. Therefore, their activity is expected to reflect tumor aggressiveness and responsiveness to therapy. We scored 3905 tumors of nine breast cancer cohorts for this activity based on their gene expression for the Hallmark E2F targets gene set. As expected, tumors with a high score had an increased expression of cell proliferation-related genes. A high score was significantly associated with shorter patient survival, greater MKI67 expression, histological grade, stage, and genomic aberrations. Furthermore, metastatic tumors had higher E2F scores than the primary tumors from which they arose. Although tumors with a high score had greater infiltration by both pro- and anti-cancerous immune cells, they had an increased expression of immune checkpoint genes. Estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative cancer with a high E2F score achieved a significantly higher pathological complete response (pCR) rate to neoadjuvant chemotherapy. The E2F score was significantly associated with the expression of cyclin-dependent kinase (CDK)-related genes and strongly correlated with sensitivity to CDK inhibition in cell lines. In conclusion, the E2F score is a marker of breast cancer aggressiveness and predicts the responsiveness of ER-positive/HER2-negative patients to neoadjuvant chemotherapy and possibly to CDK and immune checkpoint inhibitors. Full article
(This article belongs to the Special Issue Cell Cycle Control and Cancer)
Open AccessReview
The NLRP3 Inflammasome Role in the Pathogenesis of Pregnancy Induced Hypertension and Preeclampsia
Cells 2020, 9(7), 1642; https://doi.org/10.3390/cells9071642 (registering DOI) - 08 Jul 2020
Viewed by 120
Abstract
Pregnancy-induced hypertension and preeclampsia are associated with significant maternal and fetal mortality. A better understanding of these diseases, delineation of molecular pathomechanism, and efficient treatment development are some of the most urgent tasks in obstetrics and gynecology. Recent findings indicate the crucial role [...] Read more.
Pregnancy-induced hypertension and preeclampsia are associated with significant maternal and fetal mortality. A better understanding of these diseases, delineation of molecular pathomechanism, and efficient treatment development are some of the most urgent tasks in obstetrics and gynecology. Recent findings indicate the crucial role of inflammation in the development of hypertension and preeclampsia. Although the mechanism is very complex and needs further explanation, it appears that high levels of cholesterol, urate, and glucose activates NLRP3 inflammasome, which produces IL-1β, IL-18, and gasdermin D. Production of these proinflammatory chemokines is the beginning of a local and general inflammation, which results in sympathetic outflow, angiotensin II production, proteinuria, hemolysis, liver damage, immunothrombosis, and coagulopathy. The NLRP3 inflammasome is a critical complex in the mediation of the inflammatory response, which makes it crucial for the development of pregnancy-induced hypertension and preeclampsia, as well as its complications, such as placental abruption and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Herein, the presented article delineates molecular mechanisms of these processes, indicating directions of future advance. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Anti-Cancer Drug Dabrafenib Is a Potent Activator of the Human Pregnane X Receptor
Cells 2020, 9(7), 1641; https://doi.org/10.3390/cells9071641 (registering DOI) - 08 Jul 2020
Viewed by 50
Abstract
The human pregnane X receptor (hPXR) is activated by a large set of endogenous and exogenous compounds and plays a critical role in the control of detoxifying enzymes and transporters regulating liver and gastrointestinal drug metabolism and clearance. hPXR is also involved in [...] Read more.
The human pregnane X receptor (hPXR) is activated by a large set of endogenous and exogenous compounds and plays a critical role in the control of detoxifying enzymes and transporters regulating liver and gastrointestinal drug metabolism and clearance. hPXR is also involved in both the development of multidrug resistance and enhanced cancer cells aggressiveness. Moreover, its unintentional activation by pharmaceutical drugs can mediate drug–drug interactions and cause severe adverse events. In that context, the potential of the anticancer BRAF inhibitor dabrafenib suspected to activate hPXR and the human constitutive androstane receptor (hCAR) has not been thoroughly investigated yet. Using different reporter cellular assays, we demonstrate that dabrafenib can activate hPXR as efficiently as its reference agonist SR12813, whereas it does not activate mouse or zebrafish PXR nor hCAR. We also showed that dabrafenib binds to recombinant hPXR, induces the expression of hPXR responsive genes in colon LS174T-hPXR cancer cells and human hepatocytes and finally increases the proliferation in LS174T-hPXR cells. Our study reveals that by using a panel of different cellular techniques it is possible to improve the assessment of hPXR agonist activity for new developed drugs. Full article
(This article belongs to the Special Issue The Xenobiotic Receptors CAR and PXR in Health and Disease)
Show Figures

Graphical abstract

Open AccessFeature PaperArticle
Inflammation Differentially Modulates the Biological Features of Adult Derived Human Liver Stem/Progenitor Cells
Cells 2020, 9(7), 1640; https://doi.org/10.3390/cells9071640 (registering DOI) - 08 Jul 2020
Viewed by 48
Abstract
The progression of mesenchymal stem cell-based therapy from concept to cure closely depends on the optimization of conditions that allow a better survival and favor the cells to achieve efficient liver regeneration. We have previously demonstrated that adult-derived human liver stem/progenitor cells (ADHLSC) [...] Read more.
The progression of mesenchymal stem cell-based therapy from concept to cure closely depends on the optimization of conditions that allow a better survival and favor the cells to achieve efficient liver regeneration. We have previously demonstrated that adult-derived human liver stem/progenitor cells (ADHLSC) display significant features that support their clinical development. The current work aims at studying the impact of a sustained pro-inflammatory environment on the principal biological features of ADHLSC in vitro. METHODS: ADHLSC from passages 4–7 were exposed to a cocktail of inflammatory cytokines for 24 h and 9 days and subsequently analyzed for their viability, expression, and secretion profiles by using flow cytometry, RT-qPCR, and antibody array assay. The impact of inflammation on the hepatocytic differentiation potential of ADHLSC was also evaluated. RESULTS: ADHLSC treated with a pro-inflammatory cocktail displayed significant decrease of cell yield at both times of treatment while cell mortality was observed at 9 days post-priming. After 24 h, no significant changes in the immuno-phenotype of ADHLSC expression profile could be noticed while after 9 days, the expression profile of relevant markers has changed both in the basal conditions and after inflammation treatment. Inflammation cocktail enhanced the release of IL-6, IL-8, CCL5, monocyte-chemo-attractant protein-2 and 3, CXCL1/GRO, and CXCL5/ENA78. Furthermore, while IP-10 secretion was increased after 24 h priming, granulocyte macrophage colony-stimulating factor enhanced secretion was noticed after 9 days treatment. Finally, priming of ADHLSC did not affect their potential to differentiate into hepatocyte-like cells. CONCLUSION: These results indicate that ADHLSCs are highly sensitive to inflammation and respond to such signals by adjusting their gene and protein expression. Accordingly, monitoring the inflammatory status of patients at the time of cell transplantation, will certainly help in enhancing ADHLSC safety and efficiency. Full article
(This article belongs to the Special Issue Recent Advances in Liver Repair Strategies)
Show Figures

Figure 1

Open AccessReview
EZH2 in Myeloid Malignancies
Cells 2020, 9(7), 1639; https://doi.org/10.3390/cells9071639 (registering DOI) - 08 Jul 2020
Viewed by 137
Abstract
Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for [...] Read more.
Our understanding of the significance of epigenetic dysregulation in the pathogenesis of myeloid malignancies has greatly advanced in the past decade. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic core component of the Polycomb Repressive Complex 2 (PRC2), which is responsible for gene silencing through trimethylation of H3K27. EZH2 dysregulation is highly tumorigenic and has been observed in various cancers, with EZH2 acting as an oncogene or a tumor-suppressor depending on cellular context. While loss-of-function mutations of EZH2 frequently affect patients with myelodysplastic/myeloproliferative neoplasms, myelodysplastic syndrome and myelofibrosis, cases of chronic myeloid leukemia (CML) seem to be largely characterized by EZH2 overexpression. A variety of other factors frequently aberrant in myeloid leukemia can affect PRC2 function and disease pathogenesis, including Additional Sex Combs Like 1 (ASXL1) and splicing gene mutations. As the genetic background of myeloid malignancies is largely heterogeneous, it is not surprising that EZH2 mutations act in conjunction with other aberrations. Since EZH2 mutations are considered to be early events in disease pathogenesis, they are of therapeutic interest to researchers, though targeting of EZH2 loss-of-function does present unique challenges. Preliminary research indicates that combined tyrosine kinase inhibitor (TKI) and EZH2 inhibitor therapy may provide a strategy to eliminate the residual disease burden in CML to allow patients to remain in treatment-free remission. Full article
(This article belongs to the Special Issue Pathophysiology and Molecular Targets in Myeloid Neoplasia)
Show Figures

Figure 1

Open AccessReview
Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease
Cells 2020, 9(7), 1638; https://doi.org/10.3390/cells9071638 (registering DOI) - 08 Jul 2020
Viewed by 73
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD. Full article
(This article belongs to the Special Issue The Role of PPARs in Disease)
Show Figures

Figure 1

Open AccessReview
Chemical Modulation of Mitochondria–Endoplasmic Reticulum Contact Sites
Cells 2020, 9(7), 1637; https://doi.org/10.3390/cells9071637 - 07 Jul 2020
Viewed by 194
Abstract
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described [...] Read more.
Contact sites between mitochondria and endoplasmic reticulum (ER) are points in which the two organelles are in close proximity. Due to their structural and functional complexity, their exploitation as pharmacological targets has never been considered so far. Notwithstanding, the number of compounds described to target proteins residing at these interfaces either directly or indirectly is rising. Here we provide original insight into mitochondria–ER contact sites (MERCs), with a comprehensive overview of the current MERCs pharmacology. Importantly, we discuss the considerable potential of MERCs to become a druggable target for the development of novel therapeutic strategies. Full article
Show Figures

Figure 1

Open AccessReview
Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases
Cells 2020, 9(7), 1636; https://doi.org/10.3390/cells9071636 - 07 Jul 2020
Viewed by 181
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and [...] Read more.
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases. Full article
(This article belongs to the Special Issue Stem Cells and Degenerative Diseases 2020)
Show Figures

Figure 1

Open AccessArticle
The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration
Cells 2020, 9(7), 1635; https://doi.org/10.3390/cells9071635 - 07 Jul 2020
Viewed by 298
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by [...] Read more.
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin. Full article
(This article belongs to the Special Issue Actin-Myosin Cytoskeleton Regulation and Function)
Show Figures

Figure 1

Open AccessArticle
Bivalent Inhibitor with Selectivity for Trimeric MMP-9 Amplifies Neutrophil Chemotaxis and Enables Functional Studies on MMP-9 Proteoforms
Cells 2020, 9(7), 1634; https://doi.org/10.3390/cells9071634 - 07 Jul 2020
Viewed by 131
Abstract
A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an [...] Read more.
A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting approach to control inflammation. We evaluated the potential of a bivalent carboxylate inhibitor to selectively inhibit the trimeric proteoform of MMP-9 and compared this with a corresponding monovalent inhibitor. The bivalent inhibitor efficiently inhibited trimeric MMP-9 (IC50 = 0.1 nM), with at least 500-fold selectivity for MMP-9 trimers over monomers. Surprisingly, in a mouse model for chemotaxis, the bivalent inhibitor amplified leukocyte influxes towards lipopolysaccharide-induced inflammation. We verified by microscopic and flow cytometry analysis increased amounts of neutrophils. In a mouse model for endotoxin shock, mice treated with the bivalent inhibitor had significantly increased levels of MMP-9 in plasma and lungs, indicative for increased inflammation. In conclusion, we propose a new role for MMP-9 trimers in tempering excessive neutrophil migration. In addition, we have identified a small molecule inhibitor with a high selectivity for the trimeric proteoform of MMP-9, which will allow further research on the functions of MMP-9 proteoforms. Full article
(This article belongs to the Special Issue Matrix Metalloproteinases: From Structure to Function)
Show Figures

Figure 1

Open AccessArticle
Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions
Cells 2020, 9(7), 1633; https://doi.org/10.3390/cells9071633 - 07 Jul 2020
Viewed by 151
Abstract
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the [...] Read more.
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal ‘head-to-tail’ interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends. Full article
(This article belongs to the Special Issue Nuclear Architecture, Lipids, and Phase Separation)
Open AccessFeature PaperReview
Dysregulation of TCTP in Biological Processes and Diseases
Cells 2020, 9(7), 1632; https://doi.org/10.3390/cells9071632 - 07 Jul 2020
Viewed by 124
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular [...] Read more.
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer. Full article
(This article belongs to the Special Issue Role of TCTP in Cell Biological and Disease Processes)
Open AccessArticle
Basophils from Cancer Patients Respond to Immune Stimuli and Predict Clinical Outcome
Cells 2020, 9(7), 1631; https://doi.org/10.3390/cells9071631 - 07 Jul 2020
Viewed by 147
Abstract
Basophils are involved in manifestations of hypersensitivity, however, the current understanding of their propensity for activation and their prognostic value in cancer patients remains unclear. As in healthy and atopic individuals, basophil populations were identified in blood from ovarian cancer patients (n [...] Read more.
Basophils are involved in manifestations of hypersensitivity, however, the current understanding of their propensity for activation and their prognostic value in cancer patients remains unclear. As in healthy and atopic individuals, basophil populations were identified in blood from ovarian cancer patients (n = 53) with diverse tumor histologies and treatment histories. Ex vivo basophil activation was measured by CD63 expression using the basophil activation test (BAT). Irrespective of prior treatment, basophils could be activated by stimulation with IgE- (anti-FcεRI and anti-IgE) and non-IgE (fMLP) mediated triggers. Basophil activation was detected by ex vivo exposure to paclitaxel, but not to other anti-cancer therapies, in agreement with a clinical history of systemic hypersensitivity reactions to paclitaxel. Protein and gene expression analyses support the presence of basophils (CCR3, CD123, FcεRI) and activated basophils (CD63, CD203c, tryptase) in ovarian tumors. Greater numbers of circulating basophils, cells with greater capacity for ex vivo stimulation (n = 35), and gene signatures indicating the presence of activated basophils in tumors (n = 439) were each associated with improved survival in ovarian cancer. Circulating basophils in cancer patients respond to IgE- and non-IgE-mediated signals and could help identify hypersensitivity to therapeutic agents. Activated circulating and tumor-infiltrating basophils may be potential biomarkers in oncology. Full article
Show Figures

Graphical abstract

Open AccessReview
Metabolome Changes in Cerebral Ischemia
Cells 2020, 9(7), 1630; https://doi.org/10.3390/cells9071630 (registering DOI) - 07 Jul 2020
Viewed by 138
Abstract
Cerebral ischemia is caused by perturbations in blood flow to the brain that trigger sequential and complex metabolic and cellular pathologies. This leads to brain tissue damage, including neuronal cell death and cerebral infarction, manifesting clinically as ischemic stroke, which is the cause [...] Read more.
Cerebral ischemia is caused by perturbations in blood flow to the brain that trigger sequential and complex metabolic and cellular pathologies. This leads to brain tissue damage, including neuronal cell death and cerebral infarction, manifesting clinically as ischemic stroke, which is the cause of considerable morbidity and mortality worldwide. To analyze the underlying biological mechanisms and identify potential biomarkers of ischemic stroke, various in vitro and in vivo experimental models have been established investigating different molecular aspects, such as genes, microRNAs, and proteins. Yet, the metabolic and cellular pathologies of ischemic brain injury remain not fully elucidated, and the relationships among various pathological mechanisms are difficult to establish due to the heterogeneity and complexity of the disease. Metabolome-based techniques can provide clues about the cellular pathologic status of a condition as metabolic disturbances can represent an endpoint in biological phenomena. A number of investigations have analyzed metabolic changes in samples from cerebral ischemia patients and from various in vivo and in vitro models. We previously analyzed levels of amino acids and organic acids, as well as polyamine distribution in an in vivo rat model, and identified relationships between metabolic changes and cellular functions through bioinformatics tools. This review focuses on the metabolic and cellular changes in cerebral ischemia that offer a deeper understanding of the pathology underlying ischemic strokes and contribute to the development of new diagnostic and therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cerebral Ischemia)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop