Large-scale tree planting programs that store carbon provided by wood and non-wood products are being promoted to mitigate climate change. Assessing the biomass pool of plantations is thus an essential task in forest ecology. This study investigated biomass allocation and allometric equations for above- and belowground components along an age-sequence of
Pinus tabuliformis plantations (8, 18, 32, and 46 years old) in northern Hebei Province, China. The biomass of each tree component (root, stem, branch, foliage) was quantified by destructive harvesting. Allometric equations and biomass conversion and expansion factors (BCEFs) were subsequently developed for each tree component. The mean above- and belowground biomass was 5.86, 20.05, 41.26, and 135.28 kg tree
−1 and 1.73, 3.42, 11.39, and 27.30 kg tree
−1 in the 8-, 18-, 32-, and 46-year-old stands, respectively. The proportion of stem biomass to total tree biomass increased from 28.7% for the 8-year-old stand to 55.8% for 46-year-old stand. In contrast, the contributions of foliage and branch decreased along the chronosequence. The root contribution to total tree biomass also showed a declining trend with stand age. Allometric models based on diameter at breast height showed a good fit (
p < 0.001) and incorporating stand age as an additional variable improved the fit of allometric equations (higher
R2 and lower ACI) for branch, aboveground, root, and total tree biomass. BCEFs decreased for all tree components as stand age increased. These findings indicate that changes in tree biomass allocation and allometry across stand development must be considered to improve estimates of plantation biomass and carbon stocks at regional and national scales.
Full article