Radar echo extrapolation is a critical forecasting tool in the field of meteorology, playing an especially vital role in nowcasting and weather modification operations. In recent years, spatiotemporal sequence prediction models based on deep learning have garnered significant attention and achieved notable progress in radar echo extrapolation. However, most of these extrapolation network architectures are built upon convolutional neural networks, using radar echo images as input. Typically, radar echo intensity values ranging from −5 to 70 dBZ with a resolution of 5 dBZ are converted into 0–255 grayscale images from pseudo-color representations, which inevitably results in the loss of important echo details. Furthermore, as the extrapolation time increases, the smoothing effect inherent to convolution operations leads to increasingly blurred predictions. To address the algorithmic limitations of deep learning-based echo extrapolation models, this study introduces three major improvements: (1) A Deep Convolutional Generative Adversarial Network (DCGAN) is integrated into the ConvLSTM-based extrapolation model to construct a DCGAN-enhanced architecture, significantly improving the quality of radar echo extrapolation; (2) Considering that the evolution of radar echoes is closely related to the surrounding meteorological environment, the study incorporates specific physical variable products from the initial zero-hour field of RMAPS-NOW (the Rapid-update Multiscale Analysis and Prediction System—NOWcasting subsystem), developed by the Institute of Urban Meteorology, China. These variables are encoded jointly with high-resolution (0.5 dB) radar mosaic data to form multiple radar cells as input. A multi-channel radar echo extrapolation network architecture (MR-DCGAN) is then designed based on the DCGAN framework; (3) Since radar echo decay becomes more prominent over longer extrapolation horizons, this study departs from previous approaches that use a single model to extrapolate 120 min. Instead, it customizes time-specific loss functions for spatiotemporal attenuation correction and independently trains 20 separate models to achieve the full 120 min extrapolation. The dataset consists of radar composite reflectivity mosaics over North China within the range of 116.10–117.50°E and 37.77–38.77°N, collected from June to September during 2018–2022. A total of 39,000 data samples were matched with the initial zero-hour fields from RMAPS-NOW, with 80% (31,200 samples) used for training and 20% (7800 samples) for testing. Based on the ConvLSTM and the proposed MR-DCGAN architecture, 20 extrapolation models were trained using four different input encoding strategies. The models were evaluated using the Critical Success Index (CSI), Probability of Detection (POD), and False Alarm Ratio (FAR). Compared to the baseline ConvLSTM-based extrapolation model without physical variables, the models trained with the MR-DCGAN architecture achieved, on average, 18.59%, 8.76%, and 11.28% higher CSI values, 19.46%, 19.21%, and 19.18% higher POD values, and 19.85%, 11.48%, and 9.88% lower FAR values under the 20 dBZ, 30 dBZ, and 35 dBZ reflectivity thresholds, respectively. Among all tested configurations, the model that incorporated three physical variables—relative humidity (rh),
u-wind, and
v-wind—demonstrated the best overall performance across various thresholds, with CSI and POD values improving by an average of 16.75% and 24.75%, respectively, and FAR reduced by 15.36%. Moreover, the SSIM of the MR-DCGAN models demonstrates a more gradual decline and maintains higher overall values, indicating superior capability in preserving echo structural features. Meanwhile, the comparative experiments demonstrate that the MR-DCGAN (
u,
v + rh) model outperforms the MR-ConvLSTM (
u,
v + rh) model in terms of evaluation metrics. In summary, the model trained with the MR-DCGAN architecture effectively enhances the accuracy of radar echo extrapolation.
Full article