Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Fixed Sample Plots Data of National Forest Continuous Inventory (NFCI)
2.2.2. Remote Sensing Data
2.3. Extracting Feature Variables
2.4. Generating FCH
2.5. Screening Remote Sensing Variables
2.6. AGB Estimation Model
2.6.1. MSR
2.6.2. ANN
2.6.3. k-NN
2.6.4. RF
2.7. Model Accuracy Evaluation
3. Results and Analysis
3.1. Screening of Key Feature Variables
3.2. Model Accuracy by Different Data Sources
3.3. Effect of FCH on AGB Estimation
4. Discussion
4.1. The Role of Feature Variables in Biomass Estimation
4.2. Advantages and Limitations of Active and Passive Remote Sensing Data Incorporation
4.3. Contribution of FCH to Biomass Estimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Liu, S.; Yu, J.; Li, J.W.; Shangguan, Z.P.; Deng, L. Thinning increases forest ecosystem carbon stocks. For. Ecol. Manag. 2024, 555, 121702. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.Y.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Hennigar, C.; Weiskittel, A.; Lamb, S. Forest potential productivity mapping by linking remote-sensing-derived metrics to site variables. Remote Sens. 2020, 12, 2056. [Google Scholar] [CrossRef]
- Li, T.; Li, M.Y.; Ren, F.; Tian, L. Estimation and spatio-temporal change analysis of NPP in subtropical forests: A case study of Shaoguan, Guangdong, China. Remote Sens. 2022, 14, 2541. [Google Scholar] [CrossRef]
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healey, S.; Heath, H.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M.; et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the United States national forest inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.H. Review of forest vertical structure parameter inversion based on remote sensing technology. J. Remote Sens. 2013, 17, 697–716. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, L.; Liu, Q.H.; Li, J. Review of forest above ground biomass inversion methods based on remote sensing technology. J. Remote Sens. 2015, 19, 62–74. [Google Scholar] [CrossRef]
- Cao, L.; Xu, T.; Shen, X.; She, G.H. Mapping biomass by integrating Landsat OLI and airborne LiDARtransect data in subtropical forests. J. Remote Sens. 2016, 20, 665–678. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.; Wang, L.; Chen, C. Surface biomass inversion and vegetation characteristics analysis in the upper reaches of Minjiang River based on Sentinel-2A. Sci. Technol. Rev. 2017, 35, 74–80. [Google Scholar]
- Moghaddam, M.; Dungan, J.L.; Acker, S. Forest variable estimation from fusion of SAR 69 and multispectral optical data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2176–2187. [Google Scholar] [CrossRef]
- Song, Q.; Fan, W.Y. ALOS PALSAR estimation of vegetation biomass in Daxing’anling region. Chin. J. Appl. Ecol. 2011, 22, 303–308. [Google Scholar] [CrossRef]
- Gaveau, D.L.A.; Balzter, H.; Plummer, S. Forest woody biomass classification with satellite-based radar coherence over 900 000 km2 in Central Siberia. For. Ecol. Manag. 2003, 174, 65–75. [Google Scholar] [CrossRef]
- Liu, S. Forest Biomass Estimation in Nanchuan District of ChongqingCity Using a Combination of Sentinel-1 and Sentinel-2 Data; Chengdu University of Technology: Chengdu, China, 2020. [Google Scholar] [CrossRef]
- Wei, Y.Z. Study on Forest Biomass Inversion Using Machine Learning Method Based on SAR Image; Chang’an University: Xi’an, China, 2020. [Google Scholar] [CrossRef]
- Ningthoujam, R.K.; Tansey, K.; Balzter, H.; Morrison, K.; Johnson, S.C.M.; Gerard, F.; George, C.; Burbidge, G.; Doody, S.; Veck, N.; et al. Mapping forest cover and forest cover change with airborne S-band radar. Remote Sens. 2016, 8, 577. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A.; Hall, F.G. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens. Environ. 2010, 114, 1325–1337. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.; Xie, L.; Nie, X.M.; Wang, Z.; Du, Z.P.; Yue, T.X. Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling. Ecol. Indic. 2021, 121, 107215. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Askar, A.; Stratoulias, D. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 2022, 37, 366–376. [Google Scholar] [CrossRef]
- National Development and Reform Commission, Ministry of Natural Resources. National Major Project Plan for the Protection and Restoration of Important Ecosystems in China (2021–2035); Ministry of Natural Resources: Beijing, China, 2020. [Google Scholar]
- Kuang, Y.F.; Chen, X.L.; Zhu, C. Characteristics of Soil Heavy Metal Pollution and Health Risks in Chenzhou City. Processes 2024, 12, 623. [Google Scholar] [CrossRef]
- Wang, X.F.; Lan, W.B.; Xiao, Q.P.; Meng, Y.B.; Qiu, B.; Li, Z.Y.; He, L.P. Evaluation of soil environmental quality of cultivated land in the Donghe River Basin of Chenzhou City, Hunan Province by three methods. J. Environ. Occup. Med. 2022, 39, 684–689. [Google Scholar] [CrossRef]
- Xue, B.; Liu, B.S.; Yang, Q.; Sun, X.Z.; Wang, W.T.; Li, L. Formalizing an evaluation-prediction based roadmap towards urban sustainability: A case study of Chenzhou, China. Habitat Int. 2021, 112, 102376. [Google Scholar] [CrossRef]
- Lei, L.T.; Gao, J.P.; Zhang, X.L.; Gao, X.L. Estimation of forest stock volume based on Sentinel-1 and Sentinel-2A data. J. Yunnan Univ. Nat. Sci. Ed. 2022, 44, 1174–1182. [Google Scholar] [CrossRef]
- Li, P.; Tuerhanbai, M.; Di, T.; Zhong, F.Z. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems. Chin. J. Plant Ecol. 2019, 43, 532–542. [Google Scholar] [CrossRef]
- Zeng, W.S. Methodology on Modeling of Single-Tree Biomass Equations for National Biomass Estimation in China; Chinese Academy of Forestry: Beijing, China, 2011. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Biomass and net production of forest vegetation in China. Acta Ecol. Sin. 1996, 16, 12. [Google Scholar]
- Bitler, M.; Bartfeld, J.; Gundersen, C.; Smeeding, T.; Ziliak, J. The health and nutrition effects of SNAP. In SNAP Matters: How Food Stamps Affect Health Well-Being; Stanford University Press: Stanford, CA, USA, 2015; pp. 134–160. [Google Scholar] [CrossRef]
- Bao, Y.S.; Wang, Z.J.; Zhang, Y.J.; Qu, J.J.; Zhang, W.M.; Chen, C. A Semi-empirical Model for Correction of Terrain Influences in SAR Backscattering. Acta Geod. Cartogr. Sin. 2011, 40, 483–494. [Google Scholar]
- Wang, J.; Ding, J.L.; Chen, W.Q.; Yang, A.X. Microwave modeling of soil moisture in Oasis regional scale based on Sentinel-1 radar images. J. Infrared Millim. Waves 2017, 36, 120–126. [Google Scholar] [CrossRef]
- Lee, J.; Wen, J.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar] [CrossRef]
- Liu, W.X.; Zhang, J.X.; Huang, G.M.; Zhao, Z.; Lu, L.J.; Wei, J.J. Application of Terrain Radiometric Correction in Polarimetric SAR Image Classification. Sci. Surv. Mapp. 2014, 39, 98–102. [Google Scholar] [CrossRef]
- Sum, M.M. Net Primary Productivity and Its Influencing Factors in Three Typical Forest Types in the Loess Hilly Region; Northwest A&F University: Yangling, China, 2021. [Google Scholar] [CrossRef]
- Huang, X. Multiscale Texture and Shape Feature Extraction and Object-Oriented Classification for Very High Resolution Remotely Sensed Imagery; Wuhan University: Wuhan, China, 2009. [Google Scholar]
- Dong, L.X. New Development of Forest Canopy Height Remote Sensing. Remote Sens. Technol. Appl. 2016, 31, 833–845. [Google Scholar]
- Dong, J.C.; Ni, W.J.; Zhang, Z.Y.; Sun, G.Q. Performance of ICESat-2 ATL08 product on the estimation of forest height by referencing to small footprint LiDAR data. Natl. Remote Sens. Bull. 2021, 25, 1294–1307. [Google Scholar] [CrossRef]
- Canedo, B.V.; Marono, N.S.; Betanzos, A.A. Feature selection for high-dimensional data. Prog. Artif. Intell. 2016, 5, 65–75. [Google Scholar] [CrossRef]
- Fan, W.Y.; Zhang, H.Y.; Yu, Y.; Mao, X.G.; Yang, J.M. Comparison of three models of forest biomass estimation. Chin. J. Plant Ecol. 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Chen, E.X.; Li, Z.Y.; Wu, H.G.; Han, A.H. Forest Volume Estimation Method for Small Areas Based on kNN and Landsat Data. For. Res. 2008, 21, 745–750. [Google Scholar] [CrossRef]
- Fang, K.N.; Wu, J.B.; Zhu, J.P.; Xie, B.C. A review of random forest method research. Stat. Inf. Forum 2011, 26, 32–38. [Google Scholar] [CrossRef]
- Wang, L.A.; Zhou, X.D.; Zhu, X.K.; Dong, Z.D.; Guo, W.S. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Ma, T.T.; Wang, Z.H.; Li, H.; Ji, W.X.; He, M.Y.; Jiao, A.; Feng, Z.K. Correcting forest aboveground biomass biases by incorporating independent canopy height retrieval with conventional machine learning models using GEDI and ICESat-2 data. Ecol. Inform. 2025, 86, 103045. [Google Scholar] [CrossRef]
- Guo, R.; Fu, S.A.; Hou, M.J.; Liu, J.; Miao, C.L.; Meng, X.Y.; Feng, Q.S.; He, J.S.; Qian, D.W.; Liang, T.G. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data. Acta Prataculturae Sin. 2023, 32, 15–29. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhang, X.L.; Wang, Y.T. Sentinel-2A Ability evaluation of coniferous forest aboveground biomass inversion using Sentinel-2A multiple characteristic variables. J. Beijing For. Univ. 2020, 42, 27–38. [Google Scholar] [CrossRef]
- Fernandez-Habas, J.; Moreno, A.M.G.; Hidalgo-Fernandez, M.T.; Leal-Murillo, J.R.; Abellanas-Oar, B.; Gómez-Giráldez, P.J.; González-Dugo, M.P.; Fernández-Rebollo, P. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Sci. Total Environ. 2021, 791, 148101. [Google Scholar] [CrossRef] [PubMed]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, J.H.; Yue, W.Z.; Chen, W. Comparative study on vegetation index in extracting urban green space information. Remote Sens. Technol. Appl. 2006, 03, 212–219. [Google Scholar] [CrossRef]
- Moradi, F.; Sadeghi, M.M.S.; Heidarlou, H.B.; Deljouei, A.; Boshkar, E.; Borz, S.A. Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data. Ann. For. Res. 2022, 65, 165–182. [Google Scholar] [CrossRef]
- He, Z.X.; Yang, C.J.; Ni, J.; Yan, Q.M.; Lu, Z. Correlation analysis of the biomass of the Subtropical forest vegetation, LANDSAT TM data And topographical data. In Proceedings of the AASRI Conference on Artificial Intelligence and Industry Application (AASRI-AIIA 2011), Male, Maldives, 23–24 May 2011; pp. 739–742. [Google Scholar]
- Chen, L.; Wang, Y.Q.; Ren, C.Y.; Zhang, B.; Wang, Z.M. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Wang, X.; Ge, L.L.; Li, X.J.; Stephen, G. The Feasibility of Using ENVISAT ASAR and ALOS PALSAR to Monitor Pastures in Western Australia. Photogramm. Eng. Remote Sens. 2014, 80, 43–57. [Google Scholar] [CrossRef]
- Gao, Y.C.; Lu, D.S.; Li, G.Y.; Wang, G.X.; Chen, Q.; Liu, L.J.; Liu, D.Q. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Neff, J.C. Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef]
- Li, R.H.; Chen, L.; Wu, M.J.; Yu, X.L.; Zhao, X.H. Application strategies for GLCM textures from very high spatial resolution optical imagery over subtropical plantations. J. Beijing For. Univ. 2021, 43, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Bi, H.X.; Zhu, P.L.; Sun, J.; Zhu, J.Z.; Chen, T. Estimation of oak stock volume based on ALOS remote sensing data texture and texture index. Trans. Chin. Soc. Agric. Mach. 2014, 45, 245–254. [Google Scholar]
- Haywood, A.; Stone, C.; Jones, S. The potential of sentinel satellites for large area aboveground forest biomass mapping. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9030–9033. [Google Scholar] [CrossRef]
- Cao, Y.L.; Wu, D.S.; Fang, L.M. Estimation of Forest Aboveground Biomass in Linhai based on Sentinel Data. J. Zhejiang For. Sci. Technol. 2022, 42, 40–49. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Li, Y.C.; Li, M.Y.; Li, C.; Wang, L. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image. J. Cent. South Univ. For. Technol. 2020, 40, 147–155. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.C.; Li, M.Y. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. [Google Scholar] [CrossRef]
- Dai, Q.S.; Hu, J.; Li, J.J. Estimation and analysis of variation characteristic of forest carbon density in Hunan Province using continuous forest inventory data. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2017, 41, 129–135. [Google Scholar] [CrossRef]
- China Forest Resources Report 2014-2018; China Forestry Publishing House: Beijing, China, 2019.
- Izzawati; Wallington, E.D.; Woodhouse, I.H. Forest height retrieval from commercial X band SAR products. IEEE Trans. Geosci. Remote Sens. 2006, 44, 863–870. [Google Scholar] [CrossRef]
- Deng, Y.C.; Pan, J.; Wang, J.L.; Liu, Q.W.; Zhang, J.P. Mapping of Forest Biomass in Shangri-La City Based on LiDAR Technology and Other Remote Sensing Data. Remote Sens. 2022, 14, 5816. [Google Scholar] [CrossRef]
- Garestier, F.; Dubois-Fernandez, P.C.; Papathanassiou, K.P. Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 59–68. [Google Scholar] [CrossRef]
- Wempen, J.M.; Mccarter, M.K. Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah. Int. J. Min. Sci. Technol. 2017, 27, 159–163. [Google Scholar] [CrossRef]
- Me, J.Q.; Tang, X.M.; Li, G.Y.; Ai, B.; Yang, X.D.; Xie, D.P. Cloud Detection of Laser Altimetry Satellite ICESat-2 and the Related Algorithm. Laser Optoelectron. Prog. 2020, 57, 248–256. [Google Scholar] [CrossRef]
Vegetation Type | Plot Number | AGB/(t/ha−1) | |||
---|---|---|---|---|---|
Minimum | Maximum | Mean | Standard Deviation | ||
Coniferous forest | 123 | 1.43 | 158.28 | 54.64 | 35.29 |
Broadleaf forest | 46 | 1.82 | 271.19 | 73.19 | 56.27 |
Coniferous–mixed forest | 14 | 25.83 | 128.21 | 64.33 | 29.41 |
Broadleaf–mixed forest | 36 | 9.85 | 208.53 | 79.28 | 50.37 |
Coniferous–broadleaf mixed forest | 35 | 4.89 | 198.13 | 60.21 | 43.52 |
Bamboo forest | 26 | 1.79 | 66.53 | 40.14 | 17.96 |
Shrubland | 62 | 0.58 | 59.83 | 26.16 | 28.69 |
Economic forest | 30 | 1.26 | 82.26 | 24.64 | 18.64 |
Others | 220 |
Dataset | Description | Source | Spatial Resolution | Date |
---|---|---|---|---|
Sentinel-1 | Sentinel-1 IW mode Level-1 GRD product | European Space Agency | 10 m × 10 m | 4 October 2018 9 October 2018 |
Sentinel-1 IW Level-1 SLC product | 2.3 m × 14.1 m | 29 August 2018, 3 September 2018, 10 September 2018, 15 September 2018 | ||
Sentinel-2 | MAI Level-1C product | European Space Agency | 10 m × 10 m | 7 October 2018 |
SRTM | SRTM Version 4.1 DEM | United States Geological Survey | 30 m × 30 m | 11 February 2000– 22 February 2000 |
ICESat-2 | ICESat-2 ATL08 Version 5 Land and Vegetation Height Product | National Snow and Ice Data Center | 17 m (Footprint size) | 1 January 2019– 13 December 2019 |
GCH | NASIA and SASIA regional data coverage | Global Land Analysis and Discovery | 30 m × 30 m | 2019 |
Feature Category | Remote Sensing Factor | |
---|---|---|
Active remote sensing feature | Normalized backscatter coefficients and derived polarization metrics | VV, VH, (VH − VV)/(VH + VV), VV/VH |
Texture features (3 × 3, 5 × 5, 7 × 7 windows) | VV/VH_CON, VV/VH_DIS, VV/VH_MEA, VV/VH_HOM, VV/VH_ASM, VV/VH_ENT, VV/VH_VAR, VV/VH_COR | |
Polarimetric decomposition features (Cloude-Pottier) | Alpha, Anisotropy, Entropy | |
InSAR coherence | VV/VH, Coherence coefficient | |
Passive remote sensing factor | Spectral reflectance | B1, B2, B3, B4, B5, B6, B7, B8, B8a, B9, B11, B12 |
Information enhancement features | ALBEDO, VIS234, RED5678A, PCA_B1, PCA_B2, PCA_B3 | |
Texture features (3 × 3, 5 × 5, 7 × 7 windows) | B1-12_CON, B1-12_DIS, B1-12_MEA, B1-12_HOM, B1-12_ASM, B1-12_ENT, B1-12_VAR, B1-12_COR | |
Vegetation indices | RVI, DVI, WDVI, IPVI, NDVI, NDI45, GNDVI, SAVI, TSAVI, MSAVI, ARVI, PSSRa, MTCI, MCARI, S2REP, REIP, GEMI | |
Topographic factor | H, β, α, sinα, cosα, Cv, Ch |
Data Source | Model | Characteristic Variable |
---|---|---|
Sentinel-1 | MSR | H, β, VH, VH_3_CON, VH_5_DIS, VH_5_HOM\VH_7_ASM, VH_7_CON, VH_7_HOM, VV_7_HOM, VV_7_ENT, Cv |
ANN, k-NN, RF | H, β, VH_5_VAR, VH_5_HOM, VH_3_VAR, CCVH, VV, VH_3_CON, sinα, VV_5_VAR, VV_7_ASM, VH_7_HOM | |
Sentinel-2 | MSR | B1, B1_7_MEA, B2_5_MEA, B2_7_MEA, B2, B3_3_MEA, B3_7_MEA, B4_5_MEA, B5_7_MEA, RVI, PSSRa |
ANN, k-NN, RF | B2_5_MEA, B3_7_MEA, B4, B2_7_MEA, B4_5_MEA, GNDVI, B4_7_MEA, B2, VIS234, B12_7_DIS, PSSRA, IPVI | |
Sentinel-1 & 2 | MSR | B1, B1_7_MEA, B2_5_MEA, B2_7_MEA, B3_3_MEA, B3_5_MEA, B4_5_MEA, B5_7_MEA, RVI, PSSRA |
ANN, k-NN, RF | B3_5_MEA, VIS234, Cv, B3_7_MEA, VH_3_HOM, TSAVI, VH, B4_7_MEA, B4, VV_5_ASM, PSSRA, B2_7_MEA |
Model | Evaluating Indicator | Sentinel-1 | Sentinel-2 | Sentinel-1 & 2 |
---|---|---|---|---|
MSR | R2 | 0.39 | 0.44 | 0.46 |
RMSE/(t·ha−1) | 24.29 | 23.75 | 24.33 | |
MAE/(t·ha−1) | 35.02 | 34.51 | 34.92 | |
k-NN | R2 | 0.51 | 0.55 | 0.57 |
RMSE/(t·ha−1) | 28.76 | 29.78 | 29.40 | |
MAE/(t·ha−1) | 48.91 | 47.65 | 48.54 | |
ANN | R2 | 0.51 | 0.57 | 0.62 |
RMSE/(t·ha−1) | 24.67 | 22.68 | 27.42 | |
MAE/(t·ha−1) | 34.52 | 29.44 | 35.78 | |
RF | R2 | 0.63 | 0.65 | 0.69 |
RMSE/(t·ha−1) | 24.67 | 25.25 | 24.26 | |
MAE/(t·ha−1) | 36.52 | 36.23 | 36.08 |
Data Source | Without FCH | With FCH | ||||
---|---|---|---|---|---|---|
R2 | RMSE/(t·ha−1) | MAE/(t·ha−1) | R2 | RMSE/(t·ha−1) | MAE/(t·ha−1) | |
Sentinel-1 | 0.63 | 24.67 | 36.52 | 0.65 | 5.16 | 36.44 |
Sentinel-2 | 0.65 | 25.25 | 36.23 | 0.69 | 4.95 | 36.34 |
Sentinel-1 and -2 | 0.69 | 24.26 | 36.08 | 0.74 | 24.37 | 36.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, Y.; Tian, C.; Yun, T.; Li, M. Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height. Remote Sens. 2025, 17, 2509. https://doi.org/10.3390/rs17142509
Wu Y, Chen Y, Tian C, Yun T, Li M. Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height. Remote Sensing. 2025; 17(14):2509. https://doi.org/10.3390/rs17142509
Chicago/Turabian StyleWu, Yi, Yu Chen, Chunhong Tian, Ting Yun, and Mingyang Li. 2025. "Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height" Remote Sensing 17, no. 14: 2509. https://doi.org/10.3390/rs17142509
APA StyleWu, Y., Chen, Y., Tian, C., Yun, T., & Li, M. (2025). Estimation of Subtropical Forest Aboveground Biomass Using Active and Passive Sentinel Data with Canopy Height. Remote Sensing, 17(14), 2509. https://doi.org/10.3390/rs17142509