E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Editor's Choice Articles - Remote Sens.

View options order results:
result details:
Displaying articles 1-84
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessEditor’s ChoiceArticle Object-Based Image Analysis for Sago Palm Classification: The Most Important Features from High-Resolution Satellite Imagery
Remote Sens. 2018, 10(8), 1319; https://doi.org/10.3390/rs10081319
Received: 13 August 2018 / Accepted: 17 August 2018 / Published: 20 August 2018
PDF Full-text (6510 KB) | HTML Full-text | XML Full-text
Abstract
Sago palm (Metroxylon sagu) is a palm tree species originating in Indonesia. In the future, this starch-producing tree will play an important role in food security and biodiversity. Local governments have begun to emphasize the sustainable development of sago palm plantations; therefore, they
[...] Read more.
Sago palm (Metroxylon sagu) is a palm tree species originating in Indonesia. In the future, this starch-producing tree will play an important role in food security and biodiversity. Local governments have begun to emphasize the sustainable development of sago palm plantations; therefore, they require near-real-time geospatial information on palm stands. We developed a semi-automated classification scheme for mapping sago palm using machine learning within an object-based image analysis framework with Pleiades-1A imagery. In addition to spectral information, arithmetic, geometric, and textural features were employed to enhance the classification accuracy. Recursive feature elimination was applied to samples to rank the importance of 26 input features. A support vector machine (SVM) was used to perform classifications and resulted in the highest overall accuracy of 85.00% after inclusion of the eight most important features, including three spectral features, three arithmetic features, and two textural features. The SVM classifier showed normal fitting up to the eighth most important feature. According to the McNemar test results, using the top seven to 14 features provided a better classification accuracy. The significance of this research is the revelation of the most important features in recognizing sago palm among other similar tree species. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China
Remote Sens. 2018, 10(8), 1302; https://doi.org/10.3390/rs10081302
Received: 5 July 2018 / Revised: 2 August 2018 / Accepted: 16 August 2018 / Published: 18 August 2018
PDF Full-text (3472 KB) | HTML Full-text | XML Full-text
Abstract
China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with
[...] Read more.
China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with a high temporal resolution. At present, the evaluation of Soil Moisture Active Passive (SMAP) SM products is inadequate, and L-band microwave data have not been applied to agricultural drought monitoring throughout China. In this study, first, we provide a pivotal evaluation of the SMAP L3 radiometer-derived SM product using in situ observation data throughout China, to assist in subsequent drought assessment, and then the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) is compared with the atmospheric water deficit (AWD) and vegetation health index (VHI). It is found that the SMAP can obtain SM with relatively high accuracy and the SWDI-SMAP has a good overall performance on drought monitoring. Relatively good performance of SWDI-SMAP is shown, except in some mountain regions; the SWDI-SMAP generally performs better in the north than in the south for less dry bias, although better performance of SMAP SM based on the R is shown in the south than in the north; differences between the SWDI-SMAP and VHI are mainly shown in areas without vegetation or those containing drought-resistant plants. In summary, the SWDI-SMAP shows great application potential in drought monitoring. Full article
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
Remote Sens. 2018, 10(8), 1285; https://doi.org/10.3390/rs10081285
Received: 23 May 2018 / Revised: 27 June 2018 / Accepted: 2 July 2018 / Published: 15 August 2018
PDF Full-text (1632 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents an approach for retrieval of soil moisture content (SMC) by coupling single polarization C-band synthetic aperture radar (SAR) and optical data at the plot scale in vegetated areas. The study was carried out at five different sites with dominant vegetation
[...] Read more.
This paper presents an approach for retrieval of soil moisture content (SMC) by coupling single polarization C-band synthetic aperture radar (SAR) and optical data at the plot scale in vegetated areas. The study was carried out at five different sites with dominant vegetation cover located in Kenya. In the initial stage of the process, different features are extracted from single polarization mode (VV polarization) SAR and optical data. Subsequently, proper selection of the relevant features is conducted on the extracted features. An advanced state-of-the-art machine learning regression approach, the support vector regression (SVR) technique, is used to retrieve soil moisture. This paper takes a new look at soil moisture retrieval in vegetated areas considering the needs of practical applications. In this context, we tried to work at the object level instead of the pixel level. Accordingly, a group of pixels (an image object) represents the reality of the land cover at the plot scale. Three approaches, a pixel-based approach, an object-based approach, and a combination of pixel- and object-based approaches, were used to estimate soil moisture. The results show that the combined approach outperforms the other approaches in terms of estimation accuracy (4.94% and 0.89 compared to 6.41% and 0.62 in terms of root mean square error (RMSE) and R2), flexibility on retrieving the level of soil moisture, and better quality of visual representation of the SMC map. Full article
Figures

Figure 1

Open AccessEditor’s ChoiceArticle SLALOM: An All-Surface Snow Water Path Retrieval Algorithm for the GPM Microwave Imager
Remote Sens. 2018, 10(8), 1278; https://doi.org/10.3390/rs10081278
Received: 19 June 2018 / Revised: 10 August 2018 / Accepted: 12 August 2018 / Published: 14 August 2018
PDF Full-text (3932 KB) | HTML Full-text | XML Full-text
Abstract
This paper describes a new algorithm that is able to detect snowfall and retrieve the associated snow water path (SWP), for any surface type, using the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The algorithm is tuned and evaluated against coincident observations of
[...] Read more.
This paper describes a new algorithm that is able to detect snowfall and retrieve the associated snow water path (SWP), for any surface type, using the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The algorithm is tuned and evaluated against coincident observations of the Cloud Profiling Radar (CPR) onboard CloudSat. It is composed of three modules for (i) snowfall detection, (ii) supercooled droplet detection and (iii) SWP retrieval. This algorithm takes into account environmental conditions to retrieve SWP and does not rely on any surface classification scheme. The snowfall detection module is able to detect 83% of snowfall events including light SWP (down to 1 × 10−3 kg·m−2) with a false alarm ratio of 0.12. The supercooled detection module detects 97% of events, with a false alarm ratio of 0.05. The SWP estimates show a relative bias of −11%, a correlation of 0.84 and a root mean square error of 0.04 kg·m−2. Several applications of the algorithm are highlighted: Three case studies of snowfall events are investigated, and a 2-year high resolution 70°S–70°N snowfall occurrence distribution is presented. These results illustrate the high potential of this algorithm for snowfall detection and SWP retrieval using GMI. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and PLS Regression can Assess Grain Yield
Remote Sens. 2018, 10(8), 1249; https://doi.org/10.3390/rs10081249
Received: 26 June 2018 / Revised: 6 August 2018 / Accepted: 6 August 2018 / Published: 8 August 2018
PDF Full-text (3175 KB) | HTML Full-text | XML Full-text
Abstract
Canopy hyperspectral (HS) sensing is a promising tool for estimating rice (Oryza sativa L.) yield. However, the timing of HS measurements is crucial for assessing grain yield prior to harvest because rice growth stages strongly influence the sensitivity to different wavelengths and
[...] Read more.
Canopy hyperspectral (HS) sensing is a promising tool for estimating rice (Oryza sativa L.) yield. However, the timing of HS measurements is crucial for assessing grain yield prior to harvest because rice growth stages strongly influence the sensitivity to different wavelengths and the evaluation performance. To clarify the optimum growth stage for HS sensing-based yield assessments, the grain yield of paddy fields during the reproductive phase to the ripening phase was evaluated from field HS data in conjunction with iterative stepwise elimination partial least squares (ISE-PLS) regression. The field experiments involved three different transplanting dates (12 July, 26 July, and 9 August) in 2017 for six cultivars with three replicates (n = 3 × 6 × 3 = 54). Field HS measurements were performed on 2 October 2017, during the panicle initiation, booting, and ripening growth stages. The predictive accuracy of ISE-PLS was compared with that of the standard full-spectrum PLS (FS-PLS) via coefficient of determination (R2) values and root mean squared errors of cross-validation (RMSECV), and the robustness was evaluated by the residual predictive deviation (RPD). Compared with the FS-PLS models, the ISE-PLS models exhibited higher R2 values and lower RMSECV values for all data sets. Overall, the highest R2 values and the lowest RMSECV values were obtained from the ISE-PLS model at the booting stage (R2 = 0.873, RMSECV = 22.903); the RPD was >2.4. Selected HS wavebands in the ISE-PLS model were identified in the red-edge (710–740 nm) and near-infrared (830 nm) regions. Overall, these results suggest that the booting stage might be the best time for in-season rice grain assessment and that rice yield could be evaluated accurately from the HS sensing data via the ISE-PLS model. Full article
(This article belongs to the Special Issue Remote Sensing in Support of Transforming Smallholder Agriculture)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment
Remote Sens. 2018, 10(8), 1230; https://doi.org/10.3390/rs10081230
Received: 22 June 2018 / Revised: 25 July 2018 / Accepted: 3 August 2018 / Published: 6 August 2018
PDF Full-text (7268 KB) | HTML Full-text | XML Full-text
Abstract
Floods are among the top-ranking natural disasters in terms of annual cost in insured and uninsured losses. Since high-impact events often cover spatial scales that are beyond traditional regional monitoring operations, remote sensing, in particular from satellites, presents an attractive approach. Since the
[...] Read more.
Floods are among the top-ranking natural disasters in terms of annual cost in insured and uninsured losses. Since high-impact events often cover spatial scales that are beyond traditional regional monitoring operations, remote sensing, in particular from satellites, presents an attractive approach. Since the 1970s, there have been many studies in the scientific literature about mapping and monitoring of floods using data from various sensors onboard different satellites. The field has now matured and hence there is a general consensus among space agencies, numerous organizations, scientists, and end-users to strengthen the support that satellite missions can offer, particularly in assisting flood disaster response activities. This has stimulated more research in this area, and significant progress has been achieved in recent years in fostering our understanding of the ways in which remote sensing can support flood monitoring and assist emergency response activities. This paper reviews the products and services that currently exist to deliver actionable information about an ongoing flood disaster to emergency response operations. It also critically discusses requirements, challenges and perspectives for improving operational assistance during flood disaster using satellite remote sensing products. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Accuracy Assessment of GlobeLand30 2010 Land Cover over China Based on Geographically and Categorically Stratified Validation Sample Data
Remote Sens. 2018, 10(8), 1213; https://doi.org/10.3390/rs10081213
Received: 27 June 2018 / Revised: 27 July 2018 / Accepted: 31 July 2018 / Published: 2 August 2018
Cited by 1 | PDF Full-text (7683 KB) | HTML Full-text | XML Full-text
Abstract
Land cover information is vital for research and applications concerning natural resources and environmental modeling. Accuracy assessment is an important dimension in use and production of land cover information. GlobeLand30 is a relatively new global land cover information product with a fine spatial
[...] Read more.
Land cover information is vital for research and applications concerning natural resources and environmental modeling. Accuracy assessment is an important dimension in use and production of land cover information. GlobeLand30 is a relatively new global land cover information product with a fine spatial resolution of 30 m and is potentially useful for many applications. This paper describes the methods for and results from the first country-wide and statistically based accuracy assessment of GlobeLand30 2010 land cover dataset over China. For this, a total of 8400 validation sample pixels were collected based on a sampling design featuring two levels of stratification (ten geographical regions, each with nine or eight land-cover classes). Validation sample data with reference class labels were acquired from visual interpretation based on Google Earth high-resolution satellite images. Error matrices for individual regions and entire China were estimated properly based on the sampling design adopted, with the former aggregated to get the latter through suitable weighting. Results were obtained, with agreement at a sample pixel defined both as a match between the map (class) label and either the primary or alternate reference label therein and, more strictly, as a match between the map label and the primary reference label only. Based on the former definition of agreement, the overall accuracy of GlobeLand30 2010 land cover for China was assessed to be 84.2%. User’s accuracy and producer’s accuracy were both greater than 80% for cultivated land, forest, permanent snow and ice, and bareland, with user’s accuracy for water bodies estimated 94.2% (82.1% for wetland, 79.8% for artificial surface) and producer’s accuracy for grassland estimated 89.0%. These indicate that GlobeLand30 2010 depicts land cover circa 2010 in China quite accurately, although estimates of accuracy indicators based on the latter definition of agreement were lower as expected with an estimated national overall accuracy of 81.0%. Regional and class variations in accuracy were revealed and examined in the light of their associations with land cover distributions and patterns. Implications for use and production of GlobeLand30 land cover information were discussed, so were commonality and lack of it between GlobeLand30 and other fine-resolution land cover products. Full article
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Spectral-Spatial Classification of Hyperspectral Images: Three Tricks and a New Learning Setting
Remote Sens. 2018, 10(7), 1156; https://doi.org/10.3390/rs10071156
Received: 18 May 2018 / Revised: 10 July 2018 / Accepted: 19 July 2018 / Published: 21 July 2018
Cited by 1 | PDF Full-text (1799 KB) | HTML Full-text | XML Full-text
Abstract
Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. When there are only a few labeled pixels for training and a skewed class label distribution, this task becomes very challenging because of the increased risk of overfitting
[...] Read more.
Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. When there are only a few labeled pixels for training and a skewed class label distribution, this task becomes very challenging because of the increased risk of overfitting when training a classifier. In this paper, we show that in this setting, a convolutional neural network with a single hidden layer can achieve state-of-the-art performance when three tricks are used: a spectral-locality-aware regularization term and smoothing- and label-based data augmentation. The shallow network architecture prevents overfitting in the presence of many features and few training samples. The locality-aware regularization forces neighboring wavelengths to have similar contributions to the features generated during training. The new data augmentation procedure favors the selection of pixels in smaller classes, which is beneficial for skewed class label distributions. The accuracy of the proposed method is assessed on five publicly available hyperspectral images, where it achieves state-of-the-art results. As other spectral-spatial classification methods, we use the entire image (labeled and unlabeled pixels) to infer the class of its unlabeled pixels. To investigate the positive bias induced by the use of the entire image, we propose a new learning setting where unlabeled pixels are not used for building the classifier. Results show the beneficial effect of the proposed tricks also in this setting and substantiate the advantages of using labeled and unlabeled pixels from the image for hyperspectral image classification. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions
Remote Sens. 2018, 10(7), 1151; https://doi.org/10.3390/rs10071151
Received: 8 June 2018 / Revised: 16 July 2018 / Accepted: 19 July 2018 / Published: 20 July 2018
Cited by 1 | PDF Full-text (6896 KB) | HTML Full-text | XML Full-text
Abstract
While considerable research has focused on using either L-band or P-band SAR (Synthetic Aperture Radar) on their own for forest biomass retrieval, the use of the two bands simultaneously to improve forest biomass retrieval remains less explored. In this paper, we make use
[...] Read more.
While considerable research has focused on using either L-band or P-band SAR (Synthetic Aperture Radar) on their own for forest biomass retrieval, the use of the two bands simultaneously to improve forest biomass retrieval remains less explored. In this paper, we make use of L- and P-band airborne SAR and in situ data measured in the field together with laser scanning data acquired over one hemi-boreal (Remningstorp) and one boreal (Krycklan) forest study area in Sweden. We fit statistical models to different combinations of topographic-corrected SAR backscatter and forest heights estimated from PolInSAR for the biomass estimation, and evaluate retrieval performance in terms of R2 and using 10-fold cross-validation. The study shows that specific combinations of radar observables from L- and P-band lead to biomass predictions that are more accurate in comparison with single-band retrievals. The correlations and accuracies between the combinations of SAR features and aboveground biomass are consistent across the two study areas, whereas the retrieval performance varied for individual bands. P-band-based retrievals were more accurate than L-band for the hemi-boreal Remningstorp site and less accurate than L-band for the boreal Krycklan site. The aboveground biomass levels as well as the ground topography differ between the two sites. The results suggest that P-band is more sensitive to higher biomass and L-band to lower biomass forests. The forest height from PolInSAR improved the results at L-band in the higher biomass substantially, whereas no improvement was observed at P-band in both study areas. These results are relevant in the context of combining information over boreal forests from future low-frequency SAR missions such as the European Space Agency (ESA) BIOMASS mission, which will operate at P-band, and future L-band missions planned by several space agencies. Full article
(This article belongs to the Section Forest Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Opportunities and Challenges for the Estimation of Aquaculture Production Based on Earth Observation Data
Remote Sens. 2018, 10(7), 1076; https://doi.org/10.3390/rs10071076
Received: 8 June 2018 / Revised: 25 June 2018 / Accepted: 5 July 2018 / Published: 6 July 2018
PDF Full-text (8515 KB) | HTML Full-text | XML Full-text
Abstract
Aquaculture makes a crucial contribution to global food security and protein intake and is a basis for many livelihoods. Every second fish consumed today is produced in aquaculture systems, mainly in land-based water ponds situated along the coastal areas. Satellite remote sensing enables
[...] Read more.
Aquaculture makes a crucial contribution to global food security and protein intake and is a basis for many livelihoods. Every second fish consumed today is produced in aquaculture systems, mainly in land-based water ponds situated along the coastal areas. Satellite remote sensing enables high-resolution mapping of pond aquaculture, facilitating inventory analyses to support sustainable development of the planet’s valuable coastal ecosystems. Free, full and open data from the Copernicus earth observation missions opens up new potential for the detection and monitoring of aquaculture from space. High-resolution time series data acquired by active microwave instruments aboard the Sentinel-1 satellites and fully automated, object-based image analysis allow the identification of aquaculture ponds. In view of the diversity and complexity in the production of aquaculture products, yield and production varies greatly among species. Although national statistics on aquaculture production exist, there is a large gap of pond-specific aquaculture production quantities. In this regard, earth observation-based mapping and monitoring of pond aquaculture can be used to estimate production and has great potential for global production projections. For the deltas of the Mekong River, Red River, Pearl River, and Yellow River, as one of the world’s most significant aquaculture production regions, we detected aquaculture ponds from high spatial resolution Sentinel-1 Synthetic Aperture Radar (SAR) data. We collected aquaculture production and yield statistics at national, regional and local levels to link earth observation-based findings to the size, number and distribution of aquaculture ponds with production estimation. With the SAR derived mapping product, it is possible for the first time to assess aquaculture on single pond level at a regional scale and use that information for spatial analyses and production estimation. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Antarctic Surface Ice Velocity Retrieval from MODIS-Based Mosaic of Antarctica (MOA)
Remote Sens. 2018, 10(7), 1045; https://doi.org/10.3390/rs10071045
Received: 17 May 2018 / Revised: 12 June 2018 / Accepted: 26 June 2018 / Published: 2 July 2018
PDF Full-text (8488 KB) | HTML Full-text | XML Full-text
Abstract
The velocity of ice flow in the Antarctic is a crucial factor to determine ice discharge and thus future sea level rise. Feature tracking has been widely used in optical and radar imagery with fine resolution to retrieve flow parameters, although the primitive
[...] Read more.
The velocity of ice flow in the Antarctic is a crucial factor to determine ice discharge and thus future sea level rise. Feature tracking has been widely used in optical and radar imagery with fine resolution to retrieve flow parameters, although the primitive result may be contaminated by noise. In this paper, we present a series of modified post-processing steps, such as SNR thresholding by residual, complex Butterworth filters, and triple standard deviation truncation, to improve the performance of primitive results, and apply it to MODIS-based Mosaic of Antarctica (MOA) datasets. The final velocity field result displays the general flow pattern of the peripheral Antarctic. Seventy-eight out of 97 streamlines starting from seed points are smooth and continuous. The RMSE with 178 manually selected tie points is within 60 m·a−1. The systematic comparison with Making Earth System Data Records for Use in Research Environments (MEaSUREs) datasets in seven drainages shows that the results regarding high magnitude and large-scale ice shelf are highly reliable; absolute mean and median difference are less than 18 m·a−1, while the result of localized drainage suffered from too much tracking error. The relative differences from manually selected and random points are controlled within 8% when speed is beyond 500 m·a−1, but bias and uncertainty are pronounced when speed is lower than that. The result through our accuracy control strategy highlights that coarse remote-sensed images such as Moderate Resolution Imaging Spectrophotometer (MODIS) can still offer the capability for comprehensive and long-term continental ice sheet surface velocity mapping. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product
Remote Sens. 2018, 10(7), 1027; https://doi.org/10.3390/rs10071027
Received: 16 May 2018 / Revised: 12 June 2018 / Accepted: 22 June 2018 / Published: 28 June 2018
PDF Full-text (9996 KB) | HTML Full-text | XML Full-text
Abstract
Infrared surface emissivity is needed for the calculation of net longwave radiation, a critical parameter in weather and climate models and Earth’s radiation budget. Due to a prior lack of spatially and temporally variant global broadband emissivity (BBE) measurements of the surface, it
[...] Read more.
Infrared surface emissivity is needed for the calculation of net longwave radiation, a critical parameter in weather and climate models and Earth’s radiation budget. Due to a prior lack of spatially and temporally variant global broadband emissivity (BBE) measurements of the surface, it is common practice in land surface and climate models to set BBE to a single constant over the globe. This can lead to systematic biases in the estimated net and longwave radiation for any particular location and time of year. Under the National Aeronautics and Space Administration’s (NASA) Making Earth System Data Records for Use in Research Environments (MEaSUREs) project, a new global, high spectral resolution land surface emissivity dataset has recently been made available at monthly at 0.05 degree resolution since 2000. Called the Combined ASTER MODIS Emissivity over Land (CAMEL), this dataset is created by the merging of the MODIS baseline-fit emissivity database developed at the University of Wisconsin-Madison and the ASTER Global Emissivity Dataset (GED) produced at the Jet Propulsion Laboratory. CAMEL has 13 hinge points between 3.6–14.3 µm which are expanded to cover 417 infrared spectral channels within the same wavelength region using a principal component regression approach. This work presents the method for calculating BBE using the new CAMEL dataset. BBE is computed via numerical integration over the CAMEL High Spectral Resolution product for two different wavelength ranges—3.6–14.3 µm which takes advantage of the full, available CAMEL spectra and 8.0–13.5 µm which has been determined to be an optimal range for computing the most representative all wavelength, longwave net radiation. CAMEL BBE uncertainty estimates are computed, and comparisons are made to BBE computed from lab validation data for selected case sites. Variations of BBE over time and land cover classification schemes are investigated and converted into flux to demonstrate the equivalent error in longwave radiation which would be made by the use of a single, constant BBE value. Misrepresentations in BBE by 0.05 at 310 K corresponds to potential errors in longwave radiation of over 25 W/m2. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion
Remote Sens. 2018, 10(7), 996; https://doi.org/10.3390/rs10070996
Received: 27 March 2018 / Revised: 19 May 2018 / Accepted: 23 May 2018 / Published: 22 June 2018
PDF Full-text (5826 KB) | HTML Full-text | XML Full-text
Abstract
In this study, we examine the hypothesis of a forest transition in an area of early expansion of the agricultural frontier over the Brazilian Atlantic Forest in the south-central part of the State of São Paulo. Large scale land use/cover changes were assessed
[...] Read more.
In this study, we examine the hypothesis of a forest transition in an area of early expansion of the agricultural frontier over the Brazilian Atlantic Forest in the south-central part of the State of São Paulo. Large scale land use/cover changes were assessed by integrating Landsat imagery, census data, and landscape metrics. Two Landsat multi-temporal datasets were assembled for two consecutive periods—1995–2006 and 2006–2013—to assess changes in forest cover according to four classes: (i) transition from non-forest cover to planted forest (NF-PF); (ii) transition from non-forest to secondary (successional) forest (NF-SF); (iii) conservation of planted forest (PF) and (iv) conservation of forest remnants (REM). Data from the two most recent, 1995/96 and 2006 agricultural censuses were analyzed to single out major changes in agricultural production. The total area of forest cover, including primary, secondary, and planted forest, increased 30% from 1995 to 2013, whereas forest planted in non-forest areas (NF-PF) and conservation of planted forest (PF) accounted for 14.1% and 19.6%, respectively, of the total forest area by 2013. Such results showed a relatively important forest transition that would be explained mostly by forest plantations though. Analysis of the landscape metrics indicated an increase in connectivity among forest fragments during the period of study, and revealed that nearly half of the forest fragments were located within 50 m from riverbeds, possibly suggesting some level of compliance with environmental laws. Census data showed an increase in both the area and productivity of sugarcane plantations, while pasture and citrus area decreased by a relatively important level, suggesting that sugarcane production has expanded at the expense of these land uses. Both satellite and census data helped to delineate the establishment of two major production systems, the first one dominated by sugarcane plantations approximately located in the NE part of the study area, and a second one concentrating most of the forest plantations in the SW portion of the study area, where most of the forest transition could be observed. Full article
(This article belongs to the Special Issue Remote Sensing of Forest Cover Change)
Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceArticle Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research
Remote Sens. 2018, 10(7), 978; https://doi.org/10.3390/rs10070978
Received: 16 May 2018 / Revised: 18 June 2018 / Accepted: 19 June 2018 / Published: 21 June 2018
PDF Full-text (7181 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Quantifying emissions from crop residue burning is crucial as it is a significant source of air pollution. In this study, we first compared the fire products from two different sensors, the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m active fire product (VNP14IMG)
[...] Read more.
Quantifying emissions from crop residue burning is crucial as it is a significant source of air pollution. In this study, we first compared the fire products from two different sensors, the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m active fire product (VNP14IMG) and Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km fire product (MCD14ML) in an agricultural landscape, Punjab, India. We then performed an intercomparison of three different approaches for estimating total particulate matter (TPM) emissions which includes the fire radiative power (FRP) based approach using VIIRS and MODIS data, the Global Fire Emissions Database (GFED) burnt area emissions and a bottom-up emissions approach involving agricultural census data. Results revealed that VIIRS detected fires were higher by a factor of 4.8 compared to MODIS Aqua and Terra sensors. Further, VIIRS detected fires were higher by a factor of 6.5 than Aqua. The mean monthly MODIS Aqua FRP was found to be higher than the VIIRS FRP; however, the sum of FRP from VIIRS was higher than MODIS data due to the large number of fires detected by the VIIRS. Besides, the VIIRS sum of FRP was 2.5 times more than the MODIS sum of FRP. MODIS and VIIRS monthly FRP data were found to be strongly correlated (r2 = 0.98). The bottom-up approach suggested TPM emissions in the range of 88.19–91.19 Gg compared to 42.0–61.71 Gg, 42.59–58.75 Gg and 93.98–111.72 Gg using the GFED, MODIS FRP, and VIIRS FRP based approaches, respectively. Of the different approaches, VIIRS FRP TPM emissions were highest. Since VIIRS data are only available since 2012 compared to MODIS Aqua data which have been available since May 2002, a prediction model combining MODIS and VIIRS FRP was derived to obtain potential TPM emissions from 2003–2016. The results suggested a range of 2.56–63.66 (Gg) TPM emissions per month, with the highest crop residue emissions during November of each year. Our results on TPM emissions for seasonality matched the ground-based data from the literature. As a mitigation option, stringent policy measures are recommended to curtail agricultural residue burning in the study area. Full article
(This article belongs to the Special Issue Remote Sensing of Wildfire)
Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceArticle Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling
Remote Sens. 2018, 10(6), 933; https://doi.org/10.3390/rs10060933
Received: 2 May 2018 / Revised: 29 May 2018 / Accepted: 11 June 2018 / Published: 13 June 2018
Cited by 3 | PDF Full-text (13769 KB) | HTML Full-text | XML Full-text
Abstract
Forest biophysical variables derived from remote sensing observations are vital for climate research. The combination of structurally and radiometrically accurate 3D “virtual” forests with radiative transfer (RT) models creates a powerful tool to facilitate the calibration and validation of remote sensing data and
[...] Read more.
Forest biophysical variables derived from remote sensing observations are vital for climate research. The combination of structurally and radiometrically accurate 3D “virtual” forests with radiative transfer (RT) models creates a powerful tool to facilitate the calibration and validation of remote sensing data and derived biophysical products by helping us understand the assumptions made in data processing algorithms. We present a workflow that uses highly detailed 3D terrestrial laser scanning (TLS) data to generate virtual forests for RT model simulations. Our approach to forest stand reconstruction from a co-registered point cloud is unique as it models each tree individually. Our approach follows three steps: (1) tree segmentation; (2) tree structure modelling and (3) leaf addition. To demonstrate this approach, we present the measurement and construction of a one hectare model of the deciduous forest in Wytham Woods (Oxford, UK). The model contains 559 individual trees. We matched the TLS data with traditional census data to determine the species of each individual tree and allocate species-specific radiometric properties. Our modelling framework is generic, highly transferable and adjustable to data collected with other TLS instruments and different ecosystems. The Wytham Woods virtual forest is made publicly available through an online repository. Full article
(This article belongs to the Special Issue Radiative Transfer Modelling and Applications in Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle East Africa Rainfall Trends and Variability 1983–2015 Using Three Long-Term Satellite Products
Remote Sens. 2018, 10(6), 931; https://doi.org/10.3390/rs10060931
Received: 26 April 2018 / Revised: 28 May 2018 / Accepted: 8 June 2018 / Published: 13 June 2018
PDF Full-text (24855 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Daily time series from the Climate Prediction Center (CPC) Africa Rainfall Climatology version 2.0 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and Tropical Applications of Meteorology using SATellite (TAMSAT) African Rainfall Climatology And Time series version 2 (TARCAT) high-resolution long-term satellite
[...] Read more.
Daily time series from the Climate Prediction Center (CPC) Africa Rainfall Climatology version 2.0 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and Tropical Applications of Meteorology using SATellite (TAMSAT) African Rainfall Climatology And Time series version 2 (TARCAT) high-resolution long-term satellite rainfall products are exploited to study the spatial and temporal variability of East Africa (EA, 5S–20N, 28–52E) rainfall between 1983 and 2015. Time series of selected rainfall indices from the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices are computed at yearly and seasonal scales. Rainfall climatology and spatial patterns of variability are extracted via the analysis of the total rainfall amount (PRCPTOT), the simple daily intensity (SDII), the number of precipitating days (R1), the number of consecutive dry and wet days (CDD and CWD), and the number of very heavy precipitating days (R20). Our results show that the spatial patterns of such trends depend on the selected rainfall product, as much as on the geographic areas characterized by statistically significant trends for a specific rainfall index. Nevertheless, indications of rainfall trends were extracted especially at the seasonal scale. Increasing trends were identified for the October–November–December PRCPTOT, R1, and SDII indices over eastern EA, with the exception of Kenya. In March–April–May, rainfall is decreasing over a large part of EA, as demonstrated by negative trends of PRCPTOT, R1, CWD, and R20, even if a complete convergence of all satellite products is not achieved. Full article
(This article belongs to the Special Issue Remote Sensing of Essential Climate Variables and Their Applications)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Seasonal and Decadal Groundwater Changes in African Sedimentary Aquifers Estimated Using GRACE Products and LSMs
Remote Sens. 2018, 10(6), 904; https://doi.org/10.3390/rs10060904
Received: 4 April 2018 / Revised: 31 May 2018 / Accepted: 5 June 2018 / Published: 8 June 2018
Cited by 1 | PDF Full-text (4032 KB) | HTML Full-text | XML Full-text
Abstract
Increased groundwater abstraction is important to the economic development of Africa and to achieving many of the Sustainable Development Goals. However, there is little information on long-term or seasonal groundwater trends due to a lack of in situ monitoring. Here, we used GRACE
[...] Read more.
Increased groundwater abstraction is important to the economic development of Africa and to achieving many of the Sustainable Development Goals. However, there is little information on long-term or seasonal groundwater trends due to a lack of in situ monitoring. Here, we used GRACE data from three products (the Centre for Space Research land solution (CSR), the Jet Propulsion Laboratory’s Global Mascon solution (JPL-MSCN), and the Centre National D’etudes Spatiales / Groupe de Recherches de Géodésie Spatiale solution (GRGS)), to examine terrestrial water storage (TWS) changes in 12 African sedimentary aquifers, to examine relationships between TWS and rainfall , and estimate groundwater storage (GWS) changes using four Land Surface Models (LSMs) (Community Land Model (CLM2.0), the Variable Infiltration Capacity model (VIC), the Mosaic model (MOSAIC) and the Noah model (NOAH)). We find that there are no substantial continuous long-term decreasing trends in groundwater storage from 2002 to 2016 in any of the African basins, however, consistent rising groundwater trends amounting to ~1 km3/year and 1.5 km3/year are identified in the Iullemmeden and Senegal basins, respectively, and longer term variations in ΔTWS in several basins associated with rainfall patterns. Discrete seasonal ΔTWS responses of ±1–5 cm/year are indicated by GRACE for each of the basins, with the exception of the Congo, North Kalahari, and Senegal basins, which display larger seasonal ΔTWS equivalent to approx. ±11–20 cm/year. The different seasonal responses in ΔTWS provide useful information about groundwater, including the identification of 5 to 9 month accumulation periods of rainfall in many semi-arid and arid basins as well as differences in ΔTWS responses between Sahelian and southern African aquifers to similar rainfall, likely reflecting differences in landcover. Seasonal ΔGWS estimated by combining GRACE ΔTWS with LSM outputs compare inconsistently to available in situ measurements of groundwater recharge from different basins, highlighting the need to further develop the representation of the recharge process in LSMs and the need for more in situ observations from piezometry. Full article
(This article belongs to the Special Issue Remote Sensing of Groundwater from River Basin to Global Scales)
Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle Rimaal: A Sand Buried Structure of Possible Impact Origin in the Sahara: Optical and Radar Remote Sensing Investigation
Remote Sens. 2018, 10(6), 880; https://doi.org/10.3390/rs10060880
Received: 24 April 2018 / Revised: 13 May 2018 / Accepted: 4 June 2018 / Published: 5 June 2018
Cited by 1 | PDF Full-text (7264 KB) | HTML Full-text | XML Full-text
Abstract
This work communicates the discovery of a sandy buried 10.5 km diameter near-circular structure in the eastern part of the Great Sahara in North Africa. Rimaal, meaning “sand” in Arabic, is given as the name for this structure since it is largely concealed
[...] Read more.
This work communicates the discovery of a sandy buried 10.5 km diameter near-circular structure in the eastern part of the Great Sahara in North Africa. Rimaal, meaning “sand” in Arabic, is given as the name for this structure since it is largely concealed beneath the Sahara Aeolian sand. Remote sensing image fusion and transformation of multispectral data (from Landsat-8) and synthetic aperture radar (from Sentinel-1 and ALOS PALSAR), of dual wavelengths (C and L-bands) and multi-polarization (HV, VV, HH, and HV), were adopted in this work. The optical and microwave hybrid imagery enabled the combining of surface spectral properties and subsurface roughness information for better understanding of the Rimaal structure. The long wavelength of the radar, in particular, enabled the penetration of desert sands and the revealing of the proposed structure. The structure exhibits a clear outer rim with traces of concentric faults, an annular flat basin and an inner ring surrounding remnants of a highly eroded central peak. Radar imagery clearly shows the interior wall of the structure is incised with radial pattern gullies that originate at or near the crater periphery, implying a much steeper rim wall in the past. In addition, data reveals a circumferential of a paleoriver course that flows along a curved path parallel to the crater’s western margin indicating the plausible presence of a concentric ring graben related to the inferred structure. The defined crater boundary is coincident with a shallow semi-circular-like basin in the SRTM elevation data. The structure portrays considerable modifications by extensive long-term Aeolian and fluvial erosion. Residing in the Cretaceous Nubian Sandstone formation suggests an old age of ≤65 Ma for the structure. If proven to be of an impact origin, the Rimaal structure could help in understanding the early evolution of the landscape of the Eastern Sahara and holds promise for hosting economically valuable ore deposits and hydrocarbon resources in the region. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Deep Cube-Pair Network for Hyperspectral Imagery Classification
Remote Sens. 2018, 10(5), 783; https://doi.org/10.3390/rs10050783
Received: 17 March 2018 / Revised: 23 April 2018 / Accepted: 16 May 2018 / Published: 18 May 2018
Cited by 1 | PDF Full-text (3202 KB) | HTML Full-text | XML Full-text
Abstract
Advanced classification methods, which can fully utilize the 3D characteristic of hyperspectral image (HSI) and generalize well to the test data given only limited labeled training samples (i.e., small training dataset), have long been the research objective for HSI classification problem. Witnessing the
[...] Read more.
Advanced classification methods, which can fully utilize the 3D characteristic of hyperspectral image (HSI) and generalize well to the test data given only limited labeled training samples (i.e., small training dataset), have long been the research objective for HSI classification problem. Witnessing the success of deep-learning-based methods, a cube-pair-based convolutional neural networks (CNN) classification architecture is proposed to cope this objective in this study, where cube-pair is used to address the small training dataset problem as well as preserve the 3D local structure of HSI data. Within this architecture, a 3D fully convolutional network is further modeled, which has less parameters compared with traditional CNN. Provided the same amount of training samples, the modeled network can go deeper than traditional CNN and thus has superior generalization ability. Experimental results on several HSI datasets demonstrate that the proposed method has superior classification results compared with other state-of-the-art competing methods. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the Global Human Settlement Layer
Remote Sens. 2018, 10(5), 768; https://doi.org/10.3390/rs10050768
Received: 28 February 2018 / Revised: 7 May 2018 / Accepted: 8 May 2018 / Published: 16 May 2018
Cited by 5 | PDF Full-text (3777 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the last few decades the magnitude and impacts of planetary urban transformations have become increasingly evident to scientists and policymakers. The ability to understand these processes remained limited in terms of territorial scope and comparative capacity for a long time: data availability
[...] Read more.
In the last few decades the magnitude and impacts of planetary urban transformations have become increasingly evident to scientists and policymakers. The ability to understand these processes remained limited in terms of territorial scope and comparative capacity for a long time: data availability and harmonization were among the main constraints. Contemporary technological assets, such as remote sensing and machine learning, allow for analyzing global changes in the settlement process with unprecedented detail. The Global Human Settlement Layer (GHSL) project set out to produce detailed datasets to analyze and monitor the spatial footprint of human settlements and their population, which are key indicators for the global policy commitments of the 2030 Development Agenda. In the GHSL, Earth Observation plays a key role in the detection of built-up areas from the Landsat imagery upon which population distribution is modelled. The combination of remote sensing imagery and population modelling allows for generating globally consistent and detailed information about the spatial distribution of built-up areas and population. The GHSL data facilitate a multi-temporal analysis of human settlements with global coverage. The results presented in this article focus on the patterns of development of built-up areas, population and settlements. The article reports about the present status of global urbanization (2015) and its evolution since 1990 by applying to the GHSL the Degree of Urbanisation definition of the European Commission Directorate General for Regional and Urban Policy (DG-Regio) and the Statistical Office of the European Communities (EUROSTAT). The analysis portrays urbanization dynamics at a regional level and per country income classes to show disparities and inequalities. This study analyzes how the 6.1 billion urban dwellers are distributed worldwide. Results show the degree of global urbanization (which reached 85% in 2015), the more than 100 countries in which urbanization has increased between 1990 and 2015, and the tens of countries in which urbanization is today above the global average and where urbanization grows the fastest. The paper sheds light on the key role of urban areas for development, on the patterns of urban development across the regions of the world and on the role of a new generation of data to advance urbanization theory and reporting. Full article
(This article belongs to the Special Issue Earth Observation in Planning for Sustainable Urban Development)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System
Remote Sens. 2018, 10(5), 763; https://doi.org/10.3390/rs10050763
Received: 31 March 2018 / Revised: 7 May 2018 / Accepted: 13 May 2018 / Published: 15 May 2018
Cited by 1 | PDF Full-text (7593 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Leaf area index (LAI) is a key biophysical variable fundamental in natural vegetation and agricultural land monitoring and modelling studies. This paper is aimed at comparing, validating and discussing different LAI satellite products from operational services and customized solution based on innovative Earth
[...] Read more.
Leaf area index (LAI) is a key biophysical variable fundamental in natural vegetation and agricultural land monitoring and modelling studies. This paper is aimed at comparing, validating and discussing different LAI satellite products from operational services and customized solution based on innovative Earth Observation (EO) data such as Landsat-7/8 and Sentinel-2A. The comparison was performed to assess overall quality of LAI estimates for rice, as a fundamental input of different scale (regional to local) operational crop monitoring systems such as the ones developed during the “An Earth obseRvation Model based RicE information Service” (ERMES) project. We adopted a multiscale approach following international recognized protocols of the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) guidelines in different steps: (1) acquisition of representative field sample measurements, (2) validation of decametric satellite product (10–30 m spatial resolution), and (3) exploitation of such data to assess quality of medium-resolution operational products (~1000 m). The study areas were located in the main European rice areas in Spain, Italy and Greece. Field campaigns were conducted during three entire rice seasons (2014, 2015 and 2016—from sowing to full-flowering) to acquire multi-temporal ground LAI measurements and to assess Landsat-7/8 LAI estimates. Results highlighted good correspondence between Landsat-7/8 LAI estimates and ground measurements revealing high correlations (R2 ≥ 0.89) and low root mean squared errors (RMSE ≤ 0.75) in all seasons. Landsat-7/8 as well as Sentinel-2A high-resolution LAI retrievals, were compared with satellite LAI products operationally derived from MODIS (MOD15A2), Copernicus PROBA-V (GEOV1), and the recent EUMETSAT Polar System (EPS) LAI product. Good agreement was observed between high- and medium-resolution LAI estimates. In particular, the EPS LAI product was the most correlated product with both Landsat/7-8 and Sentinel-2A estimates, revealing R2 ≥ 0.93 and RMSE ≤ 0.53 m2/m2. In addition, a comparison exercise of EPS, GEOV1 and MODIS revealed high correlations (R2 ≥ 0.90) and RMSE ≤ 0.80 m2/m2 in all cases and years. The temporal assessment shows that the three satellite products capture well the seasonality during the crop phenological cycle. Discrepancies are observed mainly in absolute values retrieved for the peak of rice season. This is the first study that provides a quantitative assessment on the quality of available operational LAI product for rice monitoring to both the scientific community and users of agro-monitoring operational services. Full article
(This article belongs to the Special Issue Quantitative Remote Sensing of Land Surface Variables)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Preliminary Investigation of a New AHI Aerosol Optical Depth (AOD) Retrieval Algorithm and Evaluation with Multiple Source AOD Measurements in China
Remote Sens. 2018, 10(5), 748; https://doi.org/10.3390/rs10050748
Received: 16 March 2018 / Revised: 19 April 2018 / Accepted: 2 May 2018 / Published: 14 May 2018
Cited by 1 | PDF Full-text (10924 KB) | HTML Full-text | XML Full-text
Abstract
The Himawari-8 geostationary weather satellite, which is an Earth observing satellite launched in October 2014, has been applied in climate, environment, and air quality studies. Using hourly observation data from the Advanced Himawari Imager (AHI) on board Himawari-8, a new dark target algorithm
[...] Read more.
The Himawari-8 geostationary weather satellite, which is an Earth observing satellite launched in October 2014, has been applied in climate, environment, and air quality studies. Using hourly observation data from the Advanced Himawari Imager (AHI) on board Himawari-8, a new dark target algorithm was proposed to retrieve the aerosol optical depth (AOD) at 1 km and 5 km resolutions over mainland China. Because of the short satellite operation time and lack of AErosol RObotic NETwork (AERONET) sites across China, we cannot derive robust and representative surface reflectance relationships for the visible to near-infrared channels by atmospheric correction. Therefore, we inherited the empirical reflectance relationship from the Moderate Resolution Imaging Spectroradiometer (MODIS) and we used the AHI and MODIS spectral response functions to make the relationship more suitable for AHI. Ultimately, our AOD products can better reflect the regional characteristics with the AHI sensor. Seasonal averages showed that our product is more similar to MODIS Collection 6 (C6) Dark Target (DT) AOD than the Japan Aerospace Exploration Agency (JAXA) AHI AOD, but the difference is largest in winter. In addition, we evaluated several satellite retrieval products (our AHI AOD, JAXA AHI AOD, the National Oceanic and Atmospheric Administration (NOAA) VIIRS AOD, MODIS DT AOD, and MODIS DB AOD) against AERONET AOD from July 2016 to June 2017. The results showed that our AHI measurements demonstrate good agreement with, but exhibit a little overestimation, as compared to ground-based AERONET measurements with a correlation coefficient of 0.83 and an root-mean-square error (RMSE) of 0.112. The hourly validation also showed stable statistical results. A time series comparison with ground-based observations from two AERONET sites (Beijing-CAMS and XiangHe) showed that our AHI AOD products have trends as those in MODIS DB AOD, but that the bias in Beijing-CAMS is positive and higher than that in XiangHe. This error and the slight overestimation may be caused by the single continental aerosol model assumption and not considering the Normalized Difference Vegetation Index (NDVI). Full article
(This article belongs to the Special Issue Aerosol Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation
Remote Sens. 2018, 10(5), 664; https://doi.org/10.3390/rs10050664
Received: 28 February 2018 / Revised: 29 March 2018 / Accepted: 16 April 2018 / Published: 24 April 2018
Cited by 2 | PDF Full-text (7809 KB) | HTML Full-text | XML Full-text
Abstract
Under the National Aeronautics and Space Administration’s (NASA) Making Earth System Data Records for Use in Research Environments (MEaSUREs) Land Surface Temperature and Emissivity project, a new global land surface emissivity dataset has been produced by the University of Wisconsin–Madison Space Science and
[...] Read more.
Under the National Aeronautics and Space Administration’s (NASA) Making Earth System Data Records for Use in Research Environments (MEaSUREs) Land Surface Temperature and Emissivity project, a new global land surface emissivity dataset has been produced by the University of Wisconsin–Madison Space Science and Engineering Center and NASA’s Jet Propulsion Laboratory (JPL). This new dataset termed the Combined ASTER MODIS Emissivity over Land (CAMEL), is created by the merging of the UW–Madison MODIS baseline-fit emissivity dataset (UWIREMIS) and JPL’s ASTER Global Emissivity Dataset v4 (GEDv4). CAMEL consists of a monthly, 0.05° resolution emissivity for 13 hinge points within the 3.6–14.3 µm region and is extended to 417 infrared spectral channels using a principal component regression approach. An uncertainty product is provided for the 13 hinge point emissivities by combining temporal, spatial, and algorithm variability as part of a total uncertainty estimate. Part 1 of this paper series describes the methodology for creating the CAMEL emissivity product and the corresponding high spectral resolution algorithm. This paper, Part 2 of the series, details the methodology of the CAMEL uncertainty calculation and provides an assessment of the CAMEL emissivity product through comparisons with (1) ground site lab measurements; (2) a long-term Infrared Atmospheric Sounding Interferometer (IASI) emissivity dataset derived from 8 years of data; and (3) forward-modeled IASI brightness temperatures using the Radiative Transfer for TOVS (RTTOV) radiative transfer model. Global monthly results are shown for different seasons and International Geosphere-Biosphere Programme land classifications, and case study examples are shown for locations with different land surface types. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Vegetation Response to the 2012–2014 California Drought from GPS and Optical Measurements
Remote Sens. 2018, 10(4), 630; https://doi.org/10.3390/rs10040630
Received: 9 March 2018 / Revised: 4 April 2018 / Accepted: 14 April 2018 / Published: 19 April 2018
PDF Full-text (10301 KB) | HTML Full-text | XML Full-text
Abstract
We compare microwave GPS and optical-based remote sensing observations of the vegetation response to a recent drought in California, USA. The microwave data are based on reflected GPS signals that were collected by a geodetic network. These data are sensitive to temporal variations
[...] Read more.
We compare microwave GPS and optical-based remote sensing observations of the vegetation response to a recent drought in California, USA. The microwave data are based on reflected GPS signals that were collected by a geodetic network. These data are sensitive to temporal variations in vegetation water content and are made available via the Normalized Microwave Reflection Index (NMRI). NMRI data are complementary to information of plant greenness provided by the Normalized Difference Vegetation Index (NDVI). NMRI data from 146 sites in California are compared to collocated NDVI observations, over the interval of 2007–2016. This period includes a severe, three-year drought (2012–2014). We quantify the seasonal variations in vegetation state by calculating a series of phenology metrics at each site, using both NMRI and NDVI. We examine how the phenology metrics vary from year-to-year, as related to the observed fluctuations in accumulated precipitation. The amplitude of seasonal vegetation growth exhibits the greatest sensitivity to prior accumulated precipitation. Above-normal precipitation from 4 to 12 months before peak growth yields a stronger seasonal growth pulse, and vice versa. The amplitude of seasonal growth, as determined from NDVI, varies linearly with precipitation during dry years, but is largely insensitive to precipitation amount in years with above-normal precipitation. In contrast, the amplitude of seasonal growth from NMRI varies approximately linearly with precipitation across the entire range of conditions observed. The length of season is positively correlated with prior accumulated precipitation, more strongly with NDVI than NMRI. The recovery from drought was similar for a one-year (2007) and the more severe three-year drought (2012–2014). In both cases, the amplitude of growth returned to typical values in the first year with near-normal precipitation. Growing season length, only based on NDVI, was greatly reduced in 2014, the driest and final year of the three-year California drought. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016
Remote Sens. 2018, 10(4), 606; https://doi.org/10.3390/rs10040606
Received: 18 March 2018 / Revised: 31 March 2018 / Accepted: 4 April 2018 / Published: 14 April 2018
Cited by 2 | PDF Full-text (42138 KB) | HTML Full-text | XML Full-text
Abstract
The pasturelands areas of Brazil constitute an important asset for the country, as the main food source for the world’s largest commercial herd, representing the largest stock of open land in the country, occupying ~21% of the national territory. Understanding the spatio-temporal dynamics
[...] Read more.
The pasturelands areas of Brazil constitute an important asset for the country, as the main food source for the world’s largest commercial herd, representing the largest stock of open land in the country, occupying ~21% of the national territory. Understanding the spatio-temporal dynamics of these areas is of fundamental importance for the goal of promoting improved territorial governance, emission mitigation and productivity gains. To this effect, this study mapped, through objective criteria and automatic classification methods (Random Forest) applied to MODIS (Moderate Resolution Imaging Spectroradiometer) images, the totality of the Brazilian pastures between 2000 and 2016. Based on 90 spectro-temporal metrics derived from the Red, NIR and SWIR1 bands and distinct vegetation indices, distributed between dry and wet seasons, a total of 17 pasture maps with an approximate overall accuracy of 80% were produced with cloud-computing (Google Earth Engine). During this period, the pasture area varied from ~152 (2000) to ~179 (2016) million hectares. This expansion pattern was consistent with the bovine herd variation and mostly occurred in the Amazon, which increased its total pasture area by ~15 million hectares between 2000 and 2005, while the Cerrado, Caatinga and Pantanal biomes showed an increase of ~8 million hectares in this same period. The Atlantic Forest was the only biome in which there was a retraction of pasture areas throughout this series. In general, the results of this study suggest the existence of two relevant moments for the Brazilian pasture land uses. The first, strongly supported by the opening of new grazing areas, prevailed between 2000 and 2005 and mostly occurred in the Deforestation Arc and in the Matopiba regions. From 2006 on, the total pasture area in Brazil showed a trend towards stabilization, indicating a slight intensification of livestock activity in recent years. Full article
(This article belongs to the Special Issue Google Earth Engine Applications)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection
Remote Sens. 2018, 10(4), 538; https://doi.org/10.3390/rs10040538
Received: 4 February 2018 / Revised: 28 March 2018 / Accepted: 30 March 2018 / Published: 31 March 2018
Cited by 2 | PDF Full-text (16263 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A forest inventory is often carried out using airborne laser data combined with ground measured reference data. Traditionally, the ground reference data have been collected manually with a caliper combined with land surveying equipment. During recent years, studies have shown that the caliper
[...] Read more.
A forest inventory is often carried out using airborne laser data combined with ground measured reference data. Traditionally, the ground reference data have been collected manually with a caliper combined with land surveying equipment. During recent years, studies have shown that the caliper can be replaced by equipment and methods that capture the ground reference data more efficiently. In this study, we compare three different ground based laser measurement methods: terrestrial laser scanner, handheld laser scanner and a backpack laser scanner. All methods are compared with traditional measurements. The study area is located in southeastern Norway and divided into seven different locations with different terrain morphological characteristics and tree density. The main tree species are boreal, dominated by Norway spruce and Scots pine. To compare the different methods, we analyze the estimated tree stem diameter, tree position and data capture efficiency. The backpack laser scanning method captures the data in one operation. For this method, the estimated diameter at breast height has the smallest mean differences of 0.1 cm, the smallest root mean square error of 2.2 cm and the highest number of detected trees with 87.5%, compared to the handheld laser scanner method and the terrestrial laser scanning method. We conclude that the backpack laser scanner method has the most efficient data capture and can detect the largest number of trees. Full article
(This article belongs to the Special Issue Optical Remote Sensing of Boreal Forests)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau
Remote Sens. 2018, 10(4), 535; https://doi.org/10.3390/rs10040535
Received: 4 February 2018 / Revised: 18 March 2018 / Accepted: 28 March 2018 / Published: 31 March 2018
PDF Full-text (41040 KB) | HTML Full-text | XML Full-text
Abstract
The Soil Moisture Active Passive (SMAP) mission was designed to provide a global mapping of soil moisture (SM) measured by L-band passive and active microwave sensors. In this study, we evaluate the newly released SMAP enhanced SM products over the Tibetan Plateau by
[...] Read more.
The Soil Moisture Active Passive (SMAP) mission was designed to provide a global mapping of soil moisture (SM) measured by L-band passive and active microwave sensors. In this study, we evaluate the newly released SMAP enhanced SM products over the Tibetan Plateau by performing comparisons among SMAP standard products, in-situ observations and Community Land Model (CLM) simulations driven by high-resolution meteorological forcing. At local scales, the enhanced SMAP products, the standard products and CLM simulations all generally compare well with the in-situ observations. The SMAP products show stronger correlations (0.64–0.88) but slightly larger unbiased root mean square errors (ubRMSE, ~0.06) relative to the CLM simulations (0.58–0.79 and 0.037–0.047, for correlation and ubRMSE, respectively). At the regional scale, both SMAP products show similar spatial distributions of SM on the TP (Tibetan Plateau), although, as expected, the enhanced product provides more fine details. The SMAP enhanced product is in good agreement with model simulations with respect to temporal and spatial variations in SM over most of the TP. Regions with low correlation between SMAP enhanced products and model simulations are mainly located in the northwestern TP and regions of complex topography, where meteorological stations are sparse and non-existent or elevation is highly variable. In such remote regions, CLM simulations may be problematic due to inaccurate land cover maps and/or uncertainties in meteorological forcing. The independent, high-resolution observations provided by SMAP could help to constrain the model simulation and, ultimately, improve the skill of models in these problematic regions. Full article
(This article belongs to the Special Issue Soil Moisture Remote Sensing Across Scales)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Inferring Water Table Depth Dynamics from ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained to Natural Conditions
Remote Sens. 2018, 10(4), 536; https://doi.org/10.3390/rs10040536
Received: 28 February 2018 / Revised: 21 March 2018 / Accepted: 29 March 2018 / Published: 31 March 2018
PDF Full-text (10964 KB) | HTML Full-text | XML Full-text
Abstract
Water table depth (WTD) is one of the key variables controlling many processes in peatlands. Reliable WTD estimates based on remote sensing data would advance peatland research from global-scale climate monitoring to field-scale ecosystem management. Here, we evaluate the relationship between ENVISAT Advanced
[...] Read more.
Water table depth (WTD) is one of the key variables controlling many processes in peatlands. Reliable WTD estimates based on remote sensing data would advance peatland research from global-scale climate monitoring to field-scale ecosystem management. Here, we evaluate the relationship between ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-band backscatter (σ°) and in situ observed WTD dynamics over 17 peatlands in Germany covering deeply-drained to natural conditions, excluding peatlands dominated by forest or inundation periods. The results show increasing σ° with shallower WTD (=wetter conditions), with average temporal Pearson correlation coefficients of 0.38 and 0.54 (-) for natural (also including disturbed and rewetted/restored states) and agriculturally-used drained peatlands, respectively. The anomaly correlation further highlights the potential of ASAR backscatter to capture interannual variations with values of 0.33 and 0.43 (-), for natural and drained peatlands. The skill metrics, which are similar to those for evaluations of top soil moisture from C-band over mineral soils, indicate a strong capillary connection between WTD and the ‘C-band-sensitive’ top 1–2 cm of peat soils, even during dry periods with WTD at around −1 m. Various backscatter processing algorithms were tested without significant differences. The cross-over angle concept for correcting dynamical vegetation effects was tested, but not superior, to constant incidence angle correction. Full article
(This article belongs to the Special Issue Remote Sensing of Peatlands)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics
Remote Sens. 2018, 10(4), 500; https://doi.org/10.3390/rs10040500
Received: 30 January 2018 / Revised: 19 March 2018 / Accepted: 20 March 2018 / Published: 22 March 2018
Cited by 4 | PDF Full-text (24874 KB) | HTML Full-text | XML Full-text
Abstract
Hyperspectral images can highlight crop marks in vegetated areas, which may indicate the presence of underground buried structures, by exploiting the spectral information conveyed in reflected solar radiation. In recent years, different vegetation indices and several other image features have been used, with
[...] Read more.
Hyperspectral images can highlight crop marks in vegetated areas, which may indicate the presence of underground buried structures, by exploiting the spectral information conveyed in reflected solar radiation. In recent years, different vegetation indices and several other image features have been used, with varying success, to improve the interpretation of remotely sensed images for archaeological research. However, it is difficult to assess the derived maps quantitatively and select the most meaningful one for a given task, in particular for a non-specialist in image processing. This paper estimates for the first time objectively the suitability of maps derived from spectral features for the detection of buried archaeological structures in vegetated areas based on information theory. This is achieved by computing the statistical dependence between the extracted features and a digital map indicating the presence of buried structures using information theoretical notions. Based on the obtained scores on known targets, the features can be ranked and the most suitable can be chosen to aid in the discovery of previously undetected crop marks in the area under similar conditions. Three case studies are reported: the Roman buried remains of Carnuntum (Austria), the underground structures of Selinunte in the South of Italy, and the buried street relics of Pherai (Velestino) in central Greece. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Archaeological Heritage)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data
Remote Sens. 2018, 10(3), 474; https://doi.org/10.3390/rs10030474
Received: 1 February 2018 / Revised: 12 March 2018 / Accepted: 14 March 2018 / Published: 19 March 2018
Cited by 2 | PDF Full-text (4438 KB) | HTML Full-text | XML Full-text
Abstract
Global reanalysis products have been widely used for correcting the atmospheric effects of thermal infrared data, but their performances have not been comprehensively evaluated. In this paper, we evaluate eight global reanalysis products (NCEP/FNL; NCEP/DOE Reanalysis2; MERRA-3; MERRA-6; MERRA2-3; MERRA2-6; JRA-55; and ERA-Interim)
[...] Read more.
Global reanalysis products have been widely used for correcting the atmospheric effects of thermal infrared data, but their performances have not been comprehensively evaluated. In this paper, we evaluate eight global reanalysis products (NCEP/FNL; NCEP/DOE Reanalysis2; MERRA-3; MERRA-6; MERRA2-3; MERRA2-6; JRA-55; and ERA-Interim) commonly used in the atmospheric correction of Landsat 8 TIRS10 data by referencing global radiosonde observations collected from 163 stations. The atmospheric parameters (atmospheric transmittance, upward radiance, and downward radiance) simulated with MERRA-6 and ERA-Interim were accurate than those simulated with other reanalysis products for different water vapor contents and surface elevations. When global reanalysis products were applied to retrieve land surface temperature (LST) from simulated Landsat 8 TIRS10 data, ERA-Interim and MERRA-6 were accurate than other reanalysis products. The overall LST biases and RMSEs between the retrieved LSTs and LSTs that were used to generate the top-of-atmosphere radiances were less than 0.2 K and 1.09 K, respectively. When eight reanalysis products were used to estimate LSTs from thirty-two Landsat 8 TIRS10 images covering the Heihe River basin in China, the various reanalysis products showed similar validation accuracies for LSTs with low water vapor contents. The biases ranged from 0.07 K to 0.24 K, and the STDs (RMSEs) ranged from 1.93 K (1.93 K) to 2.02 K (2.04 K). Considering the above evaluation results, MERRA-6 and ERA-Interim are recommended for thermal infrared data atmospheric corrections. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle A New Algorithm for the On-Board Compression of Hyperspectral Images
Remote Sens. 2018, 10(3), 428; https://doi.org/10.3390/rs10030428
Received: 1 February 2018 / Revised: 27 February 2018 / Accepted: 6 March 2018 / Published: 9 March 2018
Cited by 2 | PDF Full-text (13919 KB) | HTML Full-text | XML Full-text
Abstract
Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and
[...] Read more.
Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA), is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios. Full article
(This article belongs to the Special Issue Hyperspectral Imaging and Applications)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Assessment of Water Management Changes in the Italian Rice Paddies from 2000 to 2016 Using Satellite Data: A Contribution to Agro-Ecological Studies
Remote Sens. 2018, 10(3), 416; https://doi.org/10.3390/rs10030416
Received: 16 January 2018 / Revised: 16 February 2018 / Accepted: 6 March 2018 / Published: 8 March 2018
Cited by 2 | PDF Full-text (7883 KB) | HTML Full-text | XML Full-text
Abstract
The intensive rice cultivation area in northwestern Italy hosts the largest surface of rice paddies in Europe, and it is valued as a substantial habitat for aquatic biodiversity, with the paddies acting as a surrogate for the lost natural wetlands. The extent of
[...] Read more.
The intensive rice cultivation area in northwestern Italy hosts the largest surface of rice paddies in Europe, and it is valued as a substantial habitat for aquatic biodiversity, with the paddies acting as a surrogate for the lost natural wetlands. The extent of submerged paddies strictly depends on crop management practices: in this framework, the recent diffusion of rice seeding in dry conditions has led to a reduction of flooded surfaces during spring and could have contributed to the observed decline of the populations of some waterbird species that exploit rice fields as foraging habitat. In order to test the existence and magnitude of a decreasing trend in the extent of submerged rice paddies during the rice-sowing period, MODIS remotely-sensed data were used to estimate the extent of the average flooded surface and the proportion of flooded rice fields in the years 2000–2016 during the nesting period of waterbirds. A general reduction of flooded rice fields during the rice-sowing season was observed, averaging 0.86 ± 0.20 % per year (p-value < 0.01). Overall, the loss in submerged surface area during the sowing season reached 44 % of the original extent in 2016, with a peak of 78 % in the sub-districts to the east of the Ticino River. Results highlight the usefulness of remote sensing data and techniques to map and monitor water dynamics within rice cropping systems. These techniques could be of key importance to analyze the effects at the regional scale of the recent increase of dry-seeded rice cultivations on watershed recharge and water runoff and to interpret the decline of breeding waterbirds via a loss of foraging habitat. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Water Resources in a Changing Climate)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Analysis of Secular Ground Motions in Istanbul from a Long-Term InSAR Time-Series (1992–2017)
Remote Sens. 2018, 10(3), 408; https://doi.org/10.3390/rs10030408
Received: 31 January 2018 / Revised: 22 February 2018 / Accepted: 1 March 2018 / Published: 6 March 2018
Cited by 3 | PDF Full-text (13614 KB) | HTML Full-text | XML Full-text
Abstract
The identification and measurement of ground deformations in urban areas is of great importance for determining the vulnerable parts of the cities that are prone to geohazards, which is a crucial element of both sustainable urban planning and hazard mitigation. Interferometric synthetic aperture
[...] Read more.
The identification and measurement of ground deformations in urban areas is of great importance for determining the vulnerable parts of the cities that are prone to geohazards, which is a crucial element of both sustainable urban planning and hazard mitigation. Interferometric synthetic aperture radar (InSAR) time series analysis is a very powerful tool for the operational mapping of ground deformation related to urban subsidence and landslide phenomena. With an analysis spanning almost 25 years of satellite radar observations, we compute an InSAR time series of data from multiple satellites (European Remote Sensing satellites ERS-1 and ERS-2, Envisat, Sentinel-1A, and its twin sensor Sentinel-1B) in order to investigate the spatial extent and rate of ground deformation in the megacity of Istanbul. By combining the various multi-track InSAR datasets (291 images in total) and analysing persistent scatterers (PS-InSAR), we present mean velocity maps of ground surface displacement in selected areas of Istanbul. We identify several sites along the terrestrial and coastal regions of Istanbul that underwent vertical ground subsidence at varying rates, from 5 ± 1.2 mm/yr to 15 ± 2.1 mm/yr. The results reveal that the most distinctive subsidence patterns are associated with both anthropogenic factors and relatively weak lithologies along the Haramirede valley in particular, where the observed subsidence is up to 10 ± 2 mm/yr. We show that subsidence has been occurring along the Ayamama river stream at a rate of up to 10 ± 1.8 mm/yr since 1992, and has also been slowing down over time following the restoration of the river and stream system. We also identify subsidence at a rate of 8 ± 1.2 mm/yr along the coastal region of Istanbul, which we associate with land reclamation, as well as a very localised subsidence at a rate of 15 ± 2.3 mm/yr starting in 2016 around one of the highest skyscrapers of Istanbul, which was built in 2010. Full article
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Impacts of Climate Change on Tibetan Lakes: Patterns and Processes
Remote Sens. 2018, 10(3), 358; https://doi.org/10.3390/rs10030358
Received: 16 December 2017 / Revised: 14 February 2018 / Accepted: 21 February 2018 / Published: 26 February 2018
Cited by 4 | PDF Full-text (11263 KB) | HTML Full-text | XML Full-text
Abstract
High-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and
[...] Read more.
High-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery
Remote Sens. 2018, 10(2), 285; https://doi.org/10.3390/rs10020285
Received: 26 December 2017 / Revised: 2 February 2018 / Accepted: 8 February 2018 / Published: 12 February 2018
Cited by 13 | PDF Full-text (10424 KB) | HTML Full-text | XML Full-text
Abstract
Accurate and timely detection of weeds between and within crop rows in the early growth stage is considered one of the main challenges in site-specific weed management (SSWM). In this context, a robust and innovative automatic object-based image analysis (OBIA) algorithm was developed
[...] Read more.
Accurate and timely detection of weeds between and within crop rows in the early growth stage is considered one of the main challenges in site-specific weed management (SSWM). In this context, a robust and innovative automatic object-based image analysis (OBIA) algorithm was developed on Unmanned Aerial Vehicle (UAV) images to design early post-emergence prescription maps. This novel algorithm makes the major contribution. The OBIA algorithm combined Digital Surface Models (DSMs), orthomosaics and machine learning techniques (Random Forest, RF). OBIA-based plant heights were accurately estimated and used as a feature in the automatic sample selection by the RF classifier; this was the second research contribution. RF randomly selected a class balanced training set, obtained the optimum features values and classified the image, requiring no manual training, making this procedure time-efficient and more accurate, since it removes errors due to a subjective manual task. The ability to discriminate weeds was significantly affected by the imagery spatial resolution and weed density, making the use of higher spatial resolution images more suitable. Finally, prescription maps for in-season post-emergence SSWM were created based on the weed maps—the third research contribution—which could help farmers in decision-making to optimize crop management by rationalization of the herbicide application. The short time involved in the process (image capture and analysis) would allow timely weed control during critical periods, crucial for preventing yield loss. Full article
(This article belongs to the Special Issue Remote Sensing from Unmanned Aerial Vehicles (UAVs))
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Validation of Carbon Monoxide Total Column Retrievals from SCIAMACHY Observations with NDACC/TCCON Ground-Based Measurements
Remote Sens. 2018, 10(2), 223; https://doi.org/10.3390/rs10020223
Received: 6 December 2017 / Revised: 19 January 2018 / Accepted: 25 January 2018 / Published: 1 February 2018
Cited by 2 | PDF Full-text (3237 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The objective was to validate the carbon monoxide (CO) total column product inferred from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) full-mission (2003–2011) short-wave infrared (SWIR) nadir observations using the Beer InfraRed Retrieval Algorithm (BIRRA). Globally distributed Network for the Detection of
[...] Read more.
The objective was to validate the carbon monoxide (CO) total column product inferred from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) full-mission (2003–2011) short-wave infrared (SWIR) nadir observations using the Beer InfraRed Retrieval Algorithm (BIRRA). Globally distributed Network for the Detection of Atmospheric Composition Change (NDACC) and Total Carbon Column Observing Network (TCCON) ground-based (g-b) measurements were used as a true reference. Weighted averages of SCIAMACHY CO observations within a circle around the g-b observing system were utilized to minimize effects due to spatial mismatch of space-based (s-b) and g-b observations, i.e., disagreements due to representation errors rather than instrument and/or algorithm deficiencies. In addition, temporal weighted averages were examined and then the unweighted (classical) approach was compared to the weighted (non-classical) method. The delivered distance-based filtered SCIAMACHY data were in better agreement with respect to CO averages as compared to square-shaped sampling areas throughout the year. Errors in individual SCIAMACHY retrievals have increased substantially since 2005. The global bias was determined to be in the order of 10 parts per billion in volume (ppbv) depending on the reference network and validation strategy used. The largest negative bias was found to occur in the northern mid-latitudes in Europe and North America, and was partly caused by insufficient a priori estimates of CO and cloud shielding. Furthermore, no significant trend was identified in the global bias throughout the mission. The global analysis of the CO columns retrieved by the BIRRA shows results that are largely consistent with similar investigations in previous works. Full article
(This article belongs to the Section Atmosphere Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Exploring Multispectral ALS Data for Tree Species Classification
Remote Sens. 2018, 10(2), 183; https://doi.org/10.3390/rs10020183
Received: 15 November 2017 / Revised: 19 January 2018 / Accepted: 23 January 2018 / Published: 26 January 2018
Cited by 3 | PDF Full-text (7250 KB) | HTML Full-text | XML Full-text
Abstract
Multispectral Airborne Laser Scanning (ALS) is a new technology and its output data have not been fully explored for tree species classification purposes. The objective of this study was to investigate what type of features from multispectral ALS data (wavelengths of 1550 nm,
[...] Read more.
Multispectral Airborne Laser Scanning (ALS) is a new technology and its output data have not been fully explored for tree species classification purposes. The objective of this study was to investigate what type of features from multispectral ALS data (wavelengths of 1550 nm, 1064 nm and 532 nm) are best suited for tree species classification. Remote sensing data were gathered over hemi-boreal forest in southern Sweden (58°27′18.35″N, 13°39′8.03″E) on 21 July 2016. The field data consisted of 179 solitary trees from nine genera and ten species. Two new methods for feature extraction were tested and compared to features of height and intensity distributions. The features that were most important for tree species classification were intensity distribution features. Features from the upper part of the upper and outer parts of the crown were better for classification purposes than others. The best classification model was created using distribution features of both intensity and height in multispectral data, with a leave-one-out cross-validated accuracy of 76.5%. As a comparison, only structural features resulted in an highest accuracy of 43.0%. Picea abies and Pinus sylvestris had high user’s and producer’s accuracies and were not confused with any deciduous species. Tilia cordata was the deciduous species with a large sample that was most frequently confused with many other deciduous species. The results, although based on a small and special data set, suggest that multispectral ALS is a technology with great potential for tree species classification. Full article
(This article belongs to the Special Issue Lidar for Forest Science and Management)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013
Remote Sens. 2018, 10(2), 168; https://doi.org/10.3390/rs10020168
Received: 7 December 2017 / Revised: 11 January 2018 / Accepted: 19 January 2018 / Published: 25 January 2018
Cited by 4 | PDF Full-text (6996 KB) | HTML Full-text | XML Full-text
Abstract
Precipitation is a key aspect of the climate system. In this paper, the dependability of five satellite precipitation products (TRMM [Tropical Rainfall Measuring Mission] 3BV42, PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks] CDR, GSMaP [Global Satellite Mapping of Precipitation]
[...] Read more.
Precipitation is a key aspect of the climate system. In this paper, the dependability of five satellite precipitation products (TRMM [Tropical Rainfall Measuring Mission] 3BV42, PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks] CDR, GSMaP [Global Satellite Mapping of Precipitation] RENALYSIS, CMORPH [Climate Prediction Center’s morphing technique] BLD and CMORPH_RAW) were compared with in situ measurements over China for the period of 2005 to 2013. To completely evaluate these precipitation products, the annual, seasonal and monthly precipitation averages were calculated. Overall, the Huaihe River and Qinlin mountains are shown to have heavy precipitation to the southeast and lighter precipitation to the northwest. The comparison results indicate that Gauge correction (CMORPH_BLD) improves the quality of the original satellite products (CMORPH_RAW), resulting in the higher correlation coefficient (CC), the low relative bias (BIAS) and root mean square error (RMSE). Over China, the GSMaP_RENALYSIS outperforms other products and shows the highest CC (0.91) and lowest RMSE (0.85 mm/day) and all products except for PERSIANN_CDR exhibit underestimation. GSMaP_RENALYSIS gives the highest of probability of detection (81%), critical success index (63%) and lowest false alarm ratio (36%) while TRMM3BV42 gives the highest of frequency bias index (1.00). Over Tibetan Plateau, CMORPH_RAW demonstrates the poorest performance with the biggest BIAS (4.2 mm/month) and lowest CC (0.22) in December 2013. GSMaP_RENALYSIS displays quite consistent with in situ measurements in summer. However, GSMaP_RENALYSIS and CMORPH_RAW underestimate precipitation over South China. CMORPH_BLD and TRMM3BV42 show consistent with high CC (>0.8) but relatively large RMSE in summer. Full article
Figures

Figure 1

Open AccessEditor’s ChoiceArticle New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland
Remote Sens. 2018, 10(1), 151; https://doi.org/10.3390/rs10010151
Received: 14 November 2017 / Revised: 16 January 2018 / Accepted: 17 January 2018 / Published: 20 January 2018
PDF Full-text (23379 KB) | HTML Full-text | XML Full-text
Abstract
A new lava field was formed at Holuhraun in the Icelandic Highlands, north of Vatnajökull glacier, in 2014–2015. It was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 covering an area of
[...] Read more.
A new lava field was formed at Holuhraun in the Icelandic Highlands, north of Vatnajökull glacier, in 2014–2015. It was the largest effusive eruption in Iceland for 230 years, with an estimated lava bulk volume of ~1.44 km3 covering an area of ~84 km2. Satellite-based remote sensing is commonly used as preliminary assessment of large scale eruptions since it is relatively efficient for collecting and processing the data. Landsat-8 infrared datasets were used in this study, and we used dual-band technique to determine the subpixel temperature (Th) of the lava. We developed a new spectral index called the thermal eruption index (TEI) based on the shortwave infrared (SWIR) and thermal infrared (TIR) bands allowing us to differentiate thermal domain within the lava flow field. Lava surface roughness effects are accounted by using the Hurst coefficient (H) for deriving the radiant flux ( Φ rad ) and the crust thickness (Δh). Here, we compare the results derived from satellite images with field measurements. The result from 2 December 2014 shows that a temperature estimate (1096 °C; occupying area of 3.05 m2) from a lava breakout has a close correspondence with a thermal camera measurement (1047 °C; occupying area of 4.52 m2). We also found that the crust thickness estimate in the lava channel during 6 September 2014 (~3.4–7.7 m) compares closely with the lava height measurement from the field (~2.6–6.6 m); meanwhile, the total radiant flux peak is underestimated (~8 GW) compared to other studies (~25 GW), although the trend shows good agreement with both field observation and other studies. This study provides new insights for monitoring future effusive eruption using infrared satellite images. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle The Effect of Three Different Data Fusion Approaches on the Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors
Remote Sens. 2018, 10(1), 107; https://doi.org/10.3390/rs10010107
Received: 22 September 2017 / Revised: 27 December 2017 / Accepted: 9 January 2018 / Published: 13 January 2018
Cited by 2 | PDF Full-text (3381 KB) | HTML Full-text | XML Full-text
Abstract
Long-term climate records of soil moisture are of increased importance to climate researchers. In this study, we aim to evaluate the quality of three different fusion approaches that combine soil moisture retrieval from multiple satellite sensors. The arrival of L-band missions has led
[...] Read more.
Long-term climate records of soil moisture are of increased importance to climate researchers. In this study, we aim to evaluate the quality of three different fusion approaches that combine soil moisture retrieval from multiple satellite sensors. The arrival of L-band missions has led to an increased focus on the integration of L-band-based soil moisture retrievals in climate records, emphasizing the need to improve our understanding based on its added value within a multi-sensor framework. The three evaluated approaches were developed on 10-year passive microwave data (2003–2013) from two different satellite sensors, i.e., SMOS (2010–2013) and AMSR-E (2003–2011), and are based on a neural network (NN), regressions (REG), and the Land Parameter Retrieval Model (LPRM). The ability of the different approaches to best match AMSR-E and SMOS in their overlapping period was tested using an inter-comparison exercise between the SMOS and AMSR-E datasets, while the skill of the individual soil moisture products, based on anomalies, was evaluated using two verification techniques; first, a data assimilation technique that links precipitation information to the quality of soil moisture (expressed as the Rvalue), and secondly the triple collocation analysis (TCA). ASCAT soil moisture was included in the skill evaluation, representing the active microwave-based counterpart of soil moisture retrievals. Besides a semi-global analysis, explicit focus was placed on two regions that have strong land–atmosphere coupling, the Sahel (SA) and the central Great Plains (CGP) of North America. The NN approach gives the highest correlation coefficient between SMOS and AMSR-E, closely followed by LPRM and REG, while the absolute error is approximately the same for all three approaches. The Rvalue and TCA show the strength of using different satellite sources and the impact of different merging approaches on the skill to correctly capture soil moisture anomalies. The highest performance is found for AMSR-E over sparse vegetation, for SMOS over moderate vegetation, and for ASCAT over dense vegetation cover. While the two SMOS datasets (L3 and LPRM) show a similar performance, the three AMSR-E datasets do not. The good performance for AMSR-E over spare vegetation is mainly perceived for AMSR-E LPRM, benefiting from the physically based model, while AMSR-E NN shows improved skill in densely vegetated areas, making optimal use of the SMOS L3 training dataset. AMSR-E REG has a reasonable performance over sparsely vegetated areas; however, it quickly loses skill with increasing vegetation density. The findings over the SA and CGP mainly reflect results that are found in earlier sections. This confirms that historical soil moisture datasets based on a combination of these sources are a valuable source of information for climate research. Full article
(This article belongs to the Special Issue Retrieval, Validation and Application of Satellite Soil Moisture Data)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle SparkCloud: A Cloud-Based Elastic Bushfire Simulation Service
Remote Sens. 2018, 10(1), 74; https://doi.org/10.3390/rs10010074
Received: 31 October 2017 / Revised: 14 December 2017 / Accepted: 20 December 2017 / Published: 7 January 2018
PDF Full-text (1003 KB) | HTML Full-text | XML Full-text
Abstract
The accurate modeling of bushfires is not only complex and contextual but also a computationally intensive task. Ensemble predictions, involving several thousands to millions of simulations, can be required to capture and quantify the uncertain nature of bushfires. Moreover, users’ requirement and configuration
[...] Read more.
The accurate modeling of bushfires is not only complex and contextual but also a computationally intensive task. Ensemble predictions, involving several thousands to millions of simulations, can be required to capture and quantify the uncertain nature of bushfires. Moreover, users’ requirement and configuration may change in different situations requiring either more computational resources or modeling to be completed with a stricter time constraint. For example, during emergency situations, the user may need to make time-critical decisions that require the execution of bushfire-spread models within a deadline. Currently, most operational tools are not flexible and scalable enough to consider different users’ time requirements. In this paper, we propose the SparkCloud service, which integrates features of user-defined customizable configuration for bushfire simulations and scalability/elasticity features of the cloud to handle computation requirements. The proposed cloud service utilizes Data61’s Spark, which is a significantly flexible and scalable software system for bushfire-spread prediction and has been used in practical scenarios. The effectiveness of the SparkCloud service is demonstrated using real cases of bushfires and on real cloud computing infrastructure. Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Using a MODIS Index to Quantify MODIS-AVHRRs Spectral Differences in the Visible Band
Remote Sens. 2018, 10(1), 61; https://doi.org/10.3390/rs10010061
Received: 6 November 2017 / Revised: 23 December 2017 / Accepted: 3 January 2018 / Published: 4 January 2018
Cited by 1 | PDF Full-text (18290 KB) | HTML Full-text | XML Full-text
Abstract
Spectral band differences are a critical issue for progressing into an integrated earth observation framework and in particular, in sensor intercalibration. The differences are currently normalized using spectral band adjustment factor (SBAF) that is generated from hyperspectral data. In this context, the current
[...] Read more.
Spectral band differences are a critical issue for progressing into an integrated earth observation framework and in particular, in sensor intercalibration. The differences are currently normalized using spectral band adjustment factor (SBAF) that is generated from hyperspectral data. In this context, the current study proposes a method for calculating moderate-resolution imaging spectroradiometer (MODIS)-advanced very high resolution radiometers (AVHRRs) SBAF in the visible band, using the MODIS surface reflectance data. The method involves a uniform ratio index calculated using the MODIS 552-nm and 645-nm bands, and a sensor-specific quadratic equation, producing SBAF data at 500-m spatial resolution. The calculated SBAFs are in good agreement at site scale with literature reported data (relative error < 1.0%), and at local scale with Hyperion-derived data (total uncertainty ≈ 0.001), and significantly improve MODIS-AVHRR surface reflectance data consistency in the visible band (better than 1.0% reflectance units). The calculation is more sensitive to atmospheric effects over the vegetated areas. At global scale, MODIS-AVHRRs SBAFs are generally large (>1.0) over densely vegetated areas and extremely low over deserts and barren lands (0.96–0.98), indicative of large MODIS-AVHRRs differences. Deserts show temporally stable SBAF values, while still suffer from intra-annual BRDF effects and short-term cloud contamination. By means of daily MODIS data, the proposed method can produce ongoing SBAF data at a spatial scale that is comparable to AVHRRs. It increases the sampling of MODIS-AVHRRs image pairs for intercalibration, and offers insight into spectral band conversion, finally contributing to an integrated earth observation at moderate spatial resolutions. Full article
(This article belongs to the Special Issue Analysis of Multi-temporal Remote Sensing Images)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales
Remote Sens. 2018, 10(1), 33; https://doi.org/10.3390/rs10010033
Received: 2 November 2017 / Revised: 18 December 2017 / Accepted: 23 December 2017 / Published: 25 December 2017
Cited by 6 | PDF Full-text (5399 KB) | HTML Full-text | XML Full-text
Abstract
A good knowledge of the quality of the satellite soil moisture products is of great importance for their application and improvement. This paper examines the performance of eight satellite-based soil moisture products, including the Soil Moisture Active Passive (SMAP) passive Level 3 (L3),
[...] Read more.
A good knowledge of the quality of the satellite soil moisture products is of great importance for their application and improvement. This paper examines the performance of eight satellite-based soil moisture products, including the Soil Moisture Active Passive (SMAP) passive Level 3 (L3), the Soil Moisture and Ocean Salinity (SMOS) Centre Aval de Traitement des Données SMOS (CATDS) L3, the Japan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2) L3, the Land Parameter Retrieval Model (LPRM) AMSR2 L3, the European Space Agency (ESA) Climate Change Initiative (CCI) L3, the Chinese Fengyun-3B (FY3B) L2 soil moisture products at a coarse resolution of ~0.25°, and the newly released SMAP enhanced passive L3 and JAXA AMSR2 L3 soil moisture products at a medium resolution of ~0.1°. The ground soil moisture used for validation were collected from two well-calibrated and dense networks, including the Little Washita Watershed (LWW) network in the United States and the REMEDHUS network in Spain, each with different land cover. The results show that the SMAP passive soil moisture product outperformed the other products in the LWW network region, with an unbiased root mean square (ubRMSE) of 0.027 m3 m−3, whereas the FY3B soil moisture performed the best in the REMEDHUS network region, with an ubRMSE of 0.025 m3 m−3. The JAXA product performed much better at 0.25° than at 0.1°, but at both resolutions it underestimated soil moisture most of the time (bias < −0.05 m3 m−3). The SMAP-enhanced passive soil moisture product captured the temporal variation of ground measurements well, with a correlation coefficient larger than 0.8, and was generally superior to the JAXA product. The LPRM showed much larger amplitude and temporal variation than the ground soil moisture, with a wet bias larger than 0.09 m3 m−3. The underestimation of surface temperature may have contributed to the general dry bias found in the SMAP (−0.018 m3 m−3 for LWW and 0.016 m3 m−3 for REMEDHUS) and SMOS (−0.004 m3 m−3 for LWW and −0.012 m3 m−3 for REMEDHUS) soil moisture products. The ESA CCI product showed satisfactory performance with acceptable error metrics (ubRMSE < 0.045 m3 m−3), revealing the effectiveness of merging active and passive soil moisture products. The good performance of SMAP and FY3B demonstrates the potential in integrating them into the existing long-term ESA CCI product, in order to form a more reliable and useful product. Full article
(This article belongs to the Special Issue Soil Moisture Remote Sensing Across Scales)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes
Remote Sens. 2017, 9(12), 1287; https://doi.org/10.3390/rs9121287
Received: 1 October 2017 / Revised: 30 November 2017 / Accepted: 7 December 2017 / Published: 11 December 2017
Cited by 5 | PDF Full-text (4986 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Global assessment of the spatiotemporal variability in terrestrial total water storage anomalies (TWSA) in response to hydrologic extremes is critical for water resources management. Using TWSA derived from the gravity recovery and climate experiment (GRACE) satellites, this study systematically assessed the skill of
[...] Read more.
Global assessment of the spatiotemporal variability in terrestrial total water storage anomalies (TWSA) in response to hydrologic extremes is critical for water resources management. Using TWSA derived from the gravity recovery and climate experiment (GRACE) satellites, this study systematically assessed the skill of the TWSA-climatology (TC) approach and breakpoint (BP) detection method for identifying large-scale hydrologic extremes. The TC approach calculates standardized anomalies by using the mean and standard deviation of the GRACE TWSA corresponding to each month. In the BP detection method, the empirical mode decomposition (EMD) is first applied to identify the mean return period of TWSA extremes, and then a statistical procedure is used to identify the actual occurrence times of abrupt changes (i.e., BPs) in TWSA. Both detection methods were demonstrated on basin-averaged TWSA time series for the world’s 35 largest river basins. A nonlinear event coincidence analysis measure was applied to cross-examine abrupt changes detected by these methods with those detected by the Standardized Precipitation Index (SPI). Results show that our EMD-assisted BP procedure is a promising tool for identifying hydrologic extremes using GRACE TWSA data. Abrupt changes detected by the BP method coincide well with those of the SPI anomalies and with documented hydrologic extreme events. Event timings obtained by the TC method were ambiguous for a number of river basins studied, probably because the GRACE data length is too short to derive long-term climatology at this time. The BP approach demonstrates a robust wet-dry anomaly detection capability, which will be important for applications with the upcoming GRACE Follow-On mission. Full article
(This article belongs to the Special Issue Remote Sensing of Groundwater from River Basin to Global Scales)
Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere
Remote Sens. 2017, 9(12), 1277; https://doi.org/10.3390/rs9121277
Received: 1 November 2017 / Revised: 27 November 2017 / Accepted: 7 December 2017 / Published: 8 December 2017
Cited by 2 | PDF Full-text (9713 KB) | HTML Full-text | XML Full-text
Abstract
Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH). Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship
[...] Read more.
Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH). Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations) of length of vegetation growing season (LOS) and vegetation productivity assessed by the growing season NDVI integral (GSI) in the NH (>30°N) to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) dataset for a 32-year period (1982–2013). A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI), whereas diverging trends (opposing significant trends in LOS and GSI) cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands), whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA) and North America (NA). Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced by both ongoing climate change and increasingly intensive human disturbances. Full article
(This article belongs to the Special Issue Optical Remote Sensing of Boreal Forests)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle A Novel Pixel-Level Image Matching Method for Mars Express HRSC Linear Pushbroom Imagery Using Approximate Orthophotos
Remote Sens. 2017, 9(12), 1262; https://doi.org/10.3390/rs9121262
Received: 25 October 2017 / Revised: 1 December 2017 / Accepted: 2 December 2017 / Published: 5 December 2017
Cited by 1 | PDF Full-text (67337 KB) | HTML Full-text | XML Full-text
Abstract
Mars topographic data, such as digital orthophoto maps (DOMs) and digital elevation models (DEMs) are essential to planetary science and exploration missions. The main objective of our study is to generate a higher resolution DEM using the Mars Express (MEX) High Resolution Stereo
[...] Read more.
Mars topographic data, such as digital orthophoto maps (DOMs) and digital elevation models (DEMs) are essential to planetary science and exploration missions. The main objective of our study is to generate a higher resolution DEM using the Mars Express (MEX) High Resolution Stereo Camera (HRSC). This paper presents a novel pixel-level image matching method for HRSC linear pushbroom imagery. We suggest that image matching firstly be carried out on the approximate orthophotos. Then, the matched points are converted to the original images for forward intersection. The proposed method adopts some practical strategies such as hierarchical image matching and normalized cross-correlation (NCC). The characteristic strategies are: (1) the generation of a DEM and a DOM at each pyramid level; (2) the use of the generated DEM at the current pyramid level as reference data to generate approximate orthophotos at the next pyramid level; and (3) the use of the ground point coordinates of orthophotos to estimate the approximate positions of conjugate points. Hence, the refined DEM is used in the image rectification process, and pixel coordinate displacements of conjugate points on the approximate orthophotos will become smaller and smaller. Four experimental datasets acquired by the HRSC were used to verify the proposed method. The generated DEM was compared with the HRSC Level-4 DEM product. Experimental results demonstrate that an accurate and precise Mars DEM can be generated with the proposed method. The approximate positions of the conjugate points can be estimated with an accuracy of three pixels at the original image resolution level. Though slight systematic errors of about two pixels were observed, the generated DEM results show good consistency with the HRSC Level-4 DEM. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning
Remote Sens. 2017, 9(12), 1259; https://doi.org/10.3390/rs9121259
Received: 31 October 2017 / Revised: 27 November 2017 / Accepted: 28 November 2017 / Published: 4 December 2017
Cited by 10 | PDF Full-text (5448 KB) | HTML Full-text | XML Full-text
Abstract
This study aimed at evaluating the synergistic use of Sentinel-1 and Sentinel-2 data combined with the Support Vector Machines (SVMs) machine learning classifier for mapping land use and land cover (LULC) with emphasis on wetlands. In this context, the added value of spectral
[...] Read more.
This study aimed at evaluating the synergistic use of Sentinel-1 and Sentinel-2 data combined with the Support Vector Machines (SVMs) machine learning classifier for mapping land use and land cover (LULC) with emphasis on wetlands. In this context, the added value of spectral information derived from the Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and Grey Level Co-occurrence Matrix (GLCM) to the classification accuracy was also evaluated. As a case study, the National Park of Koronia and Volvi Lakes (NPKV) located in Greece was selected. LULC accuracy assessment was based on the computation of the classification error statistics and kappa coefficient. Findings of our study exemplified the appropriateness of the spatial and spectral resolution of Sentinel data in obtaining a rapid and cost-effective LULC cartography, and for wetlands in particular. The most accurate classification results were obtained when the additional spectral information was included to assist the classification implementation, increasing overall accuracy from 90.83% to 93.85% and kappa from 0.894 to 0.928. A post-classification correction (PCC) using knowledge-based logic rules further improved the overall accuracy to 94.82% and kappa to 0.936. This study provides further supporting evidence on the suitability of the Sentinels 1 and 2 data for improving our ability to map a complex area containing wetland and non-wetland LULC classes. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Water Resources in a Changing Climate)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Deep-learning Versus OBIA for Scattered Shrub Detection with Google Earth Imagery: Ziziphus lotus as Case Study
Remote Sens. 2017, 9(12), 1220; https://doi.org/10.3390/rs9121220
Received: 23 September 2017 / Revised: 22 November 2017 / Accepted: 23 November 2017 / Published: 26 November 2017
Cited by 9 | PDF Full-text (9780 KB) | HTML Full-text | XML Full-text
Abstract
There is a growing demand for accurate high-resolution land cover maps in many fields, e.g., in land-use planning and biodiversity conservation. Developing such maps has been traditionally performed using Object-Based Image Analysis (OBIA) methods, which usually reach good accuracies, but require a high
[...] Read more.
There is a growing demand for accurate high-resolution land cover maps in many fields, e.g., in land-use planning and biodiversity conservation. Developing such maps has been traditionally performed using Object-Based Image Analysis (OBIA) methods, which usually reach good accuracies, but require a high human supervision and the best configuration for one image often cannot be extrapolated to a different image. Recently, deep learning Convolutional Neural Networks (CNNs) have shown outstanding results in object recognition in computer vision and are offering promising results in land cover mapping. This paper analyzes the potential of CNN-based methods for detection of plant species of conservation concern using free high-resolution Google Earth TM images and provides an objective comparison with the state-of-the-art OBIA-methods. We consider as case study the detection of Ziziphus lotus shrubs, which are protected as a priority habitat under the European Union Habitats Directive. Compared to the best performing OBIA-method, the best CNN-detector achieved up to 12% better precision, up to 30% better recall and up to 20% better balance between precision and recall. Besides, the knowledge that CNNs acquired in the first image can be re-utilized in other regions, which makes the detection process very fast. A natural conclusion of this work is that including CNN-models as classifiers, e.g., ResNet-classifier, could further improve OBIA methods. The provided methodology can be systematically reproduced for other species detection using our codes available through (https://github.com/EGuirado/CNN-remotesensing). Full article
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data
Remote Sens. 2017, 9(11), 1180; https://doi.org/10.3390/rs9111180
Received: 21 September 2017 / Revised: 7 November 2017 / Accepted: 15 November 2017 / Published: 17 November 2017
Cited by 3 | PDF Full-text (10188 KB) | HTML Full-text | XML Full-text
Abstract
Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast
[...] Read more.
Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast China. First, each individual tree crown was extracted using the LiDAR data by a point cloud segmentation algorithm (PCS) and the sunlit portion of each crown was selected using the hyperspectral data. Second, different suites of hyperspectral and LiDAR metrics were extracted and selected by the indices of Principal Component Analysis (PCA) and the mean decrease in Gini index (MDG) from Random Forest (RF). Finally, both hyperspectral metrics (based on whole crown and sunlit crown) and LiDAR metrics were assessed and used as inputs to Random Forest classifier to discriminate five tree-species at two levels of classification. The results showed that the tree delineation approach (point cloud segmentation algorithm) was suitable for detecting individual tree in this study (overall accuracy = 82.9%). The classification approach provided a relatively high accuracy (overall accuracy > 85.4%) for classifying five tree-species in the study site. The classification using both hyperspectral and LiDAR metrics resulted in higher accuracies than only hyperspectral metrics (the improvement of overall accuracies = 0.4–5.6%). In addition, compared with the classification using whole crown metrics (overall accuracies = 85.4–89.3%), using sunlit crown metrics (overall accuracies = 87.1–91.5%) improved the overall accuracies of 2.3%. The results also suggested that fewer of the most important metrics can be used to classify tree-species effectively (overall accuracies = 85.8–91.0%). Full article
(This article belongs to the Section Forest Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires
Remote Sens. 2017, 9(11), 1161; https://doi.org/10.3390/rs9111161
Received: 7 September 2017 / Revised: 23 October 2017 / Accepted: 7 November 2017 / Published: 14 November 2017
Cited by 2 | PDF Full-text (6241 KB) | HTML Full-text | XML Full-text
Abstract
We used the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data (375 m spatial resolution) to automatically extract multispectral samples and train a One-Class Support Vector Machine for burned area mapping, and applied the resulting classification algorithm to 300-m spatial resolution imagery
[...] Read more.
We used the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data (375 m spatial resolution) to automatically extract multispectral samples and train a One-Class Support Vector Machine for burned area mapping, and applied the resulting classification algorithm to 300-m spatial resolution imagery from the Project for On-Board Autonomy-Vegetation (PROBA-V). The active fire data were screened to prevent extraction of unrepresentative burned area samples and combined with surface reflectance bi-weekly composites to produce burned area maps. The procedure was applied over the Brazilian Cerrado savanna, validated with reference maps obtained from Landsat images and compared with the Collection 6 Moderate Resolution Imaging Spectrometer (MODIS) Burned Area product (MCD64A1) Results show that the algorithm developed improved the detection of small-sized scars and displayed results more similar to the reference data than MCD64A1. Unlike active fire-based region growing algorithms, the proposed approach allows for the detection and mapping of burn scars without active fires, thus eliminating a potential source of omission error. The burned area mapping approach presented here should facilitate the development of operational-automated burned area algorithms, and is very straightforward for implementation with other sensors. Full article
(This article belongs to the Section Forest Remote Sensing)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature
Remote Sens. 2017, 9(11), 1138; https://doi.org/10.3390/rs9111138
Received: 24 August 2017 / Revised: 20 October 2017 / Accepted: 2 November 2017 / Published: 7 November 2017
Cited by 1 | PDF Full-text (6763 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Daily evapotranspiration (ET) is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST) from the MODerate resolution Imaging Spectroradiometer (MODIS) on the Aqua and
[...] Read more.
Daily evapotranspiration (ET) is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST) from the MODerate resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI) and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively) and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1). Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures). Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Multi-Scale Evaluation of the SMAP Product Using Sparse In-Situ Network over a High Mountainous Watershed, Northwest China
Remote Sens. 2017, 9(11), 1111; https://doi.org/10.3390/rs9111111
Received: 7 September 2017 / Revised: 18 October 2017 / Accepted: 26 October 2017 / Published: 2 November 2017
Cited by 1 | PDF Full-text (6762 KB) | HTML Full-text | XML Full-text
Abstract
As the latest L-band mission to date, evaluation of the Soil Moisture Active Passive (SMAP) products is one of its post-launch objectives. However, almost all previous studies have been conducted at the core validation sites (CVS) of the SMAP mission. This paper presents
[...] Read more.
As the latest L-band mission to date, evaluation of the Soil Moisture Active Passive (SMAP) products is one of its post-launch objectives. However, almost all previous studies have been conducted at the core validation sites (CVS) of the SMAP mission. This paper presents an evaluation of the SMAP soil moisture Level 3 (L3) and Level 4 (L4) products under different vegetation types at multiple tempo-spatial scales over the upper reach of the Heihe River Watershed, a topographically complex mountainous area in Northwest China. This was done through comparisons of the L3 and L4 products with ground-based observations from a sparse in situ network of permanent and temporary stations from 1 April 2015 to 22 June 2017. Results show that, compared with in situ observations at point scale, both the L3 and L4 products represent the temporal trends of the in situ observations in the study area well, with R values of 0.601 and 0.538 for the L3 ascending and descending products, respectively, and ranging from 0.353 to 0.410 for the L4 product at eight overpassing moments. However, because of the uncertainties of brightness temperature TBp and effective temperature Teff as well as their propagations in the inversion algorithm, both products did not achieve the accuracy of 0.04 m3/m3 in mountainous area. These uncertainties also result in the “dry bias” of the SMAP products in almost all the evaluations to date. Compared with areal average values at the watershed scale, the L3 product is far beyond the accuracy of 0.04 m3/m3 and the L4 product basically achieves the accuracy. In vegetation-covered land, the suitability and the variability of the coefficient bp result in both products performing best in cropland, then coniferous forest, sparse grassland, dense grassland, and alpine meadow, and worst in shrub. In barren land, the errors in estimating surface roughness h caused by the complex topography lead to poor performance of the SMAP products. With the relative errors of the SMAP brightness temperature observations and the corresponding land model forecast in the assimilation; the L3 and L4 products show different performance at both temporal and spatial scales; and the L3 product provides more reliable soil moisture estimates in the study area. Based on the results of this study, we propose: quantifying the uncertainties in estimating brightness temperature TBp and effective temperature Teff; determine coefficient bp and surface roughness h factor under various conditions; improving Goddard Earth Observing Model System Version 5 (GEOS-5) model; and deriving the SMAP-only climatology to improve the SMAP soil moisture estimates in the future. Full article
(This article belongs to the Special Issue Retrieval, Validation and Application of Satellite Soil Moisture Data)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing
Remote Sens. 2017, 9(11), 1105; https://doi.org/10.3390/rs9111105
Received: 15 August 2017 / Revised: 19 October 2017 / Accepted: 20 October 2017 / Published: 29 October 2017
PDF Full-text (6130 KB) | HTML Full-text | XML Full-text
Abstract
Land cover (LC) refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote
[...] Read more.
Land cover (LC) refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote sensing satellites. Therefore, observed data are a mixture of spectral signatures of two or more LC features resulting in mixed pixels. One solution to the mixed pixel problem is the use of subpixel learning algorithms to disintegrate the pixel spectrum into its constituent spectra. Despite the popularity and existing research conducted on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of several subpixel learning algorithms based on least squares, sparse regression, signal–subspace and geometrical methods. Analysis of the results obtained through computer-simulated and Landsat data indicated that fully constrained least squares (FCLS) outperformed the other techniques. Further, FCLS was used to unmix global Web-Enabled Landsat Data to obtain abundances of substrate (S), vegetation (V) and dark object (D) classes. Due to the sheer nature of data and computational needs, we leveraged the NASA Earth Exchange (NEX) high-performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into four classes, namely forest, farmland, water and urban areas (in conjunction with nighttime lights data) over California, USA using a random forest classifier. Validation of these LC maps with the National Land Cover Database 2011 products and North American Forest Dynamics static forest map shows a 6% improvement in unmixing-based classification relative to per-pixel classification. As such, abundance maps continue to offer a useful alternative to high-spatial-resolution classified maps for forest inventory analysis, multi-class mapping, multi-temporal trend analysis, etc. Full article
(This article belongs to the Special Issue Machine Learning Applications in Earth Science Big Data Analysis)
Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine
Remote Sens. 2017, 9(10), 1065; https://doi.org/10.3390/rs9101065
Received: 11 July 2017 / Revised: 27 September 2017 / Accepted: 10 October 2017 / Published: 19 October 2017
Cited by 27 | PDF Full-text (13160 KB) | HTML Full-text | XML Full-text
Abstract
A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, are starting points to develop higher-level products such as crop
[...] Read more.
A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, are starting points to develop higher-level products such as crop watering methods (irrigated or rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop types, cropland fallows, as well as for assessment of cropland productivity (productivity per unit of land), and crop water productivity (productivity per unit of water). Uncertainties associated with the cropland extent map have cascading effects on all higher-level cropland products. However, precise and accurate cropland extent maps at high spatial resolution over large areas (e.g., continents or the globe) are challenging to produce due to the small-holder dominant agricultural systems like those found in most of Africa and Asia. Cloud-based geospatial computing platforms and multi-date, multi-sensor satellite image inventories on Google Earth Engine offer opportunities for mapping croplands with precision and accuracy over large areas that satisfy the requirements of broad range of applications. Such maps are expected to provide highly significant improvements compared to existing products, which tend to be coarser in resolution, and often fail to capture fragmented small-holder farms especially in regions with high dynamic change within and across years. To overcome these limitations, in this research we present an approach for cropland extent mapping at high spatial resolution (30-m or better) using the 10-day, 10 to 20-m, Sentinel-2 data in combination with 16-day, 30-m, Landsat-8 data on Google Earth Engine (GEE). First, nominal 30-m resolution satellite imagery composites were created from 36,924 scenes of Sentinel-2 and Landsat-8 images for the entire African continent in 2015–2016. These composites were generated using a median-mosaic of five bands (blue, green, red, near-infrared, NDVI) during each of the two periods (period 1: January–June 2016 and period 2: July–December 2015) plus a 30-m slope layer derived from the Shuttle Radar Topographic Mission (SRTM) elevation dataset. Second, we selected Cropland/Non-cropland training samples (sample size = 9791) from various sources in GEE to create pixel-based classifications. As supervised classification algorithm, Random Forest (RF) was used as the primary classifier because of its efficiency, and when over-fitting issues of RF happened due to the noise of input training data, Support Vector Machine (SVM) was applied to compensate for such defects in specific areas. Third, the Recursive Hierarchical Segmentation (RHSeg) algorithm was employed to generate an object-oriented segmentation layer based on spectral and spatial properties from the same input data. This layer was merged with the pixel-based classification to improve segmentation accuracy. Accuracies of the merged 30-m crop extent product were computed using an error matrix approach in which 1754 independent validation samples were used. In addition, a comparison was performed with other available cropland maps as well as with LULC maps to show spatial similarity. Finally, the cropland area results derived from the map were compared with UN FAO statistics. The independent accuracy assessment showed a weighted overall accuracy of 94%, with a producer’s accuracy of 85.9% (or omission error of 14.1%), and user’s accuracy of 68.5% (commission error of 31.5%) for the cropland class. The total net cropland area (TNCA) of Africa was estimated as 313 Mha for the nominal year 2015. The online product, referred to as the Global Food Security-support Analysis Data @ 30-m for the African Continent, Cropland Extent product (GFSAD30AFCE) is distributed through the NASA’s Land Processes Distributed Active Archive Center (LP DAAC) as (available for download by 10 November 2017 or earlier): https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001 and can be viewed at https://croplands.org/app/map. Causes of uncertainty and limitations within the crop extent product are discussed in detail. Full article
(This article belongs to the Special Issue Google Earth Engine Applications)
Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments
Remote Sens. 2017, 9(10), 1014; https://doi.org/10.3390/rs9101014
Received: 4 August 2017 / Revised: 22 September 2017 / Accepted: 26 September 2017 / Published: 30 September 2017
Cited by 2 | PDF Full-text (9010 KB) | HTML Full-text | XML Full-text
Abstract
Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point) is commonly used to register the acquired point clouds together to form a unique one. However, this method faces
[...] Read more.
Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point) is commonly used to register the acquired point clouds together to form a unique one. However, this method faces local minima issues and often needs a coarse initial alignment to converge to the optimum. This paper develops a new method for registration adapted to indoor environments and based on structure priors of such scenes. Our method works without odometric data or physical targets. The rotation and translation of the rigid transformation are computed separately, using, respectively, the Gaussian image of the point clouds and a correlation of histograms. To evaluate our algorithm on challenging registration cases, two datasets were acquired and are available for comparison with other methods online. The evaluation of our algorithm on four datasets against six existing methods shows that the proposed method is more robust against sampling and scene complexity. Moreover, the time performances enable a real-time implementation. Full article
Figures

Graphical abstract