Previous Issue
Volume 16, September
 
 

Forests, Volume 16, Issue 10 (October 2025) – 90 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 1191 KB  
Article
Elevational Patterns of Plant Species Richness: Insights from Western Himalayas
by Abhishek Kumar, Meenu Patil, Pardeep Kumar and Anand Narain Singh
Forests 2025, 16(10), 1591; https://doi.org/10.3390/f16101591 - 16 Oct 2025
Abstract
Understanding the patterns and drivers of species distribution has remained a central theme for biogeographical, conservation, and ecological research. This study aims to investigate the elevational patterns of plant species richness and compare the observed species richness with the predictions of the mid-domain [...] Read more.
Understanding the patterns and drivers of species distribution has remained a central theme for biogeographical, conservation, and ecological research. This study aims to investigate the elevational patterns of plant species richness and compare the observed species richness with the predictions of the mid-domain effect (MDE) null model. By combining information from field observations and the published literature, we compiled a comprehensive database of the elevational distribution of plant species for three protected areas in the Western Himalayas. We used generalised linear model (GLM) and null model simulations to explore the elevational patterns of plant species richness. Our study revealed simple linear to complex non-linear patterns depending on the location and range of the elevational gradient. While non-linear unimodal patterns were common, a linear decreasing pattern was also observed. The observed species richness showed consistent deviations from the predictions of the mid-domain effect null model, suggesting that factors beyond the range constraints shape species richness patterns. These observations indicate that richness patterns are not solely generated by random processes, rather climatic gradients, ecological interactions, and topographic heterogeneity can shape these patterns. Understanding these factors can aid in predicting and managing the impacts of ongoing environmental changes on Himalayan biodiversity. Full article
(This article belongs to the Section Forest Biodiversity)
23 pages, 14512 KB  
Article
Drivers of Bird Diversity in the Pearl River Delta National Forest Urban Agglomeration, Guangdong Province, China
by Nana Bai, Yingchun Fu, Tingting He, Si Zhang, Dongping Zhong, Jia Sun and Zhenghui Yin
Forests 2025, 16(10), 1590; https://doi.org/10.3390/f16101590 - 16 Oct 2025
Abstract
To mitigate the threats posed by habitat fragmentation due to rapid urbanization on bird diversity, this study introduces an innovative framework for analyzing the synergistic effects of habitat quality (HQ), ecological network connectivity (ENC), and bird richness (BR) in the Pearl River Delta [...] Read more.
To mitigate the threats posed by habitat fragmentation due to rapid urbanization on bird diversity, this study introduces an innovative framework for analyzing the synergistic effects of habitat quality (HQ), ecological network connectivity (ENC), and bird richness (BR) in the Pearl River Delta National Forest Urban Agglomeration (PRDNFUA). The framework, based on a stratified ecological network perspective that distinguishes between urban agglomeration and urban core areas, incorporates different types of ecological corridors (interactive corridors and self-corridors), providing a novel approach for effectively quantifying and spatially visualizing the temporal and spatial evolution of the “HQ–ENC–BR” synergy. By integrating geographic detectors through ternary plot analysis combined with a zonation model, this study identified the synergetic effects of HQ and ENC on BR observed during 2015–2020 and proposed strategies for optimizing “HQ–ENC–BR” synergy. The results indicate that between 2015 and 2020, (1) the Pearl River Estuary and coastal areas are hotspots for bird distribution and also represent gaps in ecological network protection. (2) The positive synergistic effects between ecological network structure (HQ, ENC) and function (BR) have gradually strengthened and are stronger than the effects of individual factors; this synergy is especially significant in urban agglomerations and interactive corridors and is particularly pronounced in the northern cities. (3) The area overlap between the optimized ecological network and bird richness hotspots will increase by approximately 78.2%. The proposed ecological network optimization strategies are scientifically sound and offer valuable suggestions for improving bird diversity patterns in the PRDNFUA. These findings also provide empirical support for the United Nations Sustainable Development Goals (SDG 11: Sustainable Cities and Communities; SDG 15: Life on Land). Full article
Show Figures

Figure 1

18 pages, 3097 KB  
Article
Moso Bamboo Invasion Enhances Soil Infiltration and Water Flow Connectivity in Subtropical Forest Root Zones: Mechanisms and Implications
by Tianheng Zhao, Lin Zhang and Shi Qi
Forests 2025, 16(10), 1589; https://doi.org/10.3390/f16101589 - 16 Oct 2025
Abstract
Plant roots influence soil infiltration by altering its properties like porosity and bulk density, which are essential for ecohydrological cycles. Moso bamboo (Phyllostachys edulis), using its well-developed underground root system, invades neighbor forest communities, thereby influencing root characteristics and soil properties. [...] Read more.
Plant roots influence soil infiltration by altering its properties like porosity and bulk density, which are essential for ecohydrological cycles. Moso bamboo (Phyllostachys edulis), using its well-developed underground root system, invades neighbor forest communities, thereby influencing root characteristics and soil properties. Although Moso bamboo invasion may alter soil hydrology, its specific impact on soil infiltration capacity and water flow connectivity remains unclear. This work took a fir forest (Cunninghamia lanceolata), mixed fir and bamboo forest, and a bamboo forest which represent three different degrees of invasion: uninvaded, partially invaded, and completely invaded, respectively, as study objects, using double-ring dyeing infiltration method to measure soil infiltration capacity and calculating water flow connectivity index for the root zone. To assess the effects of soil properties and root characteristics on soil infiltration capacity and water flow connectivity, we employed random forest and structural equation modeling. The analysis revealed that Moso bamboo invasion significantly enhanced soil infiltration capacity. Specifically, in partially invaded forests, the initial infiltration rate, stable infiltration rate, and average infiltration rate increased by 31.5%, 26.1%, and 28.5%, respectively. In completely invaded forests, the corresponding increases were 6.6%, 35.6%, and 28.5%. Also, Moso bamboo invasion increased water flow connectivity of root zone, compared to the uninvaded forest, the water flow connectivity index increased by 29.4% in the completely invaded forest and by 15.6% in the partially invaded forest. The marked increase in fine root biomass density (RBD1), fine root length density (RLD1), soil organic carbon (SOC), and non-capillary pores (NCP) and the decrease in soil bulk density (SBD) followed by Moso bamboo invasion effectively improved water flow connectivity and soil infiltration capacity. The analysis identified that RBD1, RLD1, NCP, and SBD as the key drivers of soil infiltration capacity, whereas the water flow connectivity index was controlled mainly by SOC, NCP, RLD1, and RBD1. These findings help clarify the mechanistic pathways of Moso bamboo’s effects on soil infiltration. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 3282 KB  
Article
Comparing Spatial Analysis Methods for Habitat Selection: GPS Telemetry Reveals Methodological Bias in Raccoon Dog (Nyctereutes procyonoides) Ecology
by Sumin Jeon, Soo Kyeong Hwang, Yeon Woo Lee, Jihye Son, Hyeok Jae Lee, Chae Won Yoon, Ju Yeong Lee, Dong Kyun Yoo, Ok-Sik Chung and Jong Koo Lee
Forests 2025, 16(10), 1588; https://doi.org/10.3390/f16101588 - 16 Oct 2025
Abstract
Recent issues that have emerged in regard to raccoon dog (Nyctereutes procyonoides) include interaction with humans and disease transmission. Therefore, understanding their habitat characteristics and preferences is crucial in the effort to limit conflicts with humans. A total of thirteen raccoon [...] Read more.
Recent issues that have emerged in regard to raccoon dog (Nyctereutes procyonoides) include interaction with humans and disease transmission. Therefore, understanding their habitat characteristics and preferences is crucial in the effort to limit conflicts with humans. A total of thirteen raccoon dogs were captured from three regions in South Korea, each with distinct habitat characteristics. GPS trackers were attached for tracking the raccoon dogs’ movements. Utilizing GPS tracking data, Kernel Density Estimation (KDE), Minimum Convex Polygon (MCP), and Jacobs Index were applied to learn more about the habitat preferences of the raccoon dogs. According to the results, the habitat composition ratios for KDE and MCP showed that forests had the largest proportion. However, a habitat composition ratio similar to the land proportion of the area that they inhabit indicated that raccoon dogs had the ability to adapt to various habitats. Jacobs Index analysis revealed different habitat selection patterns compared to KDE and MCP, with forests showing neutral to negative selection despite comprising large proportions of home ranges. Our results highlight important methodological considerations when inferring habitat preferences from spatial data, suggesting that multiple analytical approaches provide complementary insights into animal space use. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

25 pages, 774 KB  
Article
Understanding How Generation Z Students in Forest Sciences and Landscape Architecture Perceive Ecosystem Services in Urban Garden Forests
by Hoi-Eun Roh, Jang-Hwan Jo, Yu-Ji Jang and Jung-Won Sung
Forests 2025, 16(10), 1587; https://doi.org/10.3390/f16101587 - 16 Oct 2025
Abstract
This study investigates how university students perceive the ecosystem services provided by gardens, utilizing Q methodology to categorize subjective viewpoints and analyze distinct perception types. Thirty-two students majoring in forest and landscape architecture at Wonkwang University (Iksan, Republic of Korea) participated, sorting 30 [...] Read more.
This study investigates how university students perceive the ecosystem services provided by gardens, utilizing Q methodology to categorize subjective viewpoints and analyze distinct perception types. Thirty-two students majoring in forest and landscape architecture at Wonkwang University (Iksan, Republic of Korea) participated, sorting 30 Q-statements each for provisioning, regulating, cultural, and supporting services. Principal component analysis identified three factors for provisioning and regulating services, and two factors for cultural and supporting services. The findings reveal that students’ perceptions are primarily based on generalized, idealized expectations, while their understanding of specific practices, such as food production, distribution, and community economic integration, remains insufficient. This indicates that their perceptions are more conceptual than practical, reflecting themes such as eco-friendly resource sharing, environmental regulation, nature experience, biodiversity enhancement, and sustainability. These results suggest the need for enhanced educational efforts to improve students’ understanding of the role of ecosystem services in urban contexts. The study highlights the importance of bridging the gap between theoretical knowledge and practical recognition to foster more comprehensive perceptions, ultimately informing future garden design, management strategies, and environmental education programs. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forests—2nd Edition)
Show Figures

Figure 1

20 pages, 7756 KB  
Article
A Novel System for the Characterization of Bark Macroscopic Morphology for Central European Woody Species
by László Zoltán and Márton Korda
Forests 2025, 16(10), 1586; https://doi.org/10.3390/f16101586 - 15 Oct 2025
Abstract
Accurate identification of deciduous woody species in winter is challenging, and the misidentification can lead to ecological and management damage. This study aims to substantiate a diagnostic system for woody species based on macromorphological bark characters. First, we reviewed the literature on bark-based [...] Read more.
Accurate identification of deciduous woody species in winter is challenging, and the misidentification can lead to ecological and management damage. This study aims to substantiate a diagnostic system for woody species based on macromorphological bark characters. First, we reviewed the literature on bark-based species identification to assess existing approaches and their limitations. Building on this, we identified informative macromorphological features of bark through both literature analysis and our experiences. These characters cover all developmental phases, including twigs, young bark, and mature bark, and are supported by new diagnostic terminology. Using this framework, we compiled a character set for 115 Central European woody taxa, providing practical, primarily qualitative traits that can be applied directly in the field. Finally, we developed and tested “Single-access Keys” as an alternative to conventional dichotomous keys, demonstrating their effectiveness in enabling flexible and rapid species recognition, even under atypical conditions or when only partial observations are possible. Our results highlight the value of bark macromorphology as a diagnostic tool and emphasize its potential for advancing thematic identification keys, as well as digital applications in forestry, taxonomy, and ecological monitoring. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

16 pages, 3276 KB  
Article
Distinct Roles of Forest Stand Types in Regulating Soil Organic Carbon Stability Across Depths
by Jiaxi Zhao, Liming Lai, Ye Mei, Yanming Zhao, Zimo Li, Yanxing Dou, Lin Hou, Qinghong Geng and Shuoxin Zhang
Forests 2025, 16(10), 1585; https://doi.org/10.3390/f16101585 - 15 Oct 2025
Abstract
Soil organic carbon (SOC) is the largest reservoir of terrestrial organic carbon and plays a pivotal role in regulating global climate dynamics. And there are some differences in SOC stocks under different forest stand types. But it is unclear whether this phenomenon is [...] Read more.
Soil organic carbon (SOC) is the largest reservoir of terrestrial organic carbon and plays a pivotal role in regulating global climate dynamics. And there are some differences in SOC stocks under different forest stand types. But it is unclear whether this phenomenon is related to SOC stability, especially stable components of SOC. Therefore, coniferous (Pinus tabuliformis), broad-leaved (Quercus aliena), and mixed forests were selected to explore the distributions and chemical structures of SOC components, as well as SOC stabilization mechanisms. Higher SOC contents but lower stability were observed under Quercus aliena forests. Contents of SOC and its components were lowest under Pinus tabuliformis forests. Yet the highest relative abundances of alkyl and aromatic carbon in mineral-associated organic carbon (MAOC) were found at 10–40 cm soil layers, with the highest MAOC/SOC. In contrast, MAOC/SOC was highest under mixed forests at 0–10 cm layer. Total nitrogen (TN), lignin, and silt contents were identified as key drivers of SOC stability. These findings indicated that mixed forest contributes more to enhancing SOC stability in topsoil, whereas coniferous forest promotes greater stability in subsurface layers. These results suggested that the functional complementarity among forest stand types may enhance carbon sequestration and promote the sustainability of forest management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 3426 KB  
Article
Specific Function and Assembly of Crucial Microbes for Dendroctonus armandi Tsai et Li
by Caixia Liu, Lingyu Liang, Huimin Wang, Zheng Wang and Quan Lu
Forests 2025, 16(10), 1584; https://doi.org/10.3390/f16101584 - 15 Oct 2025
Abstract
Dendroctonus armandi is a native bark beetle that infests healthy Pinus armandii Franch. in western China. The complex symbiotic relationships with diverse microbes are critical to hosts for survival and outbreak dynamics. Understanding the potential functions and assembly metabolisms of these symbiotic microbes [...] Read more.
Dendroctonus armandi is a native bark beetle that infests healthy Pinus armandii Franch. in western China. The complex symbiotic relationships with diverse microbes are critical to hosts for survival and outbreak dynamics. Understanding the potential functions and assembly metabolisms of these symbiotic microbes to host colonization are therefore crucial. Metagenomic analysis revealed that gut microbial communities differed from cuticular ones significantly. The cuticle exhibited greater fungal diversity, while the gut supported a significantly higher bacterial diversity. Our findings indicated that gut unclassified Burkholderiales, Escherichia, Bacteroides and Prevotella may play a crucial role in degrading terpenes, phenols and polysaccharides rather than cuticular microbes. Stochastic processes appeared to be served as the primary drivers shaping the core microbial community structures. Cuticular dominant and functional microbial community assemblies except for Escherichia may be primarily driven by stochasticity to adapt the unstable habitats. The direct comparison of gut and cuticular microbiomes may provide valuable insights into the specific functions of symbiotic microbes, and offer critical molecular data for broader understanding of symbiotic relationship between bark beetles and microbes. Full article
Show Figures

Figure 1

22 pages, 1878 KB  
Article
Decadal Changes in Ground-Layer Plant Communities Reflect Maple Dieback and Earthworm Invasion in National Forests in the Lake Superior Region, USA
by Tara L. Bal, Manuel E. Anderson, Mattison E. Brady, Julia I. Burton and Christopher R. Webster
Forests 2025, 16(10), 1583; https://doi.org/10.3390/f16101583 - 15 Oct 2025
Abstract
Northern hardwood forests of the Lake Superior region face a series of novel disturbance pressures including canopy dieback. Previous studies have linked regional sugar-maple (Acer saccharum) canopy dieback to introduced earthworms, which may have coinciding impacts on the ground-layer plant community. [...] Read more.
Northern hardwood forests of the Lake Superior region face a series of novel disturbance pressures including canopy dieback. Previous studies have linked regional sugar-maple (Acer saccharum) canopy dieback to introduced earthworms, which may have coinciding impacts on the ground-layer plant community. Dieback–earthworm interactions may lead to important longer-term changes in forest structure and function, but these relationships but have not been characterized. We sampled ground-layer plant communities in five national forest units in Michigan, Wisconsin, and Minnesota in 2010, and again just over a decade later in 2021. Non-metric multidimensional scaling ordination and indicator species analysis were used to assess relationships among ground-layer community composition and structure, functional traits, and environmental gradients including forest-floor condition and A. saccharum canopy dieback. Increases in dieback and earthworm disturbance in the decade between inventories were accompanied by a marked divergence in observed ground-layer plant community structure between national forests. Ordinations of 2021 data indicated a strengthening relationship between forest-floor condition and earthworm abundance. Our results suggest that earthworm impacts and A. saccharum dieback are driving changes in the ground layer on broad geographic and temporal scales, with short- and long-term implications for plant-community structure and function, and higher trophic levels. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 1886 KB  
Article
Age-Dependent Differences in Leaf Sulfur Assimilation and Relationship with Resistance to Air Pollutant SO2
by Jinxia Feng, Luyi Wang, Wenxin Liu, Ying Gao and Xianchong Wan
Forests 2025, 16(10), 1582; https://doi.org/10.3390/f16101582 - 14 Oct 2025
Abstract
Two poplar varieties with different resistance to sulfur dioxide were subjected to different concentrations of SO2 fumigation treatment. Young and mature leaves of Purui poplar (resistant) vs. 74/76 poplar (susceptible) were used to measure the changes in the activity of enzymes and [...] Read more.
Two poplar varieties with different resistance to sulfur dioxide were subjected to different concentrations of SO2 fumigation treatment. Young and mature leaves of Purui poplar (resistant) vs. 74/76 poplar (susceptible) were used to measure the changes in the activity of enzymes and metabolite content. Among the five key enzymes involved in sulfur metabolism and sulfur metabolites, APR, SO enzyme, GSH, and sulfate content have the greatest impact on young leaves of Purui, followed by 74/76 young leaves. The results show that for both Purui and 74/76 poplar, young leaves have stronger sulfur metabolism ability than mature leaves, indicating that young leaves have stronger SO2 resistance. Purui has stronger sulfur metabolism ability than 74/76 poplar, especially reflected in their young leaves. The comparison between young and mature leaves, as well as the comparison between resistant and susceptible varieties, mutually confirms that sulfur metabolism in leaves is an important mechanism for sulfur dioxide resistance. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Stakeholder Perception and Priority Gaps in Ecosystem Services of Different Land-Uses in Rural Laos
by Bohwi Lee and Hakjun Rhee
Forests 2025, 16(10), 1581; https://doi.org/10.3390/f16101581 - 14 Oct 2025
Abstract
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined [...] Read more.
Conflicting priorities between policymakers and local communities often compromise conservation outcomes in landscapes reliant on natural resources. Understanding how diverse stakeholders value ecosystem services (ESs) across coexisting land uses is essential; however, empirical evidence from rural Southeast Asia remains limited. This study examined ES perceptions and priorities among community members (n = 500) and experts (n = 30) within a bamboo forest, rice paddy, and teak plantation in Sangthong District, Lao PDR. A two-step survey methodology was employed: initially assessing ES perceptions to filter locally relevant services using a ≥50% recognition threshold, followed by quantifying priorities for this subset through a 100-point allocation task. The results revealed a systematic divergence in priorities rooted in differing knowledge systems. Communities, grounded in traditional ecological knowledge (TEK), prioritized tangible provisioning and cultural services (e.g., food and raw materials). In contrast, experts emphasized regulating services (e.g., carbon sequestration and hazard regulation) and habitat services (e.g., biodiversity and habitat provision). Distinct “ES bundles” also emerged by land use: bamboo (raw materials and freshwater), rice (food and medicine), and teak (timber/bioenergy and regulating services). Our findings suggest a policy transition from single-objective management toward optimizing landscape-level ES portfolios, alongside institutionalizing participatory co-management that formally integrates local knowledge and enhances ES literacy. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

53 pages, 5853 KB  
Article
CO2 Estimation of Tree Biomass in Forest Stands: A Simple and IPCC-Compliant Approach
by Marlen Brinkord, Björn Seintsch and Peter Elsasser
Forests 2025, 16(10), 1580; https://doi.org/10.3390/f16101580 - 14 Oct 2025
Abstract
Background: While forests are pivotal for climate change mitigation, robust CO2 accounting is required to quantify their climate benefits. However, varying current methodologies complicate this process for practitioners. This study addresses the need for a low-threshold, IPCC-compliant CO2 estimation method of [...] Read more.
Background: While forests are pivotal for climate change mitigation, robust CO2 accounting is required to quantify their climate benefits. However, varying current methodologies complicate this process for practitioners. This study addresses the need for a low-threshold, IPCC-compliant CO2 estimation method of tree biomass in forest stands. Methods: We developed CO2 yield tables by integrating segmented allometric biomass functions into fourth-generation yield tables, combining empirical data and simulations for Northwest Germany. Above- and belowground biomass was calculated, converted into CO2, and compared with estimates from traditional expansion factors. An interactive R Shiny dashboard was designed to visualise results. Results: The main results of this article are the carbon yield tables, covering beech (Fagus sylvatica), oak (Quercus spp.), spruce (Picea abies), pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii), each across various yield classes and starting at age 1, thereby also encompassing the juvenile phase of forest stands. Our comparison with estimates from traditional expansion factors shows that the latter can substantially overestimate carbon content in forest stands compared to our results, ranging from 20% to 35%, with higher estimates for mature stands and improved representation of early growth. The interactive dashboard also allows readers to experiment with their own figures. Conclusions: The choice of CO2 methodology profoundly affects results. Our yield tables and a calculation tool (dashboard) deliver a transparent, accessible tool for quantifying forest CO2 stock, supporting sustainable management and carbon market participation. Full article
16 pages, 1948 KB  
Review
Process-Based Modeling of Forest Soil Carbon Dynamics
by Mingyi Zhou, Shuai Wang, Qianlai Zhuang, Zijiao Yang, Chongwei Gan and Xinxin Jin
Forests 2025, 16(10), 1579; https://doi.org/10.3390/f16101579 - 14 Oct 2025
Abstract
Forests play a pivotal role in the global carbon cycle, yet accurately simulating forest soil carbon dynamics remains a significant challenge for process-based models. This review systematically compares the mechanistic foundations of traditional models (e.g., Century, CLM5) with emerging microbial-explicit models (e.g., MEND), [...] Read more.
Forests play a pivotal role in the global carbon cycle, yet accurately simulating forest soil carbon dynamics remains a significant challenge for process-based models. This review systematically compares the mechanistic foundations of traditional models (e.g., Century, CLM5) with emerging microbial-explicit models (e.g., MEND), highlighting key differences in mathematical formulation (first-order kinetics vs. Michaelis–Menten kinetics), carbon pools partitioning (measurable vs. non-measurable experimentally), and the representation of soil carbon stabilization mechanisms (inherent recalcitrance, physical protection, and chemical protection). Despite advances in process-based models in predicting forest soil organic carbon (SOC), improving prediction accuracy, and assessing SOC response to climate change, current research still faces several challenges. These include difficulties in capturing depth-dependent variations in critical microbial parameters such as microbial carbon use efficiency (CUE), limited capacity to distinguish the relative contributions of aboveground and belowground litter inputs to SOC formation, and a general lack of long-term observational data across soil profiles. To address these limitations, this study emphasizes the importance of integrating remote sensing data and refining cross-scale simulation approaches. Such improvements are essential for enhancing model predictive accuracy and establishing a more robust theoretical basis for forest carbon management and climate change mitigation. Full article
Show Figures

Figure 1

40 pages, 31431 KB  
Article
Effects of Fire Conditions on the Structural Optimization of Timber Trusses
by Matheus Henrique Morato de Moraes, Iuri Fazolin Fraga, Francisco Antonio Rocco Lahr, Fernando Júnior Resende Mascarenhas, Wanderlei Malaquias Pereira Junior and André Luis Christoforo
Forests 2025, 16(10), 1578; https://doi.org/10.3390/f16101578 - 14 Oct 2025
Abstract
This article examines how the time of exposure (0, 10, 20 and 30 min) to fire affects the optimal design of Howe timber trusses. The study integrates experimental characterization, thermal modeling (Eurocode 5 1995-1-2), and the bio-inspired Firefly Algorithm (FA). Five Brazilian species [...] Read more.
This article examines how the time of exposure (0, 10, 20 and 30 min) to fire affects the optimal design of Howe timber trusses. The study integrates experimental characterization, thermal modeling (Eurocode 5 1995-1-2), and the bio-inspired Firefly Algorithm (FA). Five Brazilian species (Cambará-rosa, Cupiúba, Angelim-pedra, Garapa, and Jatobá) were assessed in spans of 6, 9, 12, and 15 m. Each configuration was optimized 30 times with 120 agents, 600 iterations, and penalty treatments. In ambient conditions, Angelim-pedra and Garapa produced the lightest trusses, while under fire, simulated trusses with Jatobá wood properties provided the best performances, resulting in up to 35% mass reduction compared to trusses optimized with denser species under equivalent fire scenarios. Safety margins, defined through the Gross Mass Increase (GMI) index, quantify the additional structural mass required under fire in relation to the ambient design. GMI values ranged between 22% and 140% across the analyzed cases, quantifying the additional section demand under fire conditions relative to ambient design. To predict overdesign, regression equations were fitted using symbolic regression for the Index of Gross Area Correction Index (GACI), based on fire exposure time and resistant parameters, achieving R2 above 0.85. The study provides guidelines for species selection, span sizing, and fire safety design. Overall, combining thermal analysis, bio-inspired optimization, and symbolic regression highlights the potential of timber trusses for efficient, safe, and sustainable roof structures. In addition, this study demonstrates the scientific novelty of integrating experimental characterization, Eurocode 5 thermal modeling, and metaheuristic optimization with symbolic regression, providing analytical indices such as the Gross Mass Increase (GMI) and Gross Area Correction Index (GACI). These results also offer practical guidelines for species selection, span sizing, and fire safety design, reinforcing the applicability of the methodology for engineers and designers of timber roof systems. Full article
Show Figures

Figure 1

17 pages, 1947 KB  
Article
Reference Gene Identification and RNAi-Induced Gene Silencing in the Redbay Ambrosia Beetle (Xyleborus glabratus), Vector of Laurel Wilt Disease
by Morgan C. Knutsen and Lynne K. Rieske
Forests 2025, 16(10), 1577; https://doi.org/10.3390/f16101577 - 14 Oct 2025
Viewed by 14
Abstract
Management of invasive species is especially difficult when the organisms involved are endophagous and their interactions complex. Such is the case with laurel wilt disease (LWD), a lethal vascular condition caused by Harringtonia lauricola, the fungal symbiont of the non-native redbay ambrosia [...] Read more.
Management of invasive species is especially difficult when the organisms involved are endophagous and their interactions complex. Such is the case with laurel wilt disease (LWD), a lethal vascular condition caused by Harringtonia lauricola, the fungal symbiont of the non-native redbay ambrosia beetle (RAB), Xyleborus glabratus Eichoff (Coleoptera: Curculionidae). LWD has caused extensive mortality of coastal redbay, Persea borbonia, and is expanding to utilize additional lauraceous hosts, including sassafras, Sassafras albidum. Current management has not been successful in preventing its spread, warranting investigation into additional techniques. RNA interference (RNAi) is a highly specific gene-silencing mechanism used for integrated pest management of crop pests and currently being investigated for use in forests. When targeting essential genes, RNAi can cause rapid insect mortality. Here we focus on RAB, identifying for the first time species-specific reference genes for quantitative real-time PCR (qPCR) and assessing mortality and gene expression after oral ingestion of double-stranded RNAs (dsRNAs) targeting essential genes (hsp, shi, and iap). Our study validates reference genes for expression analyses and shows significant mortality and changes in gene expression for all three target genes. Our research aims to contribute to the development of innovative management strategies for this invasive pest complex. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

25 pages, 8808 KB  
Article
Beyond Shade Provision: Pedestrians’ Visual Perception of Street Tree Canopy Structure Characteristics in Guangzhou City, China
by Jiawei Wang, Jie Hu and Yuan Ma
Forests 2025, 16(10), 1576; https://doi.org/10.3390/f16101576 - 13 Oct 2025
Viewed by 176
Abstract
This study examines the impact of canopy structural characteristics on pedestrians’ visual perception and psychophysiological responses along four roads in the subtropical city of Guangzhou: Huadi Avenue, Jixiang Road, Yuejiang Middle Road, and Huan Dao Road. A Canopy Structural Index (CSI) was innovatively [...] Read more.
This study examines the impact of canopy structural characteristics on pedestrians’ visual perception and psychophysiological responses along four roads in the subtropical city of Guangzhou: Huadi Avenue, Jixiang Road, Yuejiang Middle Road, and Huan Dao Road. A Canopy Structural Index (CSI) was innovatively developed by integrating tree height, crown width, diffuse non-interceptance, and leaf area index, establishing a five-tier quantitative grading system. The study used multimodal data fusion techniques combined with heart rate variability (HRV) analysis and eye-tracking experiments to quantitatively decipher the patterns of autonomic nervous regulation and visual attention allocation under different levels of CSI. The results demonstrate that CSI levels are significantly correlated with psychological relaxation states: as CSI levels increase, time-domain HRV metrics (SDNN and RMSSD) rise by 15%–43%, while the frequency-domain metric (LF/HF) decreases by 31%, indicating enhanced parasympathetic activity and a transition from stress to relaxation. Concurrently, the allocation of visual attention toward canopies intensifies. The proportion of fixation duration increases to nearly 50%, and the duration of the first fixation extends by 0.3–0.8 s. The study proposes CSI ≤ 0.15 as an optimization threshold, offering scientific guidance for designing and pruning subtropical urban street tree canopies. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Graphical abstract

31 pages, 16515 KB  
Article
Trend Shifts in Vegetation Greening and Responses to Drought in Central Asia, 1982–2022
by Haiying Pei, Gangyong Li, Yang Wang, Jian Peng, Moyan Li, Junqiang Yao and Tianfeng Wei
Forests 2025, 16(10), 1575; https://doi.org/10.3390/f16101575 - 13 Oct 2025
Viewed by 177
Abstract
Under global warming, drought frequency and its severity have risen notably, posing considerable challenges to vegetation growth. Central Asia (CA), recognized as the largest non-zonal arid zone globally, features dryland ecosystems that are particularly vulnerable to drought stress. This research examines how plant [...] Read more.
Under global warming, drought frequency and its severity have risen notably, posing considerable challenges to vegetation growth. Central Asia (CA), recognized as the largest non-zonal arid zone globally, features dryland ecosystems that are particularly vulnerable to drought stress. This research examines how plant life in CA reacts to prolonged dry spells by analyzing multiple datasets, including drought indices and satellite-derived NDVI measurements, spanning four decades (1982–2022). This study also delves into the compound impact of drought, revealing how its influence on vegetation unfolds through both cumulative stress and delayed ecological responses. Based on the research results, the vegetation coverage in CA exhibited a notable rising tendency from 1982 to 1998. Specifically, it increased at a rate of 4 × 10−3 per year (p < 0.05). On the other hand, the direction of this trend shifted to a downward one during the period from 1999 to 2022. During this latter phase, the vegetation coverage decreased at a rate of −4 × 10−3 per year (p > 0.05). Vegetation changes in the study area underwent a fundamental reversal around 1998, shifting from widespread greening during 1982–1998 to persistent browning during 1999–2022. Specifically, 98.6% of the region underwent pronounced summer drought stress, which triggered a substantial rise in vegetation browning. The vegetation response to the accumulated and lagged effects of drought varied across seasons, with summer exhibiting the strongest sensitivity, followed by spring and autumn. The lagged effect of drought predominantly influences the vegetation during the growing season and spring, affecting 59.44% and 79.27% of CA, respectively. In contrast, the accumulated effect of drought is more prominent in summer and autumn, affecting 54.92% and 56.52% of CA. These insights offer valuable guidance for ecological restoration initiatives and sustainable management of dryland ecosystems. Full article
Show Figures

Figure 1

25 pages, 24888 KB  
Article
Assessing Synergistic Effects on NPP from a Refined Vegetation Perspective: Ecological Projects and Climate in Heilongjiang
by Tingting Xia and Jiapeng Huang
Forests 2025, 16(10), 1574; https://doi.org/10.3390/f16101574 - 12 Oct 2025
Viewed by 194
Abstract
Net Primary Productivity (NPP) serves as a key indicator of ecosystem health and productivity. However, most existing research focuses on primary land cover types, overlooking the dynamic response processes of NPP in refined vegetation types to multiple climate drivers. Furthermore, it lacks systematic [...] Read more.
Net Primary Productivity (NPP) serves as a key indicator of ecosystem health and productivity. However, most existing research focuses on primary land cover types, overlooking the dynamic response processes of NPP in refined vegetation types to multiple climate drivers. Furthermore, it lacks systematic analysis of the feedback mechanisms through which China’s Five-Year Plan (FYP) ecological projects regulate climate stress. This study, based on refined vegetation classification, systematically analyzes the dynamic changes in NPP in Heilongjiang Province from the 10th to the 13th FYP periods (2001–2020), with a focus on refined vegetation types. Results show that between 2001 and 2020, mixed-leaved forest emerged as the core driver of regional NPP change during the 12th FYP (NPP increase of +58.4 gC·m−2·a−1). Although deciduous needle-leaved forest (DNF) showed the highest cumulative increase (+64 gC·m−2·a−1), it experienced significant degradation (p < 0.01) in 57%–62% of its area during the 12th and 13th FYP periods. The dominant climate driver shifted from precipitation (positively correlated in 74% of the area during the 10th–11th FYPs) to drought stress dominated by vapor pressure deficit (VPD) (positive correlation increasing to 54%). Ecological projects mitigated the negative impact of temperature, reducing the area with negative correlations by 13%. Overall, the ecological policies of the FYP exerted a weak negative influence. However, forest vegetation was strongly regulated by VPD (SV = −0.61~0.59), while grasslands and croplands exhibited high sensitivity to temperature. These findings underscore the contrasting climate policy responses among plant functional groups, highlighting the urgent need for differentiated ecological management strategies. Full article
Show Figures

Figure 1

17 pages, 3393 KB  
Article
Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing
by Yi Zheng, Jixin Cao, Ying Wang, Yafen Wei, Yu Tian and Yanchun Wang
Forests 2025, 16(10), 1573; https://doi.org/10.3390/f16101573 - 12 Oct 2025
Viewed by 197
Abstract
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching [...] Read more.
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching in urban landscapes remains underexplored. In this study, a one-year field experiment was conducted to evaluate the effects of four mulching treatments on soil bacterial community diversity and functional potential. Four treatments were applied green waste compost + wood chips (GW), green waste compost + wood chips + volcanic rocks (GWV), green waste compost + wood chips + pebbles (GWP), and a non-mulched control (CK). Organic mulching (GW) effectively reduced bulk density, enhanced cellulase and protease activities, increased bacterial community richness and balance, and enriched microbial genes associated with carbon and nitrogen metabolism, while organic–inorganic mulching further promoted soil nutrition and reshaped bacterial community structure. Soil pH, nitrogen content, and protease activity served as key drivers of bacterial community structure and function. These findings demonstrate that different mulching practices provide distinct ecological advantages, and together highlight the role of mulching in regulating soil–microbe–plant interactions and improving urban tree pit management. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

17 pages, 8354 KB  
Article
Feasibility of a Low-Cost MEMS Accelerometer for Tree Dynamic Stability Analysis: A Comparative Study with Seismic Sensors
by Ilaria Incollu, Andrea Giachetti, Yamuna Giambastiani, Hervè Atsè Corti, Francesca Giannetti, Gianni Bartoli, Irene Piredda and Filippo Giadrossich
Forests 2025, 16(10), 1572; https://doi.org/10.3390/f16101572 - 11 Oct 2025
Viewed by 223
Abstract
Urban trees are subjected to stressful conditions caused by anthropogenic, biotic, and abiotic factors. These stressors can cause structural changes, increasing the risks of branch failure or even complete uprooting. To mitigate the risks to people’s safety, administrators must assess and evaluate the [...] Read more.
Urban trees are subjected to stressful conditions caused by anthropogenic, biotic, and abiotic factors. These stressors can cause structural changes, increasing the risks of branch failure or even complete uprooting. To mitigate the risks to people’s safety, administrators must assess and evaluate the health and structural stability of trees. Risk analysis typically takes into account environmental vulnerability and tree characteristics, assessed at a specific point in time. However, although dynamic tests play a crucial role in risk assessment in urban environments, the high cost of the sensors significantly limits their widespread application across large tree populations. For this reason, the present study aims to evaluate the effectiveness of low-cost sensors in monitoring tree dynamics. A low-cost micro-electro-mechanical systems (MEMS) sensor is tested in the laboratory and the field using a pull-and-release test, and its performance is compared with that of seismic reference accelerometers. The collected data are analyzed and compared in terms of both the frequency and time domains. To obtain reliable measurements, the accelerations must be generated by substantial dynamic excitations, such as high wind events or abrupt changes in loading conditions. The results show that the MEMS sensor has lower accuracy and higher noise compared to the seismic sensor; however, the MEMS can still identify the main peaks in the frequency domain compared to the seismic sensor, provided that the input amplitude is sufficiently high. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 4936 KB  
Article
Transcriptome Analysis Reveals the Genetic Basis of Phenotypic Traits of Vaccinium uliginosum L. at Different Elevations in the Changbai Mountains
by Yue Wang, Jun Li, Luying Zhao, Kai Mu, Ruijian Wang and Qichang Zhang
Forests 2025, 16(10), 1571; https://doi.org/10.3390/f16101571 - 11 Oct 2025
Viewed by 91
Abstract
The morphological traits of Vaccinium uliginosum L., including plant height, leaf area, and fruit weight, have changed significantly across an elevational gradient in the Changbai Mountains. To elucidate the molecular mechanisms underlying these morphological variations, RNA-Seq technology was employed to identify differentially expressed [...] Read more.
The morphological traits of Vaccinium uliginosum L., including plant height, leaf area, and fruit weight, have changed significantly across an elevational gradient in the Changbai Mountains. To elucidate the molecular mechanisms underlying these morphological variations, RNA-Seq technology was employed to identify differentially expressed genes (DEGs), key metabolic pathways, and associated biological functions of V. uliginosum at seven elevations in the Changbai Mountains. A total of 1190 DEGs significantly associated with morphological variations were identified. These genes are mainly involved in lipid synthesis, carbohydrate metabolism, energy metabolism, and signal transduction. Redundancy analysis (RDA) revealed that fatty acyl-ACP thioesterase B (FATB) and ribulose-bisphosphate carboxylase small subunit (cbbS) exhibited a significant association with morphological variation. Integrated analysis indicated that high-altitude plants likely enhance lipid synthesis and cell wall stability while also inhibiting photosynthesis and carbohydrate metabolism. The regulatory mechanisms underlying hormone signal transduction may be relatively complex, as evidenced by the enhanced activity of gibberellin and reduced biological effects of auxin, abscisic acid, and ethylene. This study is the first to provide transcriptomic evidence elucidating the genetic basis of altitudinal morphological adaptation in V. uliginosum, integrating phenotypic traits with gene expression profiles across an elevational gradient. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 5177 KB  
Article
Short-Term Effects of N Deposition on Soil Respiration in Pine and Oak Monocultures
by Azam Nouraei, Seyed Mohammad Hojjati, Hamid Jalilvand, Patrick Schleppi and Seyed Jalil Alavi
Forests 2025, 16(10), 1570; https://doi.org/10.3390/f16101570 - 11 Oct 2025
Viewed by 121
Abstract
Atmospheric nitrogen input has been a severe challenge worldwide. The influences of N deposition on carbon cycling, loss, and storage have been recognized as a critical issue. This study aimed to assess the immediate responses of soil respiration to different N deposition treatments [...] Read more.
Atmospheric nitrogen input has been a severe challenge worldwide. The influences of N deposition on carbon cycling, loss, and storage have been recognized as a critical issue. This study aimed to assess the immediate responses of soil respiration to different N deposition treatments in radiata pine (Pinus radiata D. Don) and chestnut-leaved oak (Quercus castaneifolia C. A. Mey) plantations within 12 months. N treatments were performed monthly at levels of 0, 50, 100, and 150 kg N ha−1 year−1 from October 2017 to September 2018. Litterfall was collected and analyzed seasonally for its mass and C content. Within the 0–10 cm depth of mineral soil in both plantations, parameters such as total nitrogen, pH, microbial biomass carbon (MBC), organic carbon (OC), and fine root biomass were measured seasonally. Soil respiration (Rs) was determined through monthly measurements of CO2 concentration in the field using a portable, closed chamber technique. The control plots exhibited the highest Rs during spring (2.96, 2.85 μmol CO2 m−2 s−1) and summer (2.92, 3.1 μmol CO2 m−2 s−1) seasons in oak and pine plantations, respectively. However, the introduction of nitrogen significantly diminished Rs in both plantations. Moreover, N treatments caused a notable reduction of soil MBC and fine root biomass. Soil microbial entropy and the C/N ratio were also significantly decreased by nitrogen treatments in both plantations, with the most prominent effects observed in summer. The observed decline in Rs in N-treated plots can be attributed to the decrease in MBC and fine root biomass, potentially with distinct contributions of these components in the pine and oak plantations. Our findings suggested that N-induced alteration in soil carbon dynamics was more pronounced in the oak plantation, which resulted in more SOC accumulation with increasing N inputs, while the pine plantation showed no significant changes in SOC. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

20 pages, 21172 KB  
Article
Landscape Metric-Enhanced Vegetation Restoration: Improving Spatial Suitability on Loess Plateau
by Sixuan Du, Jiarui Li and Xiang Li
Forests 2025, 16(10), 1569; https://doi.org/10.3390/f16101569 - 11 Oct 2025
Viewed by 224
Abstract
Ecological restoration of the Loess Plateau plays a pivotal role in mitigating land degradation and promoting regional sustainability. In this study, landscape pattern metrics were integrated into the MaxEnt model to evaluate the influence of landscape configuration on restoration planning. Nine representative species [...] Read more.
Ecological restoration of the Loess Plateau plays a pivotal role in mitigating land degradation and promoting regional sustainability. In this study, landscape pattern metrics were integrated into the MaxEnt model to evaluate the influence of landscape configuration on restoration planning. Nine representative species from three vegetation strata—herbs, shrubs, and trees—were selected based on ecological suitability. A comprehensive set of variables, including environmental, anthropogenic, and landscape metrics, was constructed for modeling. Results demonstrate that incorporating landscape metrics significantly enhanced the spatial explanatory power, providing a robust supplement to traditional ecological restoration assessments. Distinct responses to landscape structure were observed among vegetation types: herb species were more sensitive to patch aggregation and connectivity, shrubs preferred regular edges and larger patch size, while tree species favored extensive, low-fragmentation core habitats. Vertical structure optimization revealed that while large areas were suitable for single vegetation layers, composite vegetation configurations were more appropriate in certain central and southern subregions. These findings underscore the importance of landscape structure in guiding restoration strategies and serve as a basis for designing ecologically coherent and spatially targeted vegetation restoration plans on the Loess Plateau. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Roll Angular Velocity and Lateral Overturning Tendency of a Small-Tracked Forestry Tractor Under No-Sideslip Dynamic Driving Conditions
by Yun-Jeong Yang, Moon-Kyeong Jang and Ju-Seok Nam
Forests 2025, 16(10), 1568; https://doi.org/10.3390/f16101568 - 11 Oct 2025
Viewed by 176
Abstract
In this study, a driving test was conducted using a small-tracked forestry tractor with a scale of 1/11 in the shape of an actual tractor to assess safety under dynamic conditions. The driving conditions resulting in lateral overturning were derived. Additionally, an angular [...] Read more.
In this study, a driving test was conducted using a small-tracked forestry tractor with a scale of 1/11 in the shape of an actual tractor to assess safety under dynamic conditions. The driving conditions resulting in lateral overturning were derived. Additionally, an angular velocity sensor was used to analyze the variation in roll angular velocity with driving conditions. Driving condition variables comprised obstacle height, ground slope angle, and driving speed. Obstacle height had five levels between 0 and 40 mm in 10 mm intervals, and ground slope angle had 11 levels at 5° intervals from 0° to 50°. Driving speed had three levels: 0.07, 0.11, and 0.13 m/s. The ground slope angle resulting in lateral overturning in the driving scenario was lower than that in non-driving under all conditions. Roll angular velocity increased as obstacle height and tractor driving speed increased. However, ground slope angle did not significantly affect angular velocity. Roll angular velocity at the moment of lateral overturning was about 90 deg/s regardless of driving conditions. A certain critical angular velocity was found to induce lateral overturning, and adjusting the driving method such as reducing driving speed and making turns when the roll angular velocity of the tractor approached the critical value improved safety. However, the quantitative results from the small tractor cannot be directly applied to full-size tractors. Although numerical values may differ, this study focused on capturing the overall trends in lateral overturning considering various driving conditions. Future studies can improve the practical applicability of these findings by determining the critical angular velocity of various full-size tractors. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

17 pages, 3042 KB  
Article
Enhancing Distance-Independent Forest Growth Models Using National-Scale Forest Inventory Data
by Byungmook Hwang, Sinyoung Park, Hyemin Kim, Dongwook W. Ko, Kiwoong Lee, A-Reum Kim and Wonhee Cho
Forests 2025, 16(10), 1567; https://doi.org/10.3390/f16101567 - 10 Oct 2025
Viewed by 151
Abstract
National-scale long-term forest ecosystem surveys based on systematic sampling offer a robust framework for detecting temporal growth trends of specific tree species across regions. The National Forest Inventory (NFI) of the Republic of Korea serves as a vital source for analyzing long-term forest [...] Read more.
National-scale long-term forest ecosystem surveys based on systematic sampling offer a robust framework for detecting temporal growth trends of specific tree species across regions. The National Forest Inventory (NFI) of the Republic of Korea serves as a vital source for analyzing long-term forest dynamics on a national scale by providing regularly collected large-scale forest data. However, various limitations, such as the lack of individual-level and spatial interaction data, restrict the development of reliable individual tree growth models. To overcome this, distance-independent models, compatible with the structure and data resolution of the NFI, provide a practical alternative for simulating individual tree and stand-level growth by utilizing straightforward attributes, such as diameter at breast height (DBH). This study aimed to analyze the growth patterns and construct species-specific models for two major plantation species in South Korea, Pinus koraiensis and Larix kaempferi, using data from the 5th (2006–2010), 6th (2011–2015), and 7th (2016–2020) NFI survey cycles. The sampling points included 117 and 171 plots for P. koraiensis and L. kaempferi, respectively. An additional matching process was implemented to improve species identification and tracking across multiple survey years. The final models were parameterized using a distance-independent model, integrating the estimation of potential diameter growth (PG) and a modifier (MOD) function to adjust for species- and site-specific variabilities. Consequently, the models for each species demonstrated strong performance, with P. koraiensis showing an R2 of 0.98 and RMSE of 1.15 (cm), and L. kaempferi showing an R2 of 0.98 and RMSE of 1.14 (cm). This study provides empirical evidence for the development of generalized and scalable growth models using NFI data. As the NFI increases in volume, the framework can be expanded to underrepresented species to improve the accuracy of underperforming models. Ultimately, this study lays a scientific foundation for the future development of tree-level simulation algorithms for forest dynamics, encompassing mortality, harvesting, and regeneration. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 12919 KB  
Article
Mapping Flat Peaches Using GF-1 Imagery and Overwintering Features by Comparing Pixel/Object-Based Random Forest Algorithm
by Yawen Wang, Jing Wang and Cheng Tang
Forests 2025, 16(10), 1566; https://doi.org/10.3390/f16101566 - 10 Oct 2025
Viewed by 131
Abstract
The flat peach, an important commercial crop in the 143rd Regiment of Shihezi, China, is overwintered using plastic film mulching. Flat peaches are cultivated to boost the local temperate rural economy. The development of accurate maps of the spatial distribution of flat peach [...] Read more.
The flat peach, an important commercial crop in the 143rd Regiment of Shihezi, China, is overwintered using plastic film mulching. Flat peaches are cultivated to boost the local temperate rural economy. The development of accurate maps of the spatial distribution of flat peach plantations is crucial for the intelligent management of economic orchards. This study evaluated the performance of pixel-based and object-based random forest algorithms for mapping flat peaches using the GF-1 image acquired during the overwintering period. A total of 45 variables, including spectral bands, vegetation indices, and texture, were used as input features. To assess the importance of different features on classification accuracy, the five different sets of variables (5, 15, 25, and 35 input variables and all 45 variables) were classified using pixel/object-based classification methods. Results of the feature optimization suggested that vegetation indices played a key role in the study, and the mean and variance of Gray-Level Co-occurrence Matrix (GLCM) texture features were important variables for distinguishing flat peach orchards. The object-based classification method was superior to the pixel-based classification method with statistically significant differences. The optimal performance was achieved by the object-based method using 25 input variables, with an overall accuracy of 94.47% and a Kappa coefficient of 0.9273. Furthermore, there were no statistically significant differences between the image-derived flat peach cultivated area and the statistical yearbook data. The result indicated that high-resolution images based on the overwintering period can successfully achieve the mapping of flat peach planting areas, which will provide a useful reference for temperate lands with similar agricultural management. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

30 pages, 12726 KB  
Article
Ecological Sensitivity Zoning and Functional Optimization of the Longyuwan National Forest Park
by Jing He, Yigeng Zhu, Wenwen Zhong, Qiupeng Yuan, Rui Zhang, Jue Li, Shuang Yao, Tailin Zhong and Zhi Li
Forests 2025, 16(10), 1565; https://doi.org/10.3390/f16101565 - 10 Oct 2025
Viewed by 238
Abstract
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. [...] Read more.
In the context of sustainable forest resource development, balancing ecological conservation with rational utilization is essential to achieving forest multifunctionality. Longyuwan National Forest Park, located in Luanchuan County, Henan Province, serves as a transitional zone between rural mountainous ecosystems and nearby urban settlements. Increasingly, this area faces urbanization pressures such as tourism expansion, infrastructure development, and intensified land use, which may threaten ecological stability. This study aims to evaluate the ecological sensitivity of the park and optimize its spatial functional zoning. Using the Analytic Hierarchy Process (AHP), we followed four key steps: constructing the hierarchical model, generating the pairwise judgment matrices, computing the weights and conducting the consistency check, and determining the final weights. A hierarchical evaluation framework was constructed using the AHP, incorporating twelve ecological indicators across geomorphological, hydrological, atmospheric, biological, and anthropogenic dimensions. Spatial analysis tools in ArcGIS 10.2, including reclassification and weighted overlay, were employed for single-factor and integrated sensitivity assessments. The results indicated that land-use type, elevation, and water-body distribution were the most influential indicators. Ecological sensitivity across the park was categorized into five levels: extremely high (0.02%), high (11.99%), moderate (73.53%), low (14.19%), and extremely low (0.28%). Based on these findings, four functional zones were delineated: ecological conservation (50.99%), core landscape (22.86%), general recreation (23.94%), and management and service (2.21%). This research provides spatially explicit insights into forest management under anthropogenic stress, offering theoretical support for the sustainable governance of forest–urban interface landscapes. Full article
(This article belongs to the Special Issue Litter Decomposition and Soil Nutrient Cycling in Forests)
Show Figures

Figure 1

17 pages, 6718 KB  
Article
Disentangling the Cooling Effects of Transpiration and Canopy Shading: Case Study of an Individual Tree in a Subtropical City
by Zhe Shi, Chunhua Yan, Weiting Hu, Zifan Luo and Guo Yu Qiu
Forests 2025, 16(10), 1564; https://doi.org/10.3390/f16101564 - 10 Oct 2025
Viewed by 214
Abstract
Transpiration and canopy shading are the main ways that trees cool urban environments; this is crucial to human survival and improving urban livability in the context of global warming and rapid urbanization. So far, most studies focus on the combined cooling effect of [...] Read more.
Transpiration and canopy shading are the main ways that trees cool urban environments; this is crucial to human survival and improving urban livability in the context of global warming and rapid urbanization. So far, most studies focus on the combined cooling effect of transpiration and canopy shading, but their individual contributions have not been widely explored. Therefore, a quantitative framework was developed by carrying out a long-term field experiment and microenvironment simulations to investigate the cooling effect of a single Ficus concinna. The results show that the annual mean cooling effects of shading and transpiration are 0.17 ± 0.27 °C and 0.30 ± 0.13 °C, accounting for 21.2 ± 51.6% and 44.7 ± 26.3% of total cooling, respectively. Shade cooling demonstrates strong radiative dependence, reaching a peak of 0.63 °C with a cooling contribution of 77.1% during summer at noon due to solar radiation interception. In contrast, nighttime and winter conditions revealed shading-induced temperature increases up to 0.52 °C via longwave radiation reflection. By contrast, transpiration cooling demonstrated temperature dependence, which increased with air temperature and peaked at 1.03 °C (contributing 70.0% to the total cooling) before stomata closing. This mechanistic analysis quantitatively reveals that F. concinna provides cooling effects through a dynamic complementarity between transpiration and shading. These findings could offer a biophysically grounded basis for optimizing urban greening strategies and contribute to the theoretical advancement of nature-based urban climate solutions. Full article
Show Figures

Figure 1

20 pages, 6132 KB  
Article
The Impact of Water–Green Spaces Spatial Relationships on the Carbon Sequestration Efficiency of Urban Waterfront Green Spaces
by Yangyang Yuan, Shangcen Luo, Mingzhu Yang, Jingwen Mao, Sidan Yao and Qianyu Hong
Forests 2025, 16(10), 1563; https://doi.org/10.3390/f16101563 - 10 Oct 2025
Viewed by 158
Abstract
Against the background of global warming, the carbon emission of cities accounts for more than 70%, and its carbon sink increase and emission reduction have become the research focus. The water bodies and green spaces in the urban blue–green space have a synergistic [...] Read more.
Against the background of global warming, the carbon emission of cities accounts for more than 70%, and its carbon sink increase and emission reduction have become the research focus. The water bodies and green spaces in the urban blue–green space have a synergistic carbon sequestration effect, but current research pays less attention to the small and medium scales. Therefore, taking the waterfront green space on both sides of Qinhuai New River in Nanjing as the research object, this paper explores the impact of the synergy between water and greenery on the carbon sequestration efficiency of green space. The study first estimates the carbon sequestration efficiency of green spaces by integrating measured Leaf Area Index (LAI) data with the mean carbon sequestration rate per unit leaf area for typical tree and shrub species. It then constructs a set of water–green spatial relationship indicators and applies a random forest regression model to identify the key factors influencing carbon sequestration efficiency. Finally, multiple scenario models are developed to simulate the effects of green spaces on CO2 reduction, thereby validating the roles of the identified influencing factors. The study found that waterfront green spaces tended to exhibit slightly higher carbon sequestration efficiency compared with non-waterfront green spaces. The proportion of 10 m forest land area and the proportion of 10–20 m forest land area had a higher impact on the carbon sequestration capacity of waterfront green space; that is, the closer the distance between the green space and the water, the better the carbon sequestration capacity. In order to improve the carbon sequestration efficiency of the waterfront area, the green space should be arranged along the water bank as much as possible, the depth of the green space should be increased, the proportion of the forest land area should be increased, the arbor and shrub should be planted evenly, and ribbon planting should be avoided. The study confirmed the synergistic effect of water and greenery in carbon sequestration benefits, providing data support and theoretical reference for the optimization and renewal of urban waterfront green space, and contributing to the realization of urban waterfront green space planning, design, and renewal with the goal of a high carbon sink. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

16 pages, 3084 KB  
Article
Systematic Identification and Functional Study of Vitamin B6-Related PDX2 Genes in the Ginkgo biloba Genome
by Hailan Jiang, Yifan Xiao, Chun Yuan, Zhi Feng, Zhi Yao, Jinyuan Li, Shuguang Zhang, Yiqiang Wang and Meng Li
Forests 2025, 16(10), 1562; https://doi.org/10.3390/f16101562 - 10 Oct 2025
Viewed by 173
Abstract
Vitamin B6 is an essential coenzyme involved in various metabolic processes critical for plant growth and development. However, its biosynthesis and regulatory mechanisms remain poorly understood in the ancient gymnosperm Ginkgo biloba. In this study, we identified two members of the PDX2 [...] Read more.
Vitamin B6 is an essential coenzyme involved in various metabolic processes critical for plant growth and development. However, its biosynthesis and regulatory mechanisms remain poorly understood in the ancient gymnosperm Ginkgo biloba. In this study, we identified two members of the PDX2 gene family (Gb_34755 and Gb_34990) through genome-wide analysis and characterized their molecular and functional properties. Bioinformatic analysis revealed distinct physicochemical traits and subcellular localizations, with Gb_34755 predicted in the cytoplasm and Gb_34990 in both chloroplasts and cytoplasm. Both proteins contain the glutaminase-related PLN02832 domain, indicating involvement in VB6 biosynthesis. Chromosomal mapping placed the genes in transcriptionally active regions on chromosomes 6 and 9. Phylogenetic analysis showed close evolutionary relationships between Ginkgo PDX2 genes and those in ferns and gymnosperms, distinct from angiosperms. Promoter analysis revealed differential enrichment of cis-elements: Gb_34990 harbored low-temperature and salicylic acid-responsive elements, while Gb_34755 showed motifs related to development. Gene expression profiling indicated significant upregulation (p < 0.05) of both genes during the late developmental stages of Ginkgo kernels, coinciding with peak VB6 content. Functional validation via transient overexpression in Nicotiana benthamiana confirmed a positive regulatory role, with VB6 levels increasing from 3.38 μg/g to 12.17 μg/g (p < 0.05). This study provides the first comprehensive functional analysis of the PDX2 gene family in Ginkgo and confirms their critical role in VB6 biosynthesis. These findings enhance our understanding of vitamin metabolism in gymnosperms and present promising targets for metabolic engineering in plants. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

Previous Issue
Back to TopTop