- Article
A CNN-LSTM-XGBoost Hybrid Framework for Interpretable Nitrogen Stress Classification Using Multimodal UAV Imagery
- Xiaohui Kuang,
- Dawei Wang and
- Zhen Chen
- + 8 authors
Accurate diagnosis of nitrogen status is essential for precision fertilization in winter wheat. Single-modal or single-temporal remote sensing often fails to capture the multidimensional crop responses to nitrogen stress. In this study, we propose a hybrid framework based on CNN-LSTM-XGBoost for interpretable classification of wheat nitrogen stress gradients using multimodal unmanned aerial vehicle (UAV) multispectral and thermal infrared (TIR) imagery. Field experiments were conducted at the Xinxiang base in Henan Province during the 2023–2024, following a randomized block design involving 10 cultivars, four nitrogen levels, and four water treatments. Multisource UAV images acquired at jointing, heading, and filling stages were used to construct a multimodal feature set consisting of manual features (spectral bands, vegetation indices (VIs), TIR, and their interaction terms) and seven temporal statistical features. A deep learning model (CNN-LSTM) was utilized to further extract deep spatiotemporal features, and its performance was systematically compared with traditional machine learning models. The results show that multimodal feature fusion significantly enhanced classification performance. The CNN-LSTM model achieved an accuracy of 89.38% with fused multimodal features, outperforming all traditional machine learning models. Incorporating multi-temporal features improved the F1macro of the XGBoost model to 0.9131, a 9.42 percentage-point increase over using the single heading stage alone. The hybrid model (CNN-LSTM-XGBoost) achieved the highest overall performance (Accuracy = 0.9208; F1macro = 0.9212; AUCmacro = 0.9879; Kappa = 0.8944). SHAP analysis identified TIR × NDRE as the most influential indicator, reflecting the coupled physiological response of reduced chlorophyll content and increased canopy temperature under nitrogen deficiency. The proposed multimodal, multi-temporal, and interpretable framework provides a robust technical foundation for UAV-assisted precision nitrogen management.
7 February 2026









