Editor's Choice Articles

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessFeature PaperEditor’s ChoiceArticle
Remote Sensing Big Data Classification with High Performance Distributed Deep Learning
Remote Sens. 2019, 11(24), 3056; https://doi.org/10.3390/rs11243056 - 17 Dec 2019
Cited by 2
Abstract
High-Performance Computing (HPC) has recently been attracting more attention in remote sensing applications due to the challenges posed by the increased amount of open data that are produced daily by Earth Observation (EO) programs. The unique parallel computing environments and programming techniques that [...] Read more.
High-Performance Computing (HPC) has recently been attracting more attention in remote sensing applications due to the challenges posed by the increased amount of open data that are produced daily by Earth Observation (EO) programs. The unique parallel computing environments and programming techniques that are integrated in HPC systems are able to solve large-scale problems such as the training of classification algorithms with large amounts of Remote Sensing (RS) data. This paper shows that the training of state-of-the-art deep Convolutional Neural Networks (CNNs) can be efficiently performed in distributed fashion using parallel implementation techniques on HPC machines containing a large number of Graphics Processing Units (GPUs). The experimental results confirm that distributed training can drastically reduce the amount of time needed to perform full training, resulting in near linear scaling without loss of test accuracy. Full article
(This article belongs to the Special Issue Analysis of Big Data in Remote Sensing)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
TanDEM-X Forest Mapping Using Convolutional Neural Networks
Remote Sens. 2019, 11(24), 2980; https://doi.org/10.3390/rs11242980 - 12 Dec 2019
Cited by 1
Abstract
In this work, we face the problem of forest mapping from TanDEM-X data by means of Convolutional Neural Networks (CNNs). Our study aims to highlight the relevance of domain-related features for the extraction of the information of interest thanks to their joint nonlinear [...] Read more.
In this work, we face the problem of forest mapping from TanDEM-X data by means of Convolutional Neural Networks (CNNs). Our study aims to highlight the relevance of domain-related features for the extraction of the information of interest thanks to their joint nonlinear processing through CNN. In particular, we focus on the main InSAR features as the backscatter, coherence, and volume decorrelation, as well as the acquisition geometry through the local incidence angle. By using different state-of-the-art CNN architectures, our experiments consistently demonstrate the great potential of deep learning in data fusion for information extraction in the context of synthetic aperture radar signal processing and specifically for the task of forest mapping from TanDEM-X images. We compare three state-of-the-art CNN architectures, such as ResNet, DenseNet, and U-Net, obtaining a large performance gain over the baseline approach for all of them, with the U-Net solution being the most effective one. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Overall Methodology Design for the United States National Land Cover Database 2016 Products
Remote Sens. 2019, 11(24), 2971; https://doi.org/10.3390/rs11242971 - 11 Dec 2019
Cited by 2
Abstract
The National Land Cover Database (NLCD) 2016 provides a suite of data products, including land cover and land cover change of the conterminous United States from 2001 to 2016, at two- to three-year intervals. The development of this product is part of an [...] Read more.
The National Land Cover Database (NLCD) 2016 provides a suite of data products, including land cover and land cover change of the conterminous United States from 2001 to 2016, at two- to three-year intervals. The development of this product is part of an effort to meet the growing demand for longer temporal duration and more frequent, accurate, and consistent land cover and change information. To accomplish this, we designed a new land cover strategy and developed comprehensive methods, models, and procedures for NLCD 2016 implementation. Major steps in the new procedures consist of data preparation, land cover change detection and classification, theme-based postprocessing, and final integration. Data preparation includes Landsat imagery selection, cloud detection, and cloud filling, as well as compilation and creation of more than 30 national-scale ancillary datasets. Land cover change detection includes single-date water and snow/ice detection algorithms and models, two-date multi-index integrated change detection models, and long-term multi-date change algorithms and models. The land cover classification includes seven-date training data creation and 14-run classifications. Pools of training data for change and no-change areas were created before classification based on integrated information from ancillary data, change-detection results, Landsat spectral and temporal information, and knowledge-based trajectory analysis. In postprocessing, comprehensive models for each land cover theme were developed in a hierarchical order to ensure the spatial and temporal coherence of land cover and land cover changes over 15 years. An initial accuracy assessment on four selected Landsat path/rows classified with this method indicates an overall accuracy of 82.0% at an Anderson Level II classification and 86.6% at the Anderson Level I classification after combining the primary and alternate reference labels. This methodology was used for the operational production of NLCD 2016 for the Conterminous United States, with final produced products available for free download. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions
Remote Sens. 2019, 11(24), 2936; https://doi.org/10.3390/rs11242936 - 07 Dec 2019
Cited by 3
Abstract
The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in [...] Read more.
The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It is shown that GSMaPV07 surpass the performance of IMERGV06B Final for almost all regions in terms of systematic and random error metrics. The new orographic rainfall classification in the GSMaPV07 algorithm is able to improve the detection of orographic rainfall, the rainfall amounts, and error metrics. Moreover, IMERGV05B showed significantly better performance, capturing the lighter and heavier precipitation values compared to IMERGV06B for almost all regions due to changes conducted to the morphing, where motion vectors are derived using total column water vapor for IMERGV06B. Full article
(This article belongs to the Special Issue Precipitation and Water Cycle Measurements using Remote Sensing)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Use of Remote Sensing, Geophysical Techniques and Archaeological Excavations to Define the Roman Amphitheater of Torreparedones (Córdoba, Spain)
Remote Sens. 2019, 11(24), 2937; https://doi.org/10.3390/rs11242937 - 07 Dec 2019
Cited by 1
Abstract
Non-destructive techniques are widely used to explore and detect burial remains in archaeological sites. In this study, we present two sets of sensors, aerial and geophysics, that we have combined to analyze a 2 ha sector of ground in the Torreparedones Archaeological Park [...] Read more.
Non-destructive techniques are widely used to explore and detect burial remains in archaeological sites. In this study, we present two sets of sensors, aerial and geophysics, that we have combined to analyze a 2 ha sector of ground in the Torreparedones Archaeological Park located in Cordoba, Spain. Aerial platforms were used in a first step to identify a Roman amphitheater located near the Roman city. To ensure greater reliability and to rule out geological causes, a geophysical survey was subsequently carried out. Magnetic gradiometer, electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) methods were also used to confirm the existence of this structure, define the geometry and, to the greatest possible extent, determine the degree of preservation of this construction. The adverse conditions for data acquisition was one of the main constraints, since the area of interest was an almond plantation which conditioned geophysical profiles. In addition, due to the low dielectric and magnetic contrast between the structures and the embedding material, meticulous data processing was required. In order to obtain further evidence of this amphitheater and to corroborate the aerial images and the geophysical models, an archaeological excavation was carried out. The results confirmed the cross-validation with the predicted non-destructive models. Therefore, this work can serve as an example to be used prior to conservation actions to investigate the suburbs and landscapes near similar roman cities in Spain. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Evaluation of UAV LiDAR for Mapping Coastal Environments
Remote Sens. 2019, 11(24), 2893; https://doi.org/10.3390/rs11242893 - 04 Dec 2019
Cited by 5
Abstract
Unmanned Aerial Vehicle (UAV)-based remote sensing techniques have demonstrated great potential for monitoring rapid shoreline changes. With image-based approaches utilizing Structure from Motion (SfM), high-resolution Digital Surface Models (DSM), and orthophotos can be generated efficiently using UAV imagery. However, image-based mapping yields relatively [...] Read more.
Unmanned Aerial Vehicle (UAV)-based remote sensing techniques have demonstrated great potential for monitoring rapid shoreline changes. With image-based approaches utilizing Structure from Motion (SfM), high-resolution Digital Surface Models (DSM), and orthophotos can be generated efficiently using UAV imagery. However, image-based mapping yields relatively poor results in low textured areas as compared to those from LiDAR. This study demonstrates the applicability of UAV LiDAR for mapping coastal environments. A custom-built UAV-based mobile mapping system is used to simultaneously collect LiDAR and imagery data. The quality of LiDAR, as well as image-based point clouds, are investigated and compared over different geomorphic environments in terms of their point density, relative and absolute accuracy, and area coverage. The results suggest that both UAV LiDAR and image-based techniques provide high-resolution and high-quality topographic data, and the point clouds generated by both techniques are compatible within a 5 to 10 cm range. UAV LiDAR has a clear advantage in terms of large and uniform ground coverage over different geomorphic environments, higher point density, and ability to penetrate through vegetation to capture points below the canopy. Furthermore, UAV LiDAR-based data acquisitions are assessed for their applicability in monitoring shoreline changes over two actively eroding sandy beaches along southern Lake Michigan, Dune Acres, and Beverly Shores, through repeated field surveys. The results indicate a considerable volume loss and ridge point retreat over an extended period of one year (May 2018 to May 2019) as well as a short storm-induced period of one month (November 2018 to December 2018). The foredune ridge recession ranges from 0 m to 9 m. The average volume loss at Dune Acres is 18.2 cubic meters per meter and 12.2 cubic meters per meter within the one-year period and storm-induced period, respectively, highlighting the importance of episodic events in coastline changes. The average volume loss at Beverly Shores is 2.8 cubic meters per meter and 2.6 cubic meters per meter within the survey period and storm-induced period, respectively. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data
Remote Sens. 2019, 11(23), 2881; https://doi.org/10.3390/rs11232881 - 03 Dec 2019
Cited by 1
Abstract
The rapid growth of satellites orbiting the planet is generating massive amounts of data for Earth science applications. Concurrently, state-of-the-art deep-learning-based algorithms and cloud computing infrastructure have become available with a great potential to revolutionize the image processing of satellite remote sensing. Within [...] Read more.
The rapid growth of satellites orbiting the planet is generating massive amounts of data for Earth science applications. Concurrently, state-of-the-art deep-learning-based algorithms and cloud computing infrastructure have become available with a great potential to revolutionize the image processing of satellite remote sensing. Within this context, this study evaluated, based on thousands of PlanetScope images obtained over a 12-month period, the performance of three machine learning approaches (random forest, long short-term memory-LSTM, and U-Net). We applied these approaches to mapped pasturelands in a Central Brazil region. The deep learning algorithms were implemented using TensorFlow, while the random forest utilized the Google Earth Engine platform. The accuracy assessment presented F1 scores for U-Net, LSTM, and random forest of, respectively, 96.94%, 98.83%, and 95.53% in the validation data, and 94.06%, 87.97%, and 82.57% in the test data, indicating a better classification efficiency using the deep learning approaches. Although the use of deep learning algorithms depends on a high investment in calibration samples and the generalization of these methods requires further investigations, our results suggest that the neural network architectures developed in this study can be used to map large geographic regions that consider a wide variety of satellite data (e.g., PlanetScope, Sentinel-2, Landsat-8). Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France
Remote Sens. 2019, 11(23), 2842; https://doi.org/10.3390/rs11232842 - 29 Nov 2019
Cited by 2
Abstract
This paper investigates to what extent soil moisture and vegetation density information can be extracted from the Advanced Scatterometer (ASCAT) satellite-derived radar backscatter (σ°) in a data assimilation context. The impact of independent estimates of the surface soil moisture (SSM) and [...] Read more.
This paper investigates to what extent soil moisture and vegetation density information can be extracted from the Advanced Scatterometer (ASCAT) satellite-derived radar backscatter (σ°) in a data assimilation context. The impact of independent estimates of the surface soil moisture (SSM) and leaf area index (LAI) of diverse vegetation types on ASCAT σ° observations is simulated over southwestern France using the water cloud model (WCM). The LAI and SSM variables used by the WCM are derived from satellite observations and from the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model, respectively. They permit the calibration of the four parameters of the WCM describing static soil and vegetation characteristics. A seasonal analysis of the model scores shows that the WCM has shortcomings over karstic areas and wheat croplands. In the studied area, the Klaus windstorm in January 2009 damaged a large fraction of the Landes forest. The ability of the WCM to represent the impact of Klaus and to simulate ASCAT σ° observations in contrasting land-cover conditions is explored. The difference in σ° observations between the forest zone affected by the storm and the bordering agricultural areas presents a marked seasonality before the storm. The difference is small in the springtime (from March to May) and large in the autumn (September to November) and wintertime (December to February). After the storm, hardly any seasonality was observed over four years. This study shows that the WCM is able to simulate this extreme event. It is concluded that the WCM could be used as an observation operator for the assimilation of ASCAT σ° observations into the ISBA land surface model. Full article
(This article belongs to the Special Issue Soil Moisture Retrieval using Radar Remote Sensing Sensors)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Active SLAM for Autonomous Underwater Exploration
Remote Sens. 2019, 11(23), 2827; https://doi.org/10.3390/rs11232827 - 28 Nov 2019
Cited by 1
Abstract
Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater [...] Read more.
Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Accurate Calibration Scheme for a Multi-Camera Mobile Mapping System
Remote Sens. 2019, 11(23), 2778; https://doi.org/10.3390/rs11232778 - 25 Nov 2019
Cited by 2
Abstract
Mobile mapping systems (MMS) are increasingly used for many photogrammetric and computer vision applications, especially encouraged by the fast and accurate geospatial data generation. The accuracy of point position in an MMS is mainly dependent on the quality of calibration, accuracy of sensor [...] Read more.
Mobile mapping systems (MMS) are increasingly used for many photogrammetric and computer vision applications, especially encouraged by the fast and accurate geospatial data generation. The accuracy of point position in an MMS is mainly dependent on the quality of calibration, accuracy of sensor synchronization, accuracy of georeferencing and stability of geometric configuration of space intersections. In this study, we focus on multi-camera calibration (interior and relative orientation parameter estimation) and MMS calibration (mounting parameter estimation). The objective of this study was to develop a practical scheme for rigorous and accurate system calibration of a photogrammetric mapping station equipped with a multi-projective camera (MPC) and a global navigation satellite system (GNSS) and inertial measurement unit (IMU) for direct georeferencing. The proposed technique is comprised of two steps. Firstly, interior orientation parameters of each individual camera in an MPC and the relative orientation parameters of each cameras of the MPC with respect to the first camera are estimated. In the second step the offset and misalignment between MPC and GNSS/IMU are estimated. The global accuracy of the proposed method was assessed using independent check points. A correspondence map for a panorama is introduced that provides metric information. Our results highlight that the proposed calibration scheme reaches centimeter-level global accuracy for 3D point positioning. This level of global accuracy demonstrates the feasibility of the proposed technique and has the potential to fit accurate mapping purposes. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
RealPoint3D: Generating 3D Point Clouds from a Single Image of Complex Scenarios
Remote Sens. 2019, 11(22), 2644; https://doi.org/10.3390/rs11222644 - 13 Nov 2019
Cited by 2
Abstract
Generating 3D point clouds from a single image has attracted full attention from researchers in the field of multimedia, remote sensing and computer vision. With the recent proliferation of deep learning, various deep models have been proposed for the 3D point cloud generation. [...] Read more.
Generating 3D point clouds from a single image has attracted full attention from researchers in the field of multimedia, remote sensing and computer vision. With the recent proliferation of deep learning, various deep models have been proposed for the 3D point cloud generation. However, they require objects to be captured with absolutely clean backgrounds and fixed viewpoints, which highly limits their application in the real environment. To guide 3D point cloud generation, we propose a novel network, RealPoint3D, to integrate prior 3D shape knowledge into the network. Taking additional 3D information, RealPoint3D can handle 3D object generation from a single real image captured from any viewpoint and complex background. Specifically, provided a query image, we retrieve the nearest shape model from a pre-prepared 3D model database. Then, the image, together with the retrieved shape model, is fed into RealPoint3D to generate a fine-grained 3D point cloud. We evaluated the proposed RealPoint3D on the ShapeNet dataset and ObjectNet3D dataset for the 3D point cloud generation. Experimental results and comparisons with state-of-the-art methods demonstrate that our framework achieves superior performance. Furthermore, our proposed framework works well for real images in complex backgrounds (the image has the remaining objects in addition to the reconstructed object, and the reconstructed object may be occluded or truncated) with various viewing angles. Full article
(This article belongs to the Special Issue Point Cloud Processing in Remote Sensing)
Show Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle
Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data
Remote Sens. 2019, 11(22), 2599; https://doi.org/10.3390/rs11222599 - 06 Nov 2019
Cited by 2
Abstract
Detailed knowledge about tree species composition is of great importance for forest management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the potential benefits of using high temporal resolution [...] Read more.
Detailed knowledge about tree species composition is of great importance for forest management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the potential benefits of using high temporal resolution data for classification of five coniferous and seven broadleaved tree species in a diverse Central European Forest. To run the classification, 18 cloud-free S2 acquisitions were analyzed in a two-step approach. The available scenes were first used to stratify the study area into six broad land-cover classes. Subsequently, additional classification models were created separately for the coniferous and the broadleaved forest strata. To permit a deeper analytical insight in the benefits of multi-temporal datasets for species identification, classification models were developed taking into account all 262,143 possible permutations of the 18 S2 scenes. Each model was fine-tuned using a stepwise recursive feature reduction. The additional use of vegetation indices improved the model performances by around 5 percentage points. Individual mono-temporal tree species accuracies range from 48.1% (January 2017) to 78.6% (June 2017). Compared to the best mono-temporal results, the multi-temporal analysis approach improves the out-of-bag overall accuracy from 72.9% to 85.7% for the broadleaved and from 83.8% to 95.3% for the coniferous tree species, respectively. Remarkably, a combination of six–seven scenes achieves a model quality equally high as the model based on all data; images from April until August proved most important. The classes European Beech and European Larch attain the highest user’s accuracies of 96.3% and 95.9%, respectively. The most important spectral variables to distinguish between tree species are located in the Red (coniferous) and short wave infrared (SWIR) bands (broadleaved), respectively. Overall, the study highlights the high potential of multi-temporal S2 data for species-level classifications in Central European forests. Full article
(This article belongs to the Special Issue Mapping Tree Species Diversity)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Pixel Tracking to Estimate Rivers Water Flow Elevation Using Cosmo-SkyMed Synthetic Aperture Radar Data
Remote Sens. 2019, 11(21), 2574; https://doi.org/10.3390/rs11212574 - 02 Nov 2019
Cited by 3
Abstract
The lack of availability of historical and reliable river water level information is an issue that can be overcome through the exploitation of modern satellite remote sensing systems. This research has the objective of contributing in solving the information-gap problem of river flow [...] Read more.
The lack of availability of historical and reliable river water level information is an issue that can be overcome through the exploitation of modern satellite remote sensing systems. This research has the objective of contributing in solving the information-gap problem of river flow monitoring through a synthetic aperture radar (SAR) signal processing technique that has the capability to perform water flow elevation estimation. This paper proposes the application of a new method for the design of a robust procedure to track over the time double-bounce reflections from bridges crossing rivers to measure the gap space existing between the river surface and bridges. Specifically, the difference in position between the single and double bounce is suitably measured over the time. Simulated and satellite temporal series of SAR data from COSMO-SkyMed data are compared to the ground measurements recorded for three gauges sites over the Po and Tiber Rivers, Italy. The obtained performance indices confirm the effectiveness of the method in the estimation of water level also in narrow or ungauged rivers. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Landslide Detection Using Multi-Scale Image Segmentation and Different Machine Learning Models in the Higher Himalayas
Remote Sens. 2019, 11(21), 2575; https://doi.org/10.3390/rs11212575 - 02 Nov 2019
Cited by 6
Abstract
Landslides represent a severe hazard in many areas of the world. Accurate landslide maps are needed to document the occurrence and extent of landslides and to investigate their distribution, types, and the pattern of slope failures. Landslide maps are also crucial for determining [...] Read more.
Landslides represent a severe hazard in many areas of the world. Accurate landslide maps are needed to document the occurrence and extent of landslides and to investigate their distribution, types, and the pattern of slope failures. Landslide maps are also crucial for determining landslide susceptibility and risk. Satellite data have been widely used for such investigations—next to data from airborne or unmanned aerial vehicle (UAV)-borne campaigns and Digital Elevation Models (DEMs). We have developed a methodology that incorporates object-based image analysis (OBIA) with three machine learning (ML) methods, namely, the multilayer perceptron neural network (MLP-NN) and random forest (RF), for landslide detection. We identified the optimal scale parameters (SP) and used them for multi-scale segmentation and further analysis. We evaluated the resulting objects using the object pureness index (OPI), object matching index (OMI), and object fitness index (OFI) measures. We then applied two different methods to optimize the landslide detection task: (a) an ensemble method of stacking that combines the different ML methods for improving the performance, and (b) Dempster–Shafer theory (DST), to combine the multi-scale segmentation and classification results. Through the combination of three ML methods and the multi-scale approach, the framework enhanced landslide detection when it was tested for detecting earthquake-triggered landslides in Rasuwa district, Nepal. PlanetScope optical satellite images and a DEM were used, along with the derived landslide conditioning factors. Different accuracy assessment measures were used to compare the results against a field-based landslide inventory. All ML methods yielded the highest overall accuracies ranging from 83.3% to 87.2% when using objects with the optimal SP compared to other SPs. However, applying DST to combine the multi-scale results of each ML method significantly increased the overall accuracies to almost 90%. Overall, the integration of OBIA with ML methods resulted in appropriate landslide detections, but using the optimal SP and ML method is crucial for success. Full article
(This article belongs to the Special Issue Mass Movement and Soil Erosion Monitoring Using Remote Sensing)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Modeling Quiet Solar Luminosity Variability from TSI Satellite Measurements and Proxy Models during 1980–2018
Remote Sens. 2019, 11(21), 2569; https://doi.org/10.3390/rs11212569 - 01 Nov 2019
Cited by 1
Abstract
A continuous record of direct total solar irradiance (TSI) observations began with a series of satellite experiments in 1978. This record requires comparisons of overlapping satellite observations with adequate relative precisions to provide useful long term TSI trend information. Herein we briefly review [...] Read more.
A continuous record of direct total solar irradiance (TSI) observations began with a series of satellite experiments in 1978. This record requires comparisons of overlapping satellite observations with adequate relative precisions to provide useful long term TSI trend information. Herein we briefly review the active cavity radiometer irradiance monitor physikalisch-meteorologisches observatorium davos (ACRIM-PMOD) TSI composite controversy regarding how the total solar irradiance (TSI) has evolved since 1978 and about whether TSI significantly increased or slightly decreased from 1980 to 2000. The main question is whether TSI increased or decreased during the so-called ACRIM-gap period from 1989 to 1992. There is significant discrepancy between TSI proxy models and observations before and after the gap, which requires a careful revisit of the data analysis and modeling performed during the ACRIM-gap period. In this study, we use three recently proposed TSI proxy models that do not present any TSI increase during the ACRIM-gap, and show that they agree with the TSI data only from 1996 to 2016. However, these same models significantly diverge from the observations from 1981 and 1996. Thus, the scaling errors must be different between the two periods, which suggests errors in these models. By adjusting the TSI proxy models to agree with the data patterns before and after the ACRIM-gap, we found that these models miss a slowly varying TSI component. The adjusted models suggest that the quiet solar luminosity increased from the 1986 to the 1996 TSI minimum by about 0.45 W/m2 reaching a peak near 2000 and decreased by about 0.15 W/m2 from the 1996 to the 2008 TSI cycle minimum. This pattern is found to be compatible with the ACRIM TSI composite and confirms the ACRIM TSI increasing trend from 1980 to 2000, followed by a long-term decreasing trend since. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Upper Ocean Response to Two Sequential Tropical Cyclones over the Northwestern Pacific Ocean
Remote Sens. 2019, 11(20), 2431; https://doi.org/10.3390/rs11202431 - 19 Oct 2019
Cited by 2
Abstract
The upper ocean thermodynamic and biological responses to two sequential tropical cyclones (TCs) over the Northwestern Pacific Ocean were investigated using multi-satellite datasets, in situ observations and numerical model outputs. During Kalmaegi and Fung-Wong, three distinct cold patches were observed at sea surface. [...] Read more.
The upper ocean thermodynamic and biological responses to two sequential tropical cyclones (TCs) over the Northwestern Pacific Ocean were investigated using multi-satellite datasets, in situ observations and numerical model outputs. During Kalmaegi and Fung-Wong, three distinct cold patches were observed at sea surface. The locations of these cold patches are highly correlated with relatively shallower depth of the 26 °C isotherm and mixed layer depth (MLD) and lower upper ocean heat content. The enhancement of surface chlorophyll a (chl-a) concentration was detected in these three regions as well, mainly due to the TC-induced mixing and upwelling as well as the terrestrial runoff. Moreover, the pre-existing ocean cyclonic eddy (CE) has been found to significantly modulate the magnitude of surface cooling and chl-a increase. With the deepening of the MLD on the right side of TCs, the temperature of the mixed layer decreased and the salinity increased. The sequential TCs had superimposed effects on the upper ocean response. The possible causes of sudden track change in sequential TCs scenario were also explored. Both atmospheric and oceanic conditions play noticeable roles in abrupt northward turning of the subsequent TC Fung-Wong. Full article
(This article belongs to the Special Issue Tropical Cyclones Remote Sensing and Data Assimilation)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
New Global View of Above-Cloud Absorbing Aerosol Distribution Based on CALIPSO Measurements
Remote Sens. 2019, 11(20), 2396; https://doi.org/10.3390/rs11202396 - 16 Oct 2019
Abstract
Above-low-level-cloud aerosols (ACAs) have gradually gained more interest in recent years; however, the combined aerosol–cloud radiation effects are not well understood. The uncertainty about the radiative effects of aerosols above cloud mainly stems from the lack of comprehensive and accurate retrieval of aerosols [...] Read more.
Above-low-level-cloud aerosols (ACAs) have gradually gained more interest in recent years; however, the combined aerosol–cloud radiation effects are not well understood. The uncertainty about the radiative effects of aerosols above cloud mainly stems from the lack of comprehensive and accurate retrieval of aerosols and clouds for ACA scenes. In this study, an improved ACA identification and retrieval methodology was developed to provide a new global view of the ACA distribution by combining three-channel CALIOP (The Cloud–Aerosol Lidar with Orthogonal Polarization) observations. The new method can reliably identify and retrieve both thin and dense ACA layers, providing consistent results between the day- and night-time retrieval of ACAs. Then, new four-year (2007 to 2010) global ACA datasets were built, and new seasonal mean views of global ACA occurrence, optical depth, and geometrical thickness were presented and analyzed. Further discussion on the relative position of ACAs to low clouds showed that the mean distance between the ACA layer and the low cloud deck over the tropical Atlantic region is less than 0.2 km. This indicates that the ACAs over this region are more likely to be mixed with low-level clouds, thereby possibly influencing the cloud microphysics over this region, contrary to findings reported from previous studies. The results not only help us better understand global aerosol transportation and aerosol–cloud interactions but also provide useful information for model evaluation and improvements. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Extracting Khmer Rouge Irrigation Networks from Pre-Landsat 4 Satellite Imagery Using Vegetation Indices
Remote Sens. 2019, 11(20), 2397; https://doi.org/10.3390/rs11202397 - 16 Oct 2019
Abstract
Often discussed, the spatial extent and scope of the Khmer Rouge irrigation network has not been previously mapped on a national scale. Although low resolution, early Landsat images can identify water features accurately when using vegetation indices. We discuss the methods involved in [...] Read more.
Often discussed, the spatial extent and scope of the Khmer Rouge irrigation network has not been previously mapped on a national scale. Although low resolution, early Landsat images can identify water features accurately when using vegetation indices. We discuss the methods involved in mapping historic irrigation on a national scale, as well as comparing the performance of several vegetation indices at irrigation detection. Irrigation was a critical component of the Communist Part of Kampuchea (CPK)’s plan to transform Cambodia into an ideal communist society, aimed at providing surplus for the nation by tripling rice production. Of the three indices used, normalized difference, corrected transformed, and Thiam’s transformed vegetation indexes, (NDVI, CTVI, and TTVI respectively), the CTVI provided the clearest images of water storage and transport. This method for identifying anthropogenic water features proved highly accurate, despite low spatial resolution. We were successful in locating and identifying both water storage and irrigation canals from the time that the CPK regime was in power. In many areas these canals and reservoirs are no longer visible, even with high resolution modern satellites. Most of the structures built at this time experienced some collapse, either during the CPK regime or soon after, however many have been rehabilitated and are still in use, in at least a partial capacity. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceCommunication
RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range
Remote Sens. 2019, 11(20), 2401; https://doi.org/10.3390/rs11202401 - 16 Oct 2019
Cited by 3
Abstract
Vicarious calibration approaches using in situ measurements saw first use in the early 1980s and have since improved to keep pace with the evolution of the radiometric requirements of the sensors that are being calibrated. The advantage of in situ measurements for vicarious [...] Read more.
Vicarious calibration approaches using in situ measurements saw first use in the early 1980s and have since improved to keep pace with the evolution of the radiometric requirements of the sensors that are being calibrated. The advantage of in situ measurements for vicarious calibration is that they can be carried out with traceable and quantifiable accuracy, making them ideal for interconsistency studies of on-orbit sensors. The recent development of automated sites to collect the in situ data has led to an increase in the available number of datasets for sensor calibration. The current work describes the Radiometric Calibration Network (RadCalNet) that is an effort to provide automated surface and atmosphere in situ data as part of a network including multiple sites for the purpose of optical imager radiometric calibration in the visible to shortwave infrared spectral range. The key goals of RadCalNet are to standardize protocols for collecting data, process to top-of-atmosphere reflectance, and provide uncertainty budgets for automated sites traceable to the international system of units. RadCalNet is the result of efforts by the RadCalNet Working Group under the umbrella of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and the Infrared Visible Optical Sensors (IVOS). Four radiometric calibration instrumented sites located in the USA, France, China, and Namibia are presented here that were used as initial sites for prototyping and demonstrating RadCalNet. All four sites rely on collection of data for assessing the surface reflectance as well as atmospheric data over that site. The data are converted to top-of-atmosphere reflectance within RadCalNet and provided through a web portal to allow users to either radiometrically calibrate or verify the calibration of their sensors of interest. Top-of-atmosphere reflectance data with associated uncertainties are available at 10 nm intervals over the 400 nm to 1000 nm spectral range at 30 min intervals for a nadir-viewing geometry. An example is shown demonstrating how top-of-atmosphere data from RadCalNet can be used to determine the interconsistency between two sensors. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Regional Atmospheric Aerosol Pollution Detection Based on LiDAR Remote Sensing
Remote Sens. 2019, 11(20), 2339; https://doi.org/10.3390/rs11202339 - 09 Oct 2019
Abstract
Atmospheric aerosol is one of the major factors that cause environmental pollution. Light detection and ranging (LiDAR) is an effective remote sensing tool for aerosol observation. In order to provide a comprehensive understanding of the aerosol pollution from the physical perspective, this study [...] Read more.
Atmospheric aerosol is one of the major factors that cause environmental pollution. Light detection and ranging (LiDAR) is an effective remote sensing tool for aerosol observation. In order to provide a comprehensive understanding of the aerosol pollution from the physical perspective, this study investigated regional atmospheric aerosol pollution through the integration of measurements, including LiDAR, satellite, and ground station observations and combined the backward trajectory tracking model. First, the horizontal distribution of atmospheric aerosol wa obtained by a whole-day working scanning micro-pulse LiDAR placed on a residential building roof. Another micro-pulse LiDAR was arranged at a distance from the scanning LiDAR to provide the vertical distribution information of aerosol. A new method combining the slope and Fernald methods was then proposed for the retrieval of the horizontal aerosol extinction coefficient. Finally, whole-day data, including the LiDAR data, the satellite remote sensing data, meteorological data, and backward trajectory tracking model, were selected to reveal the vertical and horizontal distribution characteristics of aerosol pollution and to provide some evidence of the potential pollution sources in the regional area. Results showed that the aerosol pollutants in the district on this specific day were mainly produced locally and distributed below 2.0 km. Six areas with high aerosol concentration were detected in the scanning area, showing that the aerosol pollution was mainly obtained from local life, transportation, and industrial activities. Correlation analysis with the particulate matter data of the ground air quality national control station verified the accuracy of the LiDAR detection results and revealed the effectiveness of LiDAR detection of atmospheric aerosol pollution. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Quantifying Tidal Fluctuations in Remote Sensing Infrared SST Observations
Remote Sens. 2019, 11(19), 2313; https://doi.org/10.3390/rs11192313 - 04 Oct 2019
Abstract
The expected amplitude of fixed-point sea surface temperature (SST) fluctuations induced by barotropic and baroclinic tidal flows is estimated from tidal current atlases and SST observations. The fluctuations considered are the result of the advection of pre-existing SST fronts by tidal currents. They [...] Read more.
The expected amplitude of fixed-point sea surface temperature (SST) fluctuations induced by barotropic and baroclinic tidal flows is estimated from tidal current atlases and SST observations. The fluctuations considered are the result of the advection of pre-existing SST fronts by tidal currents. They are thus confined to front locations and exhibit fine-scale spatial structures. The amplitude of these tidally induced SST fluctuations is proportional to the scalar product of SST frontal gradients and tidal currents. Regional and global estimations of these expected amplitudes are presented. We predict barotropic tidal motions produce SST fluctuations that may reach amplitudes of 0.3 K. Baroclinic (internal) tides produce SST fluctuations that may reach values that are weaker than 0.1 K. The amplitudes and the detectability of tidally induced fluctuations of SST are discussed in the light of expected SST fluctuations due to other geophysical processes and instrumental (pixel) noise. We conclude that actual observations of tidally induced SST fluctuations are a challenge with present-day observing systems. Full article
(This article belongs to the Special Issue Ten Years of Remote Sensing at Barcelona Expert Center)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
The Effect of Mineral Sediments on Satellite Chlorophyll-a Retrievals from Line-Height Algorithms Using Red and Near-Infrared Bands
Remote Sens. 2019, 11(19), 2306; https://doi.org/10.3390/rs11192306 - 03 Oct 2019
Cited by 2
Abstract
Red and near-infrared line-height algorithms such as the maximum chlorophyll index (MCI) are often considered optimal for remote sensing of chlorophyll-a (Chl-a) in turbid eutrophic waters, under the assumption of minimal influence from mineral sediments. This study investigated the impact of mineral turbidity [...] Read more.
Red and near-infrared line-height algorithms such as the maximum chlorophyll index (MCI) are often considered optimal for remote sensing of chlorophyll-a (Chl-a) in turbid eutrophic waters, under the assumption of minimal influence from mineral sediments. This study investigated the impact of mineral turbidity on line-height algorithms using MCI as a primary example. Inherent optical properties from two turbid eutrophic lakes were used to simulate reflectance spectra. The simulated results: (1) confirmed a non-linear relationship between Chl-a and MCI; (2) suggested optimal use of the MCI at Chl-a < ~100 mg/m3 and saturation of the index at Chl-a ~300 mg/m3; (3) suggested significant variability in the MCI:Chl-a relationship due to mineral scattering, resulting in an RMSE in predicted Chl-a of ~23 mg/m3; and (4) revealed elevated Chl a retrievals and potential false positive algal bloom reports for sediment concentrations > 20 g/m3. A novel approach combining both MCI and its baseline slope, MCIslope reduced the RMSE to ~5 mg/m3. A quality flag based on MCIslope was proposed to mask erroneously high Chl-a retrievals and reduce the risk of false positive bloom reports in highly turbid waters. Observations suggest the approach may be valuable for all line-height-based Chl-a algorithms. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour Instrument
Remote Sens. 2019, 11(19), 2280; https://doi.org/10.3390/rs11192280 - 29 Sep 2019
Cited by 4
Abstract
The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and [...] Read more.
The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo. Full article
(This article belongs to the Special Issue Remote Sensing: 10th Anniversary)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Automatic Methodology to Detect the Coastline from Landsat Images with a New Water Index Assessed on Three Different Spanish Mediterranean Deltas
Remote Sens. 2019, 11(18), 2186; https://doi.org/10.3390/rs11182186 - 19 Sep 2019
Abstract
Due to the importance of coastline detection in coastal studies, different methods have been developed in recent decades in accordance with the evolution of measuring techniques such as remote sensing. This work proposes an automatic methodology with new water indexes to detect the [...] Read more.
Due to the importance of coastline detection in coastal studies, different methods have been developed in recent decades in accordance with the evolution of measuring techniques such as remote sensing. This work proposes an automatic methodology with new water indexes to detect the coastline from different multispectral Landsat images; the methodology is applied to three Spanish deltas in the Mediterranean Sea. The new water indexes use surface reflectance rather than top-of-atmosphere reflectance from blue and shortwave infrared (SWIR 2) Landsat bands. A total of 621 sets of images were analyzed from three different Landsat sensors with a moderate spatial resolution of 30 m. Our proposal, which was compared to the most commonly used water indexes, showed outstanding performance in automatic detection of the coastline in 96% of the data analyzed, which also reached the minimum value of bias of 0.91 m and a standard deviation ranging from ±4.7 and ±7.29 m in some cases in contrast to the existing values. Bicubic interpolation was evaluated for a simple sub-pixel analysis to assess its capability in improving the accuracy of coastline extraction. Our methodology represents a step forward in automatic coastline detection that can be applied to micro-tidal coastal sites with different land covers using many multi-sensor satellite images. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach
Remote Sens. 2019, 11(18), 2141; https://doi.org/10.3390/rs11182141 - 14 Sep 2019
Abstract
The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor [...] Read more.
The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems. Full article
(This article belongs to the Special Issue State-of-the-Art Remote Sensing in North America 2019)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment
Remote Sens. 2019, 11(18), 2116; https://doi.org/10.3390/rs11182116 - 11 Sep 2019
Cited by 9
Abstract
Time-variable gravity field models derived from observations of the Gravity Recovery and Climate Experiment (GRACE) mission, whose science operations phase ended in June 2017 after more than 15 years, enabled a multitude of studies of Earth’s surface mass transport processes and climate change. [...] Read more.
Time-variable gravity field models derived from observations of the Gravity Recovery and Climate Experiment (GRACE) mission, whose science operations phase ended in June 2017 after more than 15 years, enabled a multitude of studies of Earth’s surface mass transport processes and climate change. The German Research Centre for Geosciences (GFZ), routinely processing such monthly gravity fields as part of the GRACE Science Data System, has reprocessed the complete GRACE mission and released an improved GFZ GRACE RL06 monthly gravity field time series. This study provides an insight into the processing strategy of GFZ RL06 which has been considerably changed with respect to previous GFZ GRACE releases, and modifications relative to the precursor GFZ RL05a are described. The quality of the RL06 gravity field models is analyzed and discussed both in the spectral and spatial domain in comparison to the RL05a time series. All results indicate significant improvements of about 40% in terms of reduced noise. It is also shown that the GFZ RL06 time series is a step forward in terms of consistency, and that errors of the gravity field coefficients are more realistic. These findings are confirmed as well by independent validation of the monthly GRACE models, as done in this work by means of ocean bottom pressure in situ observations and orbit tests with the GOCE satellite. Thus, the GFZ GRACE RL06 time series allows for a better quantification of mass changes in the Earth system. Full article
(This article belongs to the Special Issue Remote Sensing by Satellite Gravimetry)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale
Remote Sens. 2019, 11(18), 2101; https://doi.org/10.3390/rs11182101 - 09 Sep 2019
Cited by 3
Abstract
Forest fires are natural disasters that create a significant risk to the communities living in the vicinity of forested landscape. To minimize the risk of forest fires for the resilience of such urban communities and forested ecosystems, we proposed a new remote sensing-based [...] Read more.
Forest fires are natural disasters that create a significant risk to the communities living in the vicinity of forested landscape. To minimize the risk of forest fires for the resilience of such urban communities and forested ecosystems, we proposed a new remote sensing-based medium-term (i.e., four-day) forest fire danger forecasting system (FFDFS) based on an existing framework, and applied the system over the forested regions in the northern Alberta, Canada. Hence, we first employed moderate resolution imaging spectroradiometer (MODIS)-derived daily land surface temperature (Ts) and surface reflectance products along with the annual land cover to generate three four-day composite for Ts, normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) at 500 m spatial resolution for the next four days over the forest-dominant regions. Upon generating these four-day composites, we calculated the variable-specific mean values to determine variable-specific fire danger maps with two danger classes (i.e., high and low). Then, by assuming the cloud-contaminated pixels as the low fire danger areas, we combined these three danger maps to generate a four-day fire danger map with four danger classes (i.e., low, moderate, high, and very high) over our study area of interest, which was further enhanced by incorporation of a human-caused static fire danger map. Finally, the four-day scale fire danger maps were evaluated using observed/ground-based forest fire occurrences during the 2015–2017 fire seasons. The results revealed that our proposed system was able to detect about 75% of the fire events in the top two danger classes (i.e., high and very high). The system was also able to predict the 2016 Horse River wildfire, the worst fire event in Albertian and Canadian history, with about 67% agreement. The higher accuracy outputs from our proposed model indicated that it could be implemented in the operational management, which would be very useful for lessening the adverse impact of such fire events. Full article
(This article belongs to the Special Issue Environmental Modelling and Remote Sensing)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Global Detection of Long-Term (1982–2017) Burned Area with AVHRR-LTDR Data
Remote Sens. 2019, 11(18), 2079; https://doi.org/10.3390/rs11182079 - 05 Sep 2019
Cited by 2
Abstract
This paper presents the first global burned area (BA) product derived from the land long term data record (LTDR), a long-term 0.05-degree resolution dataset generated from advanced very high resolution radiometer (AVHRR) images. Daily images were combined in monthly composites using the maximum [...] Read more.
This paper presents the first global burned area (BA) product derived from the land long term data record (LTDR), a long-term 0.05-degree resolution dataset generated from advanced very high resolution radiometer (AVHRR) images. Daily images were combined in monthly composites using the maximum temperature criterion to enhance the burned signal and eliminate clouds and artifacts. A synthetic BA index was created to improve the detection of the BA signal. This index included red and near infrared reflectance, surface temperature, two spectral indices, and their temporal differences. Monthly models were generated using the random forest classifier, using the twelve monthly composites of each year as the predictors. Training data were obtained from the NASA MCD64A1 collection 6 product (500 m spatial resolution) for eight years of the overlapping period (2001–2017). This included some years with low and high fire occurrence. Results were tested with the remaining eight years. Pixels classified as burned were converted to burned proportions using the MCD64A1 product. The final product (named FireCCILT10) estimated BA in 0.05-degree cells for the 1982 to 2017 period (excluding 1994, due to input data gaps). This product is the longest global BA currently available, extending almost 20 years back from the existing NASA and ESA BA products. BA estimations from the FireCCILT10 product were compared with those from the MCD64A1 product for continental regions, obtaining high correlation values (r2 > 0.9), with better agreement in tropical regions rather than boreal regions. The annual average of BA of the time series was 3.12 Mkm2. Tropical Africa had the highest proportion of burnings, accounting for 74.37% of global BA. Spatial trends were found to be similar to existing global BA products, but temporal trends showed unstable annual variations, most likely linked to the changes in the AVHRR sensor and orbital decays of the NOAA satellites. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
NWCSAF High Resolution Winds (NWC/GEO-HRW) Stand-Alone Software for Calculation of Atmospheric Motion Vectors and Trajectories
Remote Sens. 2019, 11(17), 2032; https://doi.org/10.3390/rs11172032 - 29 Aug 2019
Cited by 1
Abstract
The High Resolution Winds (NWC/GEO-HRW) software is developed by the EUMETSAT Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (NWCSAF). It is part of a stand-alone software package for the calculation of meteorological products with geostationary satellite data (NWC/GEO). [...] Read more.
The High Resolution Winds (NWC/GEO-HRW) software is developed by the EUMETSAT Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (NWCSAF). It is part of a stand-alone software package for the calculation of meteorological products with geostationary satellite data (NWC/GEO). NWCSAF High Resolution Winds provides a detailed calculation of Atmospheric Motion Vectors (AMVs) and Trajectories, locally and in near real time, using as input geostationary satellite image data, NWP model data, and OSTIA sea surface temperature data. The whole NWC/GEO software package can be obtained after registration at the NWCSAF Helpdesk, www.nwcsaf.org, where users also find support and help for its use. NWC/GEO v2018.1 software version, available since autumn 2019, is able to process MSG, Himawari-8/9, GOES-N, and GOES-R satellite series images, so that AMVs and trajectories can be calculated all throughout the planet Earth with the same algorithm and quality. Considering other equivalent meteorological products, in the ‘2014 and 2018 AMV Intercomparison Studies’ NWCSAF High Resolution Winds compared very positively with six other AMV algorithms for both MSG and Himawari-8/9 satellites. Finally, the Coordination Group for Meteorological Satellites (CGMS) recognized in its ‘2012 Meeting Report’: (1) NWCSAF High Resolution Winds fulfills the requirements to be a portable stand-alone AMV calculation software due to its easy installation and usability. (2) It has been successfully adopted by some CGMS members and serves as an important tool for development. It is modular, well documented, and well suited as stand-alone AMV software. (3) Although alternatives exist as portable stand-alone AMV calculation software, they are not as advanced in terms of documentation and do not have an existing Helpdesk. Full article
(This article belongs to the Special Issue Satellite-Derived Wind Observations)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Impacts of Radiometric Uncertainty and Weather-Related Surface Conditions on Soil Moisture Retrievals with Sentinel-1
Remote Sens. 2019, 11(17), 2025; https://doi.org/10.3390/rs11172025 - 28 Aug 2019
Cited by 3
Abstract
The radiometric uncertainty of Synthetic Aperture Radar (SAR) observations and weather-related surface conditions caused by frozen conditions, snow and intercepted rain affect the backscatter ( σ 0 ) observations and limit the accuracy of soil moisture retrievals. This study estimates Sentinel-1’s radiometric uncertainty, [...] Read more.
The radiometric uncertainty of Synthetic Aperture Radar (SAR) observations and weather-related surface conditions caused by frozen conditions, snow and intercepted rain affect the backscatter ( σ 0 ) observations and limit the accuracy of soil moisture retrievals. This study estimates Sentinel-1’s radiometric uncertainty, identifies the effects of weather-related surface conditions on σ 0 and investigates their impact on soil moisture retrievals for various conditions regarding soil moisture, surface roughness and incidence angle. Masking rules for the surface conditions that disturb σ 0 were developed based on meteorological measurements and timeseries of Sentinel-1 observations collected over five forests, five meadows and five cultivated fields in the eastern part of the Netherlands. The Sentinel-1 σ 0 observations appear to be affected by frozen conditions below an air temperature of 1 C , snow during Sentinel-1’s morning overpasses on meadows and cultivated fields and interception after more than 1.8 m m of rain in the 12 h preceding a Sentinel-1 overpass, whereas dew was not found to be of influence. After the application of these masking rules, the radiometric uncertainty was estimated by the standard deviation of the seasonal anomalies timeseries of the Sentinel-1 forest σ 0 observations. By spatially averaging the σ 0 observations, the Sentinel-1 radiometric uncertainty improves from 0.85 dB for a surface area of 0.25 h a to 0.30 dB for 10 h a for the VV polarization and from 0.89 dB to 0.36 dB for the VH polarization, following approximately an inverse square root dependency on the surface area over which the σ 0 observations are averaged. Deviations in σ 0 were combined with the σ 0 sensitivity to soil moisture as simulated with the Integral Equation Method (IEM) surface scattering model, which demonstrated that both the disturbing effects by the weather-related surface conditions (if not masked) and radiometric uncertainty have a significant impact on the soil moisture retrievals from Sentinel-1. The soil moisture retrieval uncertainty due to radiometric uncertainty ranges from 0.01 m 3 m 3 up to 0.17 m 3 m 3 for wet soils and small surface areas. The impacts on soil moisture retrievals are found to be weakly dependent on the surface roughness and the incidence angle, and strongly dependent on the surface area (or the σ 0 disturbance caused by a weather-related surface condition for a specific land cover type) and the soil moisture itself. Full article
(This article belongs to the Special Issue Soil Moisture Retrieval using Radar Remote Sensing Sensors)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Environmental Differences between Migratory and Resident Ungulates—Predicting Movement Strategies in Rocky Mountain Mule Deer (Odocoileus hemionus) with Remotely Sensed Plant Phenology, Snow, and Land Cover
Remote Sens. 2019, 11(17), 1980; https://doi.org/10.3390/rs11171980 - 22 Aug 2019
Abstract
Migration is a valuable life history strategy for many species because it enables individuals to exploit spatially and temporally variable resources. Globally, the prevalence of species’ migratory behavior is decreasing as individuals forgo migration to remain resident year-round, an effect hypothesized to result [...] Read more.
Migration is a valuable life history strategy for many species because it enables individuals to exploit spatially and temporally variable resources. Globally, the prevalence of species’ migratory behavior is decreasing as individuals forgo migration to remain resident year-round, an effect hypothesized to result from anthropogenic changes to landscape dynamics. Efforts to conserve and restore migrations require an understanding of the ecological characteristics driving the behavioral tradeoff between migration and residence. We identified migratory and resident behaviors of 42 mule deer (Odocoileus hemionus) based on GPS locations and correlated their locations to remotely sensed indicators of forage quality, land cover, snow cover, and human land use. The model classified mule deer seasonal migratory and resident niches with an overall accuracy of 97.8% and cross-validated accuracy of 81.2%. The distance to development was the most important variable in discriminating in which environments these behaviors occur, with resident niche space most often closer to developed areas than migratory niches. Additionally, snow cover in December was important for discriminating summer migratory niches. This approach demonstrates the utility of niche analysis based on remotely sensed environmental datasets and provides empirical evidence of human land use impacts on large-scale wildlife migrations. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast
Remote Sens. 2019, 11(17), 1964; https://doi.org/10.3390/rs11171964 - 21 Aug 2019
Cited by 3
Abstract
Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the [...] Read more.
Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
An Analysis of Ground-Point Classifiers for Terrestrial LiDAR
Remote Sens. 2019, 11(16), 1915; https://doi.org/10.3390/rs11161915 - 16 Aug 2019
Abstract
Previous literature has compared the performance of existing ground point classification (GPC) techniques on airborne LiDAR (ALS) data (LiDAR—light detection and ranging); however, their performance when applied to terrestrial LiDAR (TLS) data has not yet been addressed. This research tested the classification accuracy [...] Read more.
Previous literature has compared the performance of existing ground point classification (GPC) techniques on airborne LiDAR (ALS) data (LiDAR—light detection and ranging); however, their performance when applied to terrestrial LiDAR (TLS) data has not yet been addressed. This research tested the classification accuracy of five openly-available GPC algorithms on seven TLS datasets: Zhang et al.’s inverted cloth simulation (CSF), Kraus and Pfeiffer’s hierarchical weighted robust interpolation classifier (HWRI), Axelsson’s progressive TIN densification filter (TIN), Evans and Hudak’s multiscale curvature classification (MCC), and Vosselman’s modified slope-based filter (MSBF). Classification performance was analyzed using the kappa index of agreement (KIA) and rasterized spatial distribution of classification accuracy datasets generated through comparisons with manually classified reference datasets. The results identified a decrease in classification accuracy for the CSF and HWRI classification of low vegetation, for the HWRI and MCC classifications of variably sloped terrain, for the HWRI and TIN classifications of low outlier points, and for the TIN and MSBF classifications of off-terrain (OT) points without any ground points beneath. Additionally, the results show that while no single algorithm was suitable for use on all datasets containing varying terrain characteristics and OT object types, in general, a mathematical-morphology/slope-based method outperformed other methods, reporting a kappa score of 0.902. Full article
(This article belongs to the Special Issue Remote Sensing: 10th Anniversary)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Integration of Machine Learning and Open Access Geospatial Data for Land Cover Mapping
Remote Sens. 2019, 11(16), 1907; https://doi.org/10.3390/rs11161907 - 15 Aug 2019
Cited by 2
Abstract
In-time and accurate monitoring of land cover and land use are essential tools for countries to achieve sustainable food production. However, many developing countries are struggling to efficiently monitor land resources due to the lack of financial support and limited access to adequate [...] Read more.
In-time and accurate monitoring of land cover and land use are essential tools for countries to achieve sustainable food production. However, many developing countries are struggling to efficiently monitor land resources due to the lack of financial support and limited access to adequate technology. This study aims at offering a solution to fill in such a gap in developing countries, by developing a land cover solution that is free of costs. A fully automated framework for land cover mapping was developed using 10-m resolution open access satellite images and machine learning (ML) techniques for the African country of Lesotho. Sentinel-2 satellite images were accessed through Google Earth Engine (GEE) for initial processing and feature extraction at a national level. Also, Food and Agriculture Organization’s land cover of Lesotho (FAO LCL) data were used to train a support vector machine (SVM) and bagged trees (BT) classifiers. SVM successfully classified urban and agricultural lands with 62 and 67% accuracy, respectively. Also, BT could classify the two categories with 81 and 65% accuracy, correspondingly. The trained models could provide precise LC maps in minutes or hours. they can also be utilized as a viable solution for developing countries as an alternative to traditional geographic information system (GIS) methods, which are often labor intensive, require acquisition of very high-resolution commercial satellite imagery, time consuming and call for high budgets. Full article
(This article belongs to the Special Issue Multitemporal Land Cover and Land Use Mapping)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands
Remote Sens. 2019, 11(16), 1887; https://doi.org/10.3390/rs11161887 - 13 Aug 2019
Cited by 2
Abstract
Agriculture is of huge economic significance in The Netherlands where the provision of real-time, reliable information on crop development is essential to support the transition towards precision agriculture. Optical imagery can provide invaluable insights into crop growth and development but is severely hampered [...] Read more.
Agriculture is of huge economic significance in The Netherlands where the provision of real-time, reliable information on crop development is essential to support the transition towards precision agriculture. Optical imagery can provide invaluable insights into crop growth and development but is severely hampered by cloud cover. This case study in the Flevopolder illustrates the potential value of Sentinel-1 for monitoring five key crops in The Netherlands, namely sugar beet, potato, maize, wheat and English rye grass. Time series of radar backscatter from the European Space Agency’s Sentinel-1 Mission are analyzed and compared to ground measurements including phenological stage and height. Temporal variations in backscatter data reflect changes in water content and structure associated with phenological development. Emergence and closure dates are estimated from the backscatter time series and validated against a photo archive. Coherence data are compared to Normalized Difference Vegetation Index (NDVI) and ground data, illustrating that the sudden increase in coherence is a useful indicator of harvest. The results presented here demonstrate that Sentinel-1 data have significant potential value to monitor growth and development of key Dutch crops. Furthermore, the guaranteed availability of Sentinel-1 imagery in clouded conditions ensures the reliability of data to meet the monitoring needs of farmers, food producers and regulatory bodies. Full article
(This article belongs to the Special Issue Radar Remote Sensing for Agriculture)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests
Remote Sens. 2019, 11(14), 1735; https://doi.org/10.3390/rs11141735 - 23 Jul 2019
Cited by 8
Abstract
Satellite-derived spectral indices such as the relativized burn ratio (RBR) allow fire severity maps to be produced in a relatively straightforward manner across multiple fires and broad spatial extents. These indices often have strong relationships with field-based measurements of fire severity, thereby justifying [...] Read more.
Satellite-derived spectral indices such as the relativized burn ratio (RBR) allow fire severity maps to be produced in a relatively straightforward manner across multiple fires and broad spatial extents. These indices often have strong relationships with field-based measurements of fire severity, thereby justifying their widespread use in management and science. However, satellite-derived spectral indices have been criticized because their non-standardized units render them difficult to interpret relative to on-the-ground fire effects. In this study, we built a Random Forest model describing a field-based measure of fire severity, the composite burn index (CBI), as a function of multiple spectral indices, a variable representing spatial variability in climate, and latitude. CBI data primarily representing forested vegetation from 263 fires (8075 plots) across the United States and Canada were used to build the model. Overall, the model performed well, with a cross-validated R2 of 0.72, though there was spatial variability in model performance. The model we produced allows for the direct mapping of CBI, which is more interpretable compared to spectral indices. Moreover, because the model and all spectral explanatory variables were produced in Google Earth Engine, predicting and mapping of CBI can realistically be undertaken on hundreds to thousands of fires. We provide all necessary code to execute the model and produce maps of CBI in Earth Engine. This study and its products will be extremely useful to managers and scientists in North America who wish to map fire effects over large landscapes or regions. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Impacts of Land-Use Changes on Soil Erosion in Water–Wind Crisscross Erosion Region of China
Remote Sens. 2019, 11(14), 1732; https://doi.org/10.3390/rs11141732 - 23 Jul 2019
Cited by 1
Abstract
Soil erosion affects food production, biodiversity, biogeochemical cycles, hydrology, and climate. Land-use changes accelerated by intensive human activities are a dominant anthropogenic factor inducing soil erosion globally. However, the impacts of land-use-type changes on soil erosion dynamics over a continuous period for constructing [...] Read more.
Soil erosion affects food production, biodiversity, biogeochemical cycles, hydrology, and climate. Land-use changes accelerated by intensive human activities are a dominant anthropogenic factor inducing soil erosion globally. However, the impacts of land-use-type changes on soil erosion dynamics over a continuous period for constructing a sustainable ecological environment has not been systematically quantified. This study investigates the spatial–temporal dynamics of land-use change and soil erosion across a specific area in China with water–wind crisscross erosion during three periods: 1995–1999, 2000–2005, and 2005–2010. We analyzed the impacts of each land-use-type conversion on the intensity changes of soil erosion caused by water and wind, respectively. The major findings include: (1) land-use change in the water–wind crisscross erosion region of China was characterized as cultivated land expansion at the main cost of grassland during 1995–2010; (2) the strongest land-use change moved westward in space from the central Loess Plateau area in 1995–2005 to the western piedmont alluvial area in 2005–2010; (3) soil erosion area is continuously increasing, but the trend is declining from the late 1990s to the late 2000s; (4) the soil conservation capability of land-use types in water–wind crisscross erosion regions could be compiled from high to low as high coverage grasslands, medium coverage grasslands, paddy, drylands, low coverage grasslands, built-up lands, unused land of sandy lands, the Gobi Desert, and bare soil. These findings could provide some insights for executing reasonable land-use approaches to balance human demands and environment sustainability. Full article
(This article belongs to the Special Issue Remote Sensing of Human-Environment Interactions)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Arctic Ocean Sea Level Record from the Complete Radar Altimetry Era: 1991–2018
Remote Sens. 2019, 11(14), 1672; https://doi.org/10.3390/rs11141672 - 14 Jul 2019
Cited by 5
Abstract
In recent years, there has been a large focus on the Arctic due to the rapid changes of the region. Arctic sea level determination is challenging due to the seasonal to permanent sea-ice cover, lack of regional coverage of satellites, satellite instruments ability [...] Read more.
In recent years, there has been a large focus on the Arctic due to the rapid changes of the region. Arctic sea level determination is challenging due to the seasonal to permanent sea-ice cover, lack of regional coverage of satellites, satellite instruments ability to measure ice, insufficient geophysical models, residual orbit errors, challenging retracking of satellite altimeter data. We present the European Space Agency (ESA) Climate Change Initiative (CCI) Technical University of Denmark (DTU)/Technischen Universität München (TUM) sea level anomaly (SLA) record based on radar satellite altimetry data in the Arctic Ocean from the European Remote Sensing satellite number 1 (ERS-1) (1991) to CryoSat-2 (2018). We use updated geophysical corrections and a combination of altimeter data: Reprocessing of Altimeter Product for ERS (REAPER) (ERS-1), ALES+ retracker (ERS-2, Envisat), combination of Radar Altimetry Database System (RADS) and DTUs in-house retracker LARS (CryoSat-2). Furthermore, this study focuses on the transition between conventional and Synthetic Aperture Radar (SAR) altimeter data to make a smooth time series regarding the measurement method. We find a sea level rise of 1.54 mm/year from September 1991 to September 2018 with a 95% confidence interval from 1.16 to 1.81 mm/year. ERS-1 data is troublesome and when ignoring this satellite the SLA trend becomes 2.22 mm/year with a 95% confidence interval within 1.67–2.54 mm/year. Evaluating the SLA trends in 5 year intervals show a clear steepening of the SLA trend around 2004. The sea level anomaly record is validated against tide gauges and show good results. Additionally, the time series is split and evaluated in space and time. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry and Its Application)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform
Remote Sens. 2019, 11(14), 1666; https://doi.org/10.3390/rs11141666 - 12 Jul 2019
Cited by 2
Abstract
More than 50% of the world’s population consumes rice. Accurate and up-to-date information on rice field extent is important to help manage food and water security. Currently, field surveys or MODIS satellite data are used to estimate rice growing areas. This study presents [...] Read more.
More than 50% of the world’s population consumes rice. Accurate and up-to-date information on rice field extent is important to help manage food and water security. Currently, field surveys or MODIS satellite data are used to estimate rice growing areas. This study presents a cost-effective methodology for near-real-time mapping and monitoring of rice growth extent and cropping patterns over a large area. This novel method produces high-resolution monthly maps (10 m resolution) of rice growing areas, as well as rice growth stages. The method integrates temporal Sentinel-1 data and rice phenological parameters with the Google Earth Engine (GEE) cloud-based platform. It uses monthly median time series of Sentinel-1 at VH polarization from September 2016 to October 2018. The two study areas are the northern region of West Java, Indonesia (0.75 million ha), and the Kedah and Perlis states in Malaysia (over 1 million ha). K-means clustering, hierarchical cluster analysis (HCA), and a visual interpretation of VH polarization time series profiles are used to generate rice extent, cropping patterns, and spatiotemporal distribution of growth stages. To automate the process, four supervised classification methods (support vector machine (SVM), artificial neural networks (ANN), random forests, and C5.0 classification models) were independently trialled to identify cluster labels. The results from each classification method were compared. The method can also forecast rice extent for up to two months. The VH polarization data can identify four growth stages of rice—T&P: tillage and planting (30 days); V: vegetative-1 and 2 (60 days); R: reproductive (30 days); M: maturity (30 days). Compared to field survey data, this method measures overall rice extent with an accuracy of 96.5% and a kappa coefficient of 0.92. SVM and ANN show better performance than random forest and C5.0 models. This simple and robust method could be rolled out across Southeast Asia, and could be used as an alternative to time-consuming, expensive field surveys. Full article
(This article belongs to the Special Issue Digital Mapping in Dynamic Environments)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Improving the Transferability of Suspended Solid Estimation in Wetland and Deltaic Waters with an Empirical Hyperspectral Approach
Remote Sens. 2019, 11(13), 1629; https://doi.org/10.3390/rs11131629 - 09 Jul 2019
Cited by 4
Abstract
The deposition of suspended sediment is an important process that helps wetlands accrete surface material and maintain elevation in the face of sea level rise. Optical remote sensing is often employed to map total suspended solids (TSS), though algorithms typically have limited transferability [...] Read more.
The deposition of suspended sediment is an important process that helps wetlands accrete surface material and maintain elevation in the face of sea level rise. Optical remote sensing is often employed to map total suspended solids (TSS), though algorithms typically have limited transferability in space and time due to variability in water constituent compositions, mixtures, and inherent optical properties. This study used in situ spectral reflectances and their first derivatives to compare empirical algorithms for estimating TSS using hyperspectral and multispectral data. These algorithms were applied to imagery collected by NASA’s Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) over coastal Louisiana, USA, and validated with a multiyear in situ dataset. The best performing models were then applied to independent spectroscopic data collected in the Peace–Athabasca Delta, Canada, and the San Francisco Bay–Delta Estuary, USA, to assess their robustness and transferability. A derivative-based partial least squares regression (PLSR) model applied to simulated AVIRIS-NG data showed the most accurate TSS retrievals (R2 = 0.83) in these contrasting deltaic environments. These results highlight the potential for a more broadly applicable generalized algorithm employing imaging spectroscopy for estimating suspended solids. Full article
(This article belongs to the Special Issue State-of-the-Art Remote Sensing in North America 2019)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Long-Term (1986–2015) Crop Water Use Characterization over the Upper Rio Grande Basin of United States and Mexico Using Landsat-Based Evapotranspiration
Remote Sens. 2019, 11(13), 1587; https://doi.org/10.3390/rs11131587 - 04 Jul 2019
Cited by 6
Abstract
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to [...] Read more.
The evaluation of historical water use in the Upper Rio Grande Basin (URGB), United States and Mexico, using Landsat-derived actual evapotranspiration (ETa) from 1986 to 2015 is presented here as the first study of its kind to apply satellite observations to quantify long-term, basin-wide crop consumptive use in a large basin. The rich archive of Landsat imagery combined with the Operational Simplified Surface Energy Balance (SSEBop) model was used to estimate and map ETa across the basin and over irrigated fields for historical characterization of water-use dynamics. Monthly ETa estimates were evaluated using six eddy-covariance (EC) flux towers showing strong correspondence (r2 > 0.80) with reasonable error rates (root mean square error between 6 and 19 mm/month). Detailed spatiotemporal analysis using peak growing season (June–August) ETa over irrigated areas revealed declining regional crop water-use patterns throughout the basin, a trend reinforced through comparisons with gridded ETa from the Max Planck Institute (MPI). The interrelationships among seven agro-hydroclimatic variables (ETa, Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), maximum air temperature (Ta), potential ET (ETo), precipitation, and runoff) are all summarized to support the assessment and context of historical water-use dynamics over 30 years in the URGB. Full article
(This article belongs to the Special Issue Remote Sensing: 10th Anniversary)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM)
Remote Sens. 2019, 11(13), 1582; https://doi.org/10.3390/rs11131582 - 03 Jul 2019
Cited by 1
Abstract
Despite recent research on the potential of dual- (DP) and full-polarimetry (FP) Synthetic Aperture Radar (SAR) data for crop mapping, the capability of compact polarimetry (CP) SAR data has not yet been thoroughly investigated. This is of particular concern, given the availability of [...] Read more.
Despite recent research on the potential of dual- (DP) and full-polarimetry (FP) Synthetic Aperture Radar (SAR) data for crop mapping, the capability of compact polarimetry (CP) SAR data has not yet been thoroughly investigated. This is of particular concern, given the availability of such data from RADARSAT Constellation Mission (RCM) shortly. Previous studies have illustrated potential for accurate crop mapping using DP and FP SAR features, yet what contribution each feature makes to the model accuracy is not well investigated. Accordingly, this study examined the potential of the early- to mid-season (i.e., May to July) RADARSAT-2 SAR images for crop mapping in an agricultural region in Manitoba, Canada. Various classification scenarios were defined based on the extracted features from FP SAR data, as well as simulated DP and CP SAR data at two different noise floors. Both overall and individual class accuracies were compared for multi-temporal, multi-polarization SAR data using the pixel- and object-based random forest (RF) classification schemes. The late July C-band SAR observation was the most useful data for crop mapping, but the accuracy of single-date image classification was insufficient. Polarimetric decomposition features extracted from CP and FP SAR data produced relatively equal or slightly better classification accuracies compared to the SAR backscattering intensity features. The RF variable importance analysis revealed features that were sensitive to depolarization due to the volume scattering are the most important FP and CP SAR data. Synergistic use of all features resulted in a marginal improvement in overall classification accuracies, given that several extracted features were highly correlated. A reduction of highly correlated features based on integrating the Spearman correlation coefficient and the RF variable importance analyses boosted the accuracy of crop classification. In particular, overall accuracies of 88.23%, 82.12%, and 77.35% were achieved using the optimized features of FP, CP, and DP SAR data, respectively, using the object-based RF algorithm. Full article
(This article belongs to the Special Issue Compact Polarimetric SAR)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Automated Extraction of Built-Up Areas by Fusing VIIRS Nighttime Lights and Landsat-8 Data
Remote Sens. 2019, 11(13), 1571; https://doi.org/10.3390/rs11131571 - 02 Jul 2019
Cited by 2
Abstract
As the world urbanizes and builds more infrastructure, the extraction of built-up areas using remote sensing is crucial for monitoring land cover changes and understanding urban environments. Previous studies have proposed a variety of methods for mapping regional and global built-up areas. However, [...] Read more.
As the world urbanizes and builds more infrastructure, the extraction of built-up areas using remote sensing is crucial for monitoring land cover changes and understanding urban environments. Previous studies have proposed a variety of methods for mapping regional and global built-up areas. However, most of these methods rely on manual selection of training samples and classification thresholds, leading to low extraction efficiency. Furthermore, thematic accuracy is limited by interference from other land cover types like bare land, which hinder accurate and timely extraction and monitoring of dynamic changes in built-up areas. This study proposes a new method to map built-up areas by combining VIIRS (Visible Infrared Imaging Radiometer Suite) nighttime lights (NTL) data and Landsat-8 multispectral imagery. First, an adaptive NTL threshold was established, vegetation and water masks were superimposed, and built-up training samples were automatically acquired. Second, the training samples were employed to perform supervised classification of Landsat-8 data before deriving the preliminary built-up areas. Third, VIIRS NTL data were used to obtain the built-up target areas, which were superimposed onto the built-up preliminary classification results to obtain the built-up area fine classification results. Four major metropolitan areas in Eurasia formed the study areas, and the high spatial resolution (20 m) built-up area product High Resolution Layer Imperviousness Degree (HRL IMD) 2015 served as the reference data. The results indicate that our method can accurately and automatically acquire built-up training samples and adaptive thresholds, allowing for accurate estimates of the spatial distribution of built-up areas. With an overall accuracy exceeding 94.7%, our method exceeded accuracy levels of the FROM-GLC and GUL built-up area products and the PII built-up index. The accuracy and efficiency of our proposed method have significant potential for global built-up area mapping and dynamic change monitoring. Full article
(This article belongs to the Special Issue Advances in Remote Sensing with Nighttime Lights)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Quantifying Leaf Phenology of Individual Trees and Species in a Tropical Forest Using Unmanned Aerial Vehicle (UAV) Images
Remote Sens. 2019, 11(13), 1534; https://doi.org/10.3390/rs11131534 - 28 Jun 2019
Cited by 9
Abstract
Tropical forests exhibit complex but poorly understood patterns of leaf phenology. Understanding species- and individual-level phenological patterns in tropical forests requires datasets covering large numbers of trees, which can be provided by Unmanned Aerial Vehicles (UAVs). In this paper, we test a workflow [...] Read more.
Tropical forests exhibit complex but poorly understood patterns of leaf phenology. Understanding species- and individual-level phenological patterns in tropical forests requires datasets covering large numbers of trees, which can be provided by Unmanned Aerial Vehicles (UAVs). In this paper, we test a workflow combining high-resolution RGB images (7 cm/pixel) acquired from UAVs with a machine learning algorithm to monitor tree and species leaf phenology in a tropical forest in Panama. We acquired images for 34 flight dates over a 12-month period. Crown boundaries were digitized in images and linked with forest inventory data to identify species. We evaluated predictions of leaf cover from different models that included up to 14 image features extracted for each crown on each date. The models were trained and tested with visual estimates of leaf cover from 2422 images from 85 crowns belonging to eight species spanning a range of phenological patterns. The best-performing model included both standard color metrics, as well as texture metrics that quantify within-crown variation, with r2 of 0.84 and mean absolute error (MAE) of 7.8% in 10-fold cross-validation. In contrast, the model based only on the widely-used Green Chromatic Coordinate (GCC) index performed relatively poorly (r2 = 0.52, MAE = 13.6%). These results highlight the utility of texture features for image analysis of tropical forest canopies, where illumination changes may diminish the utility of color indices, such as GCC. The algorithm successfully predicted both individual-tree and species patterns, with mean r2 of 0.82 and 0.89 and mean MAE of 8.1% and 6.0% for individual- and species-level analyses, respectively. Our study is the first to develop and test methods for landscape-scale UAV monitoring of individual trees and species in diverse tropical forests. Our analyses revealed undescribed patterns of high intraspecific variation and complex leaf cover changes for some species. Full article
(This article belongs to the Special Issue Remote Sensing of Tropical Phenology)
Show Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle
COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites
Remote Sens. 2019, 11(11), 1326; https://doi.org/10.3390/rs11111326 - 02 Jun 2019
Cited by 9
Abstract
Synthetic aperture radar (SAR) imagery has long been used in archaeology since the earliest space radar missions in the 1980s. In the current scenario of SAR missions, the Italian Space Agency (ASI)’s COnstellation of small Satellites for Mediterranean basin Observation (COSMO-SkyMed) has peculiar [...] Read more.
Synthetic aperture radar (SAR) imagery has long been used in archaeology since the earliest space radar missions in the 1980s. In the current scenario of SAR missions, the Italian Space Agency (ASI)’s COnstellation of small Satellites for Mediterranean basin Observation (COSMO-SkyMed) has peculiar properties that make this mission of potential use by archaeologists and heritage practitioners: high to very high spatial resolution, site revisit of up to one day, and conspicuous image archives over cultural heritage sites across the globe. While recent literature and the number of research projects using COSMO-SkyMed data for science and applied research suggest a growing interest in these data, it is felt that COSMO-SkyMed still needs to be further disseminated across the archaeological remote sensing community. This paper therefore offers a portfolio of use-cases that were developed in the last two years in the Scientific Research Unit of ASI, where COSMO-SkyMed data were analysed to study and monitor cultural landscapes and heritage sites. SAR-based applications in archaeological and cultural heritage sites in Peru, Syria, Italy, and Iraq, provide evidence on how subsurface and buried features can be detected by interpreting SAR backscatter, its spatial and temporal changes, and interferometric coherence, and how SAR-derived digital elevation models (DEM) can be used to survey surface archaeological features. The use-cases also showcase how high temporal revisit SAR time series can support environmental monitoring of land surface processes, and condition assessment of archaeological heritage and landscape disturbance due to anthropogenic impact (e.g., agriculture, mining, looting). For the first time, this paper provides an overview of the capabilities of COSMO-SkyMed imagery in StripMap Himage and Spotlight-2 mode to support archaeological studies, with the aim to encourage remote sensing scientists and archaeologists to search for and exploit these data for their investigations and research activities. Furthermore, some considerations are made with regard to the perspectives opened by the upcoming launch of ASI’s COSMO-SkyMed Second Generation constellation. Full article
Show Figures