Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 20, Issue 12 (June-2 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-171
Export citation of selected articles as:
Open AccessReview
Strategies to Overcome Resistance Mechanisms in T-Cell Acute Lymphoblastic Leukemia
Int. J. Mol. Sci. 2019, 20(12), 3021; https://doi.org/10.3390/ijms20123021 (registering DOI)
Received: 18 May 2019 / Revised: 14 June 2019 / Accepted: 17 June 2019 / Published: 20 June 2019
PDF Full-text (2079 KB) | HTML Full-text | XML Full-text
Abstract
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by [...] Read more.
Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time. Full article
(This article belongs to the Special Issue Drug Resistance in Hematologic Malignancies)
Figures

Figure 1

Open AccessArticle
Phylogenomics Provides New Insights into Gains and Losses of Selenoproteins among Archaeplastida
Int. J. Mol. Sci. 2019, 20(12), 3020; https://doi.org/10.3390/ijms20123020 (registering DOI)
Received: 5 May 2019 / Revised: 18 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (1386 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life. Although they constitute a small proportion of the proteome, selenoproteins play essential roles in many organisms. In photosynthetic eukaryotes, selenoproteins have been found in algae but are missing in land plants [...] Read more.
Selenoproteins that contain selenocysteine (Sec) are found in all kingdoms of life. Although they constitute a small proportion of the proteome, selenoproteins play essential roles in many organisms. In photosynthetic eukaryotes, selenoproteins have been found in algae but are missing in land plants (embryophytes). In this study, we explored the evolutionary dynamics of Sec incorporation by conveying a genomic search for the Sec machinery and selenoproteins across Archaeplastida. We identified a complete Sec machinery and variable sizes of selenoproteomes in the main algal lineages. However, the entire Sec machinery was missing in the Bangiophyceae-Florideophyceae clade (BV) of Rhodoplantae (red algae) and only partial machinery was found in three species of Archaeplastida, indicating parallel loss of Sec incorporation in different groups of algae. Further analysis of genome and transcriptome data suggests that all major lineages of streptophyte algae display a complete Sec machinery, although the number of selenoproteins is low in this group, especially in subaerial taxa. We conclude that selenoproteins tend to be lost in Archaeplastida upon adaptation to a subaerial or acidic environment. The high number of redox-active selenoproteins found in some bloom-forming marine microalgae may be related to defense against viral infections. Some of the selenoproteins in these organisms may have been gained by horizontal gene transfer from bacteria. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Figures

Graphical abstract

Open AccessReview
Reptiles in Space Missions: Results and Perspectives
Int. J. Mol. Sci. 2019, 20(12), 3019; https://doi.org/10.3390/ijms20123019 (registering DOI)
Received: 7 May 2019 / Revised: 4 June 2019 / Accepted: 17 June 2019 / Published: 20 June 2019
PDF Full-text (4383 KB) | HTML Full-text | XML Full-text
Abstract
Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. [...] Read more.
Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. The description of the known reptile experiments using turtles and geckos in the space and parabolic flight experiments is provided. Behavior, skeletal bones (morphology, histology, and X-ray microtomography), internal organs, and the nervous system (morphology, histology, and immunohistochemistry) are studied in the spaceflight experiments to date, while molecular and physiological results are restricted. Therefore, the results are discussed in the scope of molecular data collected from mammalian (mainly rodents) specimens and cell cultures in the parabolic and orbital flights and simulated microgravity. The published data are compared with the results of the gecko model studies after the 12–44.5-day spaceflights with special reference to the unique peculiarities of the gecko model for the orbital experiments. The complex study of thick-toed geckos after three spaceflights, in which all geckos survived and demonstrated effective adaptation to spaceflight conditions, was performed. However, future investigations are needed to study molecular mechanisms of gecko adaptation in space. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Figures

Figure 1

Open AccessReview
Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure?
Int. J. Mol. Sci. 2019, 20(12), 3018; https://doi.org/10.3390/ijms20123018 (registering DOI)
Received: 29 May 2019 / Revised: 17 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (2103 KB) | HTML Full-text | XML Full-text
Abstract
The olfactory sense is the dominant sensory perception for many animals. When Richard Axel and Linda B. Buck received the Nobel Prize in 2004 for discovering the G protein-coupled receptors’ role in olfactory cells, they highlighted the importance of olfaction to the scientific [...] Read more.
The olfactory sense is the dominant sensory perception for many animals. When Richard Axel and Linda B. Buck received the Nobel Prize in 2004 for discovering the G protein-coupled receptors’ role in olfactory cells, they highlighted the importance of olfaction to the scientific community. Several theories have tried to explain how cells are able to distinguish such a wide variety of odorant molecules in a complex context in which enantiomers can result in completely different perceptions and structurally different molecules. Moreover, sex, age, cultural origin, and individual differences contribute to odor perception variations that complicate the picture. In this article, recent advances in olfaction theory are presented, and future trends in human olfaction such as structure-based odor prediction and artificial sniffing are discussed at the frontiers of chemistry, physiology, neurobiology, and machine learning. Full article
Figures

Graphical abstract

Open AccessReview
Anti-Cancer Agents in Proliferation and Cell Death: The Calcium Connection
Int. J. Mol. Sci. 2019, 20(12), 3017; https://doi.org/10.3390/ijms20123017 (registering DOI)
Received: 7 May 2019 / Revised: 12 June 2019 / Accepted: 14 June 2019 / Published: 20 June 2019
PDF Full-text (1795 KB) | XML Full-text
Abstract
Calcium (Ca2+) signaling and the modulation of intracellular calcium ([Ca2+]i) levels play critical roles in several key processes that regulate cellular survival, growth, differentiation, metabolism, and death in normal cells. On the other hand, aberrant Ca2+ [...] Read more.
Calcium (Ca2+) signaling and the modulation of intracellular calcium ([Ca2+]i) levels play critical roles in several key processes that regulate cellular survival, growth, differentiation, metabolism, and death in normal cells. On the other hand, aberrant Ca2+-signaling and loss of [Ca2+]i homeostasis contributes to tumor initiation proliferation, angiogenesis, and other key processes that support tumor progression in several different cancers. Currently, chemically and functionally distinct drugs are used as chemotherapeutic agents in the treatment and management of cancer among which certain anti-cancer drugs reportedly suppress pro-survival signals and activate pro-apoptotic signaling through modulation of Ca2+-signaling-dependent mechanisms. Most importantly, the modulation of [Ca2+]i levels via the endoplasmic reticulum-mitochondrial axis and corresponding action of channels and pumps within the plasma membrane play an important role in the survival and death of cancer cells. The endoplasmic reticulum-mitochondrial axis is of prime importance when considering Ca2+-signaling-dependent anti-cancer drug targets. This review discusses how calcium signaling is targeted by anti-cancer drugs and highlights the role of calcium signaling in epigenetic modification and the Warburg effect in tumorigenesis. Full article
(This article belongs to the Special Issue Calcium Signaling in Human Health and Diseases 2.0)
Figures

Graphical abstract

Open AccessArticle
Enhanced Hepatogenic Differentiation of Human Wharton’s Jelly–Derived Mesenchymal Stem Cells by Using Three-Step Protocol
Int. J. Mol. Sci. 2019, 20(12), 3016; https://doi.org/10.3390/ijms20123016 (registering DOI)
Received: 10 April 2019 / Revised: 11 June 2019 / Accepted: 17 June 2019 / Published: 20 June 2019
PDF Full-text (5757 KB) | XML Full-text | Supplementary Files
Abstract
Currently, human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate [...] Read more.
Currently, human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate the effects of sodium butyrate (NaBu), an epigenetic regulator that directly inhibits histone deacetylase, on hepatic endodermal lineage differentiation of hWJ-MSCs. NaBu, at 1 mM, optimally promoted endodermal differentiation of hWJ-MSCs, along with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) supplementation (EGF + bFGF + 1 mM NaBu). CXCR4, HNF3β, SOX17 (endodermal), and GATA6 (mesendodermal) mRNAs were also up-regulated (p < 0.001). Immunocytochemistry and a Western blot analysis of SOX17 and HNF3β confirmed that the EGF + bFGF + 1 mM NaBu condition was appropriately pre-treated with hWJ-MSCs before hepatogenic differentiation. Furthermore, the hepatogenic medium + NaBu pre-treatment up-regulated hepatoblast (AFP and HNF3β) and hepatic (CK18 and ALB) markers, and increased the proportion of mature hepatocyte functions, including G6P, C/EBPα, and CYP2B6 mRNAs, glycogen storage and urea secretion. The hepatogenic medium + NaBu in the pre-treatment step can induce hWJ-MSC differentiation toward endodermal, hepatoblastic, and hepatic lineages. Therefore, the hepatogenic medium + NaBu pre-treatment for differentiating hWJ-MSCs could represent an alternative protocol for cell-based therapy and drug screening in clinical applications. Full article
Figures

Graphical abstract

Open AccessReview
Mammalian Tyrosyl-DNA Phosphodiesterases in the Context of Mitochondrial DNA Repair
Int. J. Mol. Sci. 2019, 20(12), 3015; https://doi.org/10.3390/ijms20123015 (registering DOI)
Received: 18 May 2019 / Revised: 14 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (1057 KB) | XML Full-text
Abstract
Mammalian mitochondria contain four topoisomerases encoded in the nuclear genome: TOP1MT, TOP2α, TOP2β, and TOP3α. They also contain the two known tyrosyl-DNA phosphodiesterases (TDPs): TDP1 and TDP2, including a specific TDP2S isoform. Both TDP1 and TDP2 excise abortive topoisomerase cleavage complexes (TOPccs), [...] Read more.
Mammalian mitochondria contain four topoisomerases encoded in the nuclear genome: TOP1MT, TOP2α, TOP2β, and TOP3α. They also contain the two known tyrosyl-DNA phosphodiesterases (TDPs): TDP1 and TDP2, including a specific TDP2S isoform. Both TDP1 and TDP2 excise abortive topoisomerase cleavage complexes (TOPccs), yet their molecular structures and mechanisms are different. TDP1 is present across eukaryotes, from yeasts to humans and belongs to the phospholipase D family. It functions without a metal cofactor and has a broad activity range, as it also serves to cleanse blocking 3′-DNA ends bearing phosphoglycolate, deoxyribose phosphate, nucleoside, nucleoside analogs (zidovudine), abasic moieties, and with a lower efficiency, TOP2ccs. Found in higher vertebrates, TDP2 is absent in yeast where TDP1 appears to perform its functions. TDP2 belongs to the exonuclease/endonuclease/phosphodiesterase family and requires magnesium as a cofactor to excise TOP2ccs, and it also excises TOP1ccs, albeit with a lower efficiency. Here, we review TDP1 and TDP2 in the context of mitochondrial DNA repair and discuss potential new research areas centered on the mitochondrial TDPs. Full article
Open AccessArticle
Molecular Characterization of Ca2+/Calmodulin-Dependent Protein Kinase II Isoforms in Three Rice Planthoppers—Nilaparvata lugens, Laodelphax striatellus, and Sogatella furcifera
Int. J. Mol. Sci. 2019, 20(12), 3014; https://doi.org/10.3390/ijms20123014 (registering DOI)
Received: 23 May 2019 / Revised: 13 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (3541 KB) | XML Full-text | Supplementary Files
Abstract
This study reports the identification of splice variants for the calcium/calmodulin-dependent protein kinase II (CaMKII) gene from Nilaparvata lugens, Laodelphax striatellus, and Sogatella furcifera. CaMKII is a multifunctional serine/threonine protein kinase that transduces Ca2+ signals in cells [...] Read more.
This study reports the identification of splice variants for the calcium/calmodulin-dependent protein kinase II (CaMKII) gene from Nilaparvata lugens, Laodelphax striatellus, and Sogatella furcifera. CaMKII is a multifunctional serine/threonine protein kinase that transduces Ca2+ signals in cells to control a range of cellular processes in the nervous system and muscular tissue. Sequence analysis showed that CaMKII was 99.0% identical at the amino acid level among three rice planthoppers, with the exception of a variable region located in the association domain. Four kinds of 20–81 amino acid “inserts” were found in the variable region. The phylogenetic tree of the deduced amino acid sequences showed that the NlCaMKII isoforms were more closely related to the LsCaMKII isoforms and were slightly distinct from SfCaMKII. CaMKII-E was the dominant type among the five main isoforms. CaMKII genes were constitutively expressed in various nymphal and adult stages and in tested tissues with the predominant transcription occurring in the head. There was no major tissue specificity of isoform expression, but the expression pattern and relative abundance of isoforms varied when compared with the RT-PCR between tissues. In addition, RNAi in N. lugens with dsRNA at a concentration of 200 ng nymph−1 induced a mortality of 77.7% on the 10th day and a reduction in the mRNA expression level of 67.2%. Unlike the holometabolous insect Helicoverpa armigera, the knockdown of NlCaMKII did not suppress the expression of 20E response genes, such as ECR, USP1, and HR3, in N. lugens. These results indicate that the role of CaMKII in hemimetabolous insects may be different from that in holometabolous insects. Full article
(This article belongs to the Special Issue Molecular Ecology, Physiology and Biochemistry of Insects)
Open AccessReview
New Small Molecule Drugs for Thrombocytopenia: Chemical, Pharmacological, and Therapeutic Use Considerations
Int. J. Mol. Sci. 2019, 20(12), 3013; https://doi.org/10.3390/ijms20123013 (registering DOI)
Received: 28 May 2019 / Revised: 16 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (1136 KB) | XML Full-text | Supplementary Files
Abstract
This review provides details about three small molecules that were recently approved by the FDA for the treatment of thrombocytopenia. The new treatments include lusutrombopag, avatrombopag, and fostamatinib. The first two drugs are orally active thrombopoietin receptor (TPO-R) agonists which are FDA-approved for [...] Read more.
This review provides details about three small molecules that were recently approved by the FDA for the treatment of thrombocytopenia. The new treatments include lusutrombopag, avatrombopag, and fostamatinib. The first two drugs are orally active thrombopoietin receptor (TPO-R) agonists which are FDA-approved for the treatment of thrombocytopenia in adult patients with chronic liver disease who are scheduled to undergo a procedure. Fostamatinib is orally active prodrug that, after activation, becomes spleen tyrosine kinase (SYK) inhibitor. Fostamatinib is currently used to treat chronic and refractory immune thrombocytopenia in patients who have had insufficient response to previous treatment. Chemical structures, available dosage forms, recommended dosing, pharmacokinetics, results of toxicity studies in animals, most frequent adverse effects, significant outcomes of the corresponding clinical trials, and their use in specific patient populations are thoroughly described. Described also is a comparative summary of the different aspects of five currently available therapies targeting TPO-R or SYK for the treatment of thrombocytopenia. Full article
(This article belongs to the Section Molecular Pharmacology)
Open AccessArticle
Melanopsin+RGCs Are fully Resistant to NMDA-Induced Excitotoxicity
Int. J. Mol. Sci. 2019, 20(12), 3012; https://doi.org/10.3390/ijms20123012 (registering DOI)
Received: 19 May 2019 / Revised: 11 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
PDF Full-text (3406 KB) | HTML Full-text | XML Full-text
Abstract
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of [...] Read more.
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers. Full article
(This article belongs to the Special Issue Retinal Ganglion Cells)
Figures

Figure 1

Open AccessReview
Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury
Int. J. Mol. Sci. 2019, 20(12), 3011; https://doi.org/10.3390/ijms20123011 (registering DOI)
Received: 10 May 2019 / Revised: 31 May 2019 / Accepted: 12 June 2019 / Published: 20 June 2019
PDF Full-text (540 KB) | HTML Full-text | XML Full-text
Abstract
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies [...] Read more.
Cisplatin is a widely used chemotherapeutic agent used to treat solid tumours, such as ovarian, head and neck, and testicular germ cell. A known complication of cisplatin administration is acute kidney injury (AKI). The development of effective tumour interventions with reduced nephrotoxicity relies heavily on understanding the molecular pathophysiology of cisplatin-induced AKI. Rodent models have provided mechanistic insight into the pathophysiology of cisplatin-induced AKI. In the subsequent review, we provide a detailed discussion of recent advances in the cisplatin-induced AKI phenotype, principal mechanistic findings of injury and therapy, and pre-clinical use of AKI rodent models. Cisplatin-induced AKI murine models faithfully develop gross manifestations of clinical AKI such as decreased kidney function, increased expression of tubular injury biomarkers, and tubular injury evident by histology. Pathways involved in AKI include apoptosis, necrosis, inflammation, and increased oxidative stress, ultimately providing a translational platform for testing the therapeutic efficacy of potential interventions. This review provides a discussion of the foundation laid by cisplatin-induced AKI rodent models for our current understanding of AKI molecular pathophysiology. Full article
(This article belongs to the Special Issue Cisplatin in Cancer Therapy: Molecular Mechanisms of Action)
Figures

Figure 1

Open AccessArticle
NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line
Int. J. Mol. Sci. 2019, 20(12), 3010; https://doi.org/10.3390/ijms20123010 (registering DOI)
Received: 8 June 2019 / Revised: 13 June 2019 / Accepted: 17 June 2019 / Published: 20 June 2019
Viewed by 28 | PDF Full-text (4927 KB) | HTML Full-text | XML Full-text
Abstract
The relevance of nitric oxide synthase 2 (NOS2) as a prognostic factor in Glioblastoma Multiforme (GBM) malignancy is emerging. We analyzed the effect of NOS2 inhibitor 1400W on the autophagic flux and extracellular vesicle (EV) secretion in U87MG glioma cells. The effects of [...] Read more.
The relevance of nitric oxide synthase 2 (NOS2) as a prognostic factor in Glioblastoma Multiforme (GBM) malignancy is emerging. We analyzed the effect of NOS2 inhibitor 1400W on the autophagic flux and extracellular vesicle (EV) secretion in U87MG glioma cells. The effects of glioma stem cells (GSC)-derived EVs on adherent U87MG were evaluated. Cell proliferation and migration were examined while using Cell Counting Kit-8 assay (CCK-8) and scratch wound healing assay. Cell cycle profile and apoptosis were analyzed by flow cytometry. Autophagy-associated acidic vesicular organelles were detected and quantified by acridine orange staining. The number and size of EVs were assessed by nanoparticle tracking analysis. EV ultrastructure was verified by transmission electron microscopy (TEM). WB was used to analyze protein expression and acid sphingomyelinase was determined through ceramide levels. 1400W induced autophagy and EV secretion in both adherent U87MG and GSCs. EVs secreted by 1400W-treated GSC, but not those from untreated cells, were able to inhibit adherent U87MG cell growth and migration while also inducing a relevant level of autophagy. The hypothesis of NOS2 expression as GBM profile marker or interesting therapeutic target is supported by our findings. Autophagy and EV release following treatment with the NOS2 inhibitor could represent useful elements to better understand the complex biomolecular frame of GBM. Full article
(This article belongs to the Special Issue Extracellular Vesicles and Metastatic Niche)
Figures

Figure 1

Open AccessArticle
Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Sources
Int. J. Mol. Sci. 2019, 20(12), 3009; https://doi.org/10.3390/ijms20123009 (registering DOI)
Received: 9 May 2019 / Revised: 30 May 2019 / Accepted: 1 June 2019 / Published: 20 June 2019
PDF Full-text (1507 KB) | HTML Full-text | XML Full-text
Abstract
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a [...] Read more.
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a hydroponic study was carried out to investigate these effects on two winter wheat cultivars (‘97003’ and ‘97014’) as Mo-efficient and Mo-inefficient, respectively, under different N sources (NO3, NH4NO3, and NH4+). The results revealed that the activities of nitrate reductase (NR) and nitrite reductase (NiR) followed the order of NH4NO3 > NO3 > NH4+ sources, while glutamine synthetase (GS) and glutamate synthase (GOGAT) followed the order of NH4+ > NH4NO3 > NO3 in both the wheat cultivars. However, Mo-induced effects in the activities and expressions of N metabolism enzymes under different N sources followed the order of NH4NO3 > NO3 > NH4+ sources, indicating that Mo has more complementary effects towards nitrate nutrition than the sole ammonium source in winter wheat. Interestingly, under −Mo-deprived conditions, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application increased the proteins, amino acids, ammonium, and nitrite contents while concomitantly decreasing the nitrate contents in the same order of NH4NO3 > NO3 > NH4+ sources that coincides with the Mo-induced N enzymes activities and expressions. The findings of the present study indicated that Mo plays a key role in regulating the N metabolism enzymes and assimilatory products under all the three N sources; however, the extent of complementation exists in the order of NH4NO3 > NO3 > NH4+ sources in winter wheat. In addition, it was revealed that mineral elements profiles were mainly affected by different N sources, while Mo application generally had no significant effects on the mineral elements contents in the winter wheat leaves under different N sources. Full article
Figures

Figure 1

Open AccessArticle
Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster
Int. J. Mol. Sci. 2019, 20(12), 3008; https://doi.org/10.3390/ijms20123008 (registering DOI)
Received: 21 May 2019 / Revised: 7 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
Viewed by 2 | PDF Full-text (1165 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate [...] Read more.
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate to form a nitrile that is hydrolyzed to ammonium by the nitrilase NitC, whereas cyanate assimilation requires a cyanase that catalyzes cyanate decomposition to ammonium and carbon dioxide. The P. pseudoalcaligenes CECT5344 cynFABDS gene cluster codes for the putative transcriptional regulator CynF, the ABC-type cyanate transporter CynABD, and the cyanase CynS. In this study, transcriptional analysis revealed that the structural cynABDS genes constitute a single transcriptional unit, which was induced by cyanate and repressed by ammonium. Mutational characterization of the cyn genes indicated that CynF was essential for cynABDS gene expression and that nitrate/nitrite transporters may be involved in cyanate uptake, in addition to the CynABD transport system. Biodegradation of hazardous jewelry wastewater containing high amounts of cyanide and metals was achieved in a batch reactor operating at an alkaline pH after chemical treatment with hydrogen peroxide to oxidize cyanide to cyanate. Full article
(This article belongs to the Special Issue Extreme Microorganisms in the Nitrogen Cycle)
Figures

Graphical abstract

Open AccessArticle
Novel Selective Estrogen Receptor Modulator Ameliorates Murine Colitis
Int. J. Mol. Sci. 2019, 20(12), 3007; https://doi.org/10.3390/ijms20123007 (registering DOI)
Received: 22 May 2019 / Revised: 14 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
Viewed by 62 | PDF Full-text (1066 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Estrogen-receptor-mediated signaling has been suggested to decrease the inflammatory response in monocyte macrophages. Previously, we showed that a novel selective estrogen receptor modulator (SERM2) promotes anti-inflammatory phenotype of monocytes in vitro. In this study, we demonstrate the potential of SERM2 in amelioration of [...] Read more.
Estrogen-receptor-mediated signaling has been suggested to decrease the inflammatory response in monocyte macrophages. Previously, we showed that a novel selective estrogen receptor modulator (SERM2) promotes anti-inflammatory phenotype of monocytes in vitro. In this study, we demonstrate the potential of SERM2 in amelioration of colitis. We utilized a dextran sodium sulfate (DSS)-induced colitis model in FVB/n mice to demonstrate the effects of orally administered SERM2 on the clinical status of the mice and the histopathological changes in the colon, as well as proportion of Mrc-1 positive macrophages. SERM2 nuclear receptor affinities were measured by radioligand binding assays. Orally administered, this compound significantly alleviated DSS-induced colitis in male mice and induced local estrogen receptor activation in the inflamed colon, as well as promoting anti-inflammatory cytokine expression and infiltration of anti-inflammatory monocytes. We show that this novel drug candidate has an affinity to estrogen receptors α and β and progesterone receptors, but not to glucocorticoid receptor, thus expressing unique binding properties compared to other sex steroid receptor ligands. These results indicate that novel drug candidates to alleviate inflammatory conditions of the colon could be found among sex steroid receptor activating compounds. Full article
(This article belongs to the Special Issue Molecular Pathways of Estrogen Receptor Action 2.0)
Figures

Graphical abstract

Open AccessReview
New Aspects of Vitamin K Research with Synthetic Ligands: Transcriptional Activity via SXR and Neural Differentiation Activity
Int. J. Mol. Sci. 2019, 20(12), 3006; https://doi.org/10.3390/ijms20123006 (registering DOI)
Received: 11 March 2019 / Revised: 12 June 2019 / Accepted: 18 June 2019 / Published: 20 June 2019
Viewed by 59 | PDF Full-text (1453 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), [...] Read more.
Vitamin K is classified into three homologs depending on the side-chain structure, with 2-methyl-1,4-naphthoqumone as the basic skeleton. These homologs are vitamin K1 (phylloquinone: PK), derived from plants with a phythyl side chain; vitamin K2 (menaquinone-n: MK-n), derived from intestinal bacteria with an isoprene side chain; and vitamin K3 (menadione: MD), a synthetic product without a side chain. Vitamin K homologs have physiological effects, including in blood coagulation and in osteogenic activity via γ-glutamyl carboxylase and are used clinically. Recent studies have revealed that vitamin K homologs are converted to MK-4 by the UbiA prenyltransferase domain-containing protein 1 (UBIAD1) in vivo and accumulate in all tissues. Although vitamin K is considered to have important physiological effects, its precise activities and mechanisms largely remain unclear. Recent research on vitamin K has suggested various new roles, such as transcriptional activity as an agonist of steroid and xenobiotic nuclear receptor and differentiation-inducing activity in neural stem cells. In this review, we describe synthetic ligands based on vitamin K and exhibit that the strength of biological activity can be controlled by modification of the side chain part. Full article
Figures

Figure 1

Open AccessArticle
Myeloid-Specific Deletion of the AMPKα2 Subunit Alters Monocyte Protein Expression and Atherogenesis
Int. J. Mol. Sci. 2019, 20(12), 3005; https://doi.org/10.3390/ijms20123005 (registering DOI)
Received: 6 May 2019 / Revised: 16 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 127 | PDF Full-text (1801 KB) | Supplementary Files
Abstract
The AMP-activated protein kinase (AMPK) is an energy sensing kinase that is activated by a drop in cellular ATP levels. Although several studies have addressed the role of the AMPKα1 subunit in monocytes and macrophages, little is known about the α2 subunit. The [...] Read more.
The AMP-activated protein kinase (AMPK) is an energy sensing kinase that is activated by a drop in cellular ATP levels. Although several studies have addressed the role of the AMPKα1 subunit in monocytes and macrophages, little is known about the α2 subunit. The aim of this study was to assess the consequences of AMPKα2 deletion on protein expression in monocytes/macrophages, as well as on atherogenesis. A proteomics approach was applied to bone marrow derived monocytes from wild-type mice versus mice specifically lacking AMPKα2 in myeloid cells (AMPKα2∆MC mice). This revealed differentially expressed proteins, including methyltransferases. Indeed, AMPKα2 deletion in macrophages increased the ratio of S-adenosyl methionine to S-adenosyl homocysteine and increased global DNA cytosine methylation. Also, methylation of the vascular endothelial growth factor and matrix metalloproteinase-9 (MMP9) genes was increased in macrophages from AMPKα2∆MC mice, and correlated with their decreased expression. To link these findings with an in vivo phenotype, AMPKα2∆MC mice were crossed onto the ApoE-/- background and fed a western diet. ApoExAMPKα2∆MC mice developed smaller atherosclerotic plaques than their ApoExα2fl/fl littermates, that contained fewer macrophages and less MMP9 than plaques from ApoExα2fl/fl littermates. These results indicate that the AMPKα2 subunit in myeloid cells influences DNA methylation and thus protein expression and contributes to the development of atherosclerotic plaques. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 2019)
Open AccessArticle
Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane
Int. J. Mol. Sci. 2019, 20(12), 3004; https://doi.org/10.3390/ijms20123004
Received: 10 May 2019 / Revised: 12 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 128 | PDF Full-text (5462 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Photodynamic therapy with hypericin (HY-PDT) and hyperforin (HP) could be treatment modalities for colorectal cancer (CRC), but evidence of their effect on angiogenic factors in CRC is missing. Convenient experimental model utilization is essential for angiogenesis research. Therefore, not only 2D cell models, [...] Read more.
Photodynamic therapy with hypericin (HY-PDT) and hyperforin (HP) could be treatment modalities for colorectal cancer (CRC), but evidence of their effect on angiogenic factors in CRC is missing. Convenient experimental model utilization is essential for angiogenesis research. Therefore, not only 2D cell models, but also 3D cell models and micro-tumors were used and compared. The micro-tumor extent and interconnection with the chorioallantoic membrane (CAM) was determined by histological analyses. The presence of proliferating cells and HY penetration into the tumor mass were detected by fluorescence microscopy. The metabolic activity status was assessed by an colorimetric assay for assessing cell metabolic activity (MTT assay) and HY accumulation was determined by flow cytometry. Pro-angiogenic factor expression was determined by Western blot and quantitative real-time polymerase chain reaction (RT-qPCR). We confirmed the cytotoxic effect of HY-PDT and HP and showed that their effect is influenced by structural characteristics of the experimental model. We have pioneered a method for analyzing the effect of HP and cellular targeted HY-PDT on pro-angiogenic factor expression in CRC micro-tumors. Despite the inhibitory effect of HY-PDT and HP on CRC, the increased expression of some pro-angiogenic factors was observed. We also showed that CRC experimental micro-tumors created on quail CAM could be utilized for analyses of gene and protein expression. Full article
(This article belongs to the Special Issue Insights into Photodynamic Therapy)
Figures

Figure 1

Open AccessArticle
Amelioration of Behavioral Impairments and Neuropathology by Antiepileptic Drug Topiramate in a Transgenic Alzheimer’s Disease Model Mice, APP/PS1
Int. J. Mol. Sci. 2019, 20(12), 3003; https://doi.org/10.3390/ijms20123003
Received: 25 April 2019 / Revised: 24 May 2019 / Accepted: 3 June 2019 / Published: 19 June 2019
Viewed by 121 | PDF Full-text (6435 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is the main cause of dementia in the elderly. The aggregation of β-amyloid peptides is one of the characterizing pathological changes of AD. Topiramate is an antiepileptic drug, which in addition, is used in the [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease that is the main cause of dementia in the elderly. The aggregation of β-amyloid peptides is one of the characterizing pathological changes of AD. Topiramate is an antiepileptic drug, which in addition, is used in the treatment of many neuropsychiatric disorders. In this study, the therapeutic effects of topiramate were investigated in a transgenic mouse model of cerebral amyloidosis (APP/PS1 mice). Before, during, and after topiramate treatment, behavioral tests were performed. Following a treatment period of 21 days, topiramate significantly ameliorated deficits in nest-constructing capability as well as in social interaction. Thereafter, brain sections of mice were analyzed, and a significant attenuation of microglial activation as well as β-amyloid deposition was observed in sections from topiramate-treated APP/PS1 mice. Therefore, topiramate could be considered as a promising drug in the treatment of human AD. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Figure 1

Open AccessReview
Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies
Int. J. Mol. Sci. 2019, 20(12), 3002; https://doi.org/10.3390/ijms20123002
Received: 16 May 2019 / Revised: 11 June 2019 / Accepted: 18 June 2019 / Published: 19 June 2019
Viewed by 254 | PDF Full-text (691 KB) | HTML Full-text | XML Full-text
Abstract
Tendon tissues have limited healing capacity. The incidence of tendon injuries and the unsatisfactory functional outcomes of tendon repair are driving the search for alternative therapeutic approaches envisioning tendon regeneration. Cellular therapies aim at delivering adequate, regeneration-competent cell types to the injured tendon [...] Read more.
Tendon tissues have limited healing capacity. The incidence of tendon injuries and the unsatisfactory functional outcomes of tendon repair are driving the search for alternative therapeutic approaches envisioning tendon regeneration. Cellular therapies aim at delivering adequate, regeneration-competent cell types to the injured tendon and toward ultimately promoting its reconstruction and recovery of functionality. Mesenchymal stem cells (MSCs) either obtained from tendons or from non-tendon sources, like bone marrow (BM-MSCs) or adipose tissue (ASCs), have been receiving increasing attention over the years toward enhancing tendon healing. Evidences from in vitro and in vivo studies suggest MSCs can contribute to accelerate and improve the quality of tendon healing. Nonetheless, the exact mechanisms underlying these repair events are yet to be fully elucidated. This review provides an overview of the main challenges in the field of cell-based regenerative therapies, discussing the role of MSCs in boosting tendon regeneration, particularly through their capacity to enhance the tenogenic properties of tendon resident cells. Full article
(This article belongs to the Special Issue Novel MSC Perspectives: From Cell Regulation to Tissue Regeneration)
Figures

Figure 1

Open AccessArticle
The Elongation Factor GmEF4 Is Involved in the Response to Drought and Salt Tolerance in Soybean
Int. J. Mol. Sci. 2019, 20(12), 3001; https://doi.org/10.3390/ijms20123001
Received: 26 May 2019 / Revised: 11 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 152 | PDF Full-text (4149 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and [...] Read more.
Growing evidence indicates that elongation factor 1α (EF1α) is involved in responses to various abiotic stresses in several plant species. Soybean EF1α proteins include three structural domains: one GTP-binding domain and two oligonucleotide binding domains that are also called as domain 2 and domain 3. In this study, 10 EF1α genes were identified in the soybean genome. We predicted structures of different domains and analyzed gene locations, gene structures, phylogenetic relationships, various cis-elements, and conserved domains of soybean EF1αs. The expression patterns of 10 EF1α genes were analyzed by quantitative real-time PCR (qRT-PCR). Under drought stress, soybean EF1α genes were upregulated in varying degrees. In particular, GmEF4 was upregulated under drought and salt treatments. Compared to the drought- and salt-treated empty vector (EV)-control plants, drought- and salt-treated GmEF4-overexpressing (OE) plants had significantly delayed leaf wilting, longer root, higher biomass, higher proline (Pro) content, and lower H2O2, O2, and malondialdehyde (MDA) contents. Thus, this study provides a foundation for further functional genomics research about this important family under abiotic stress. Full article
(This article belongs to the Special Issue Mechanisms of Drought Stress Tolerance in Plants)
Figures

Figure 1

Open AccessArticle
Comparative Proteomic Analysis of Proteins Involved in Bioenergetics Pathways Associated with Human Sperm Motility
Int. J. Mol. Sci. 2019, 20(12), 3000; https://doi.org/10.3390/ijms20123000
Received: 24 May 2019 / Revised: 13 June 2019 / Accepted: 18 June 2019 / Published: 19 June 2019
Viewed by 140 | PDF Full-text (3781 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Sperm motility is the most important parameter involved in the fertilization process and it is strictly required for reproductive success. Although sperm movements are essential for the physiologic fertilization process, the data, deriving from studies focused on the research of altered cell pathways [...] Read more.
Sperm motility is the most important parameter involved in the fertilization process and it is strictly required for reproductive success. Although sperm movements are essential for the physiologic fertilization process, the data, deriving from studies focused on the research of altered cell pathways involved in asthenozoospermia, offer only limited information about the molecular mechanism underlying sperm motility. The aim of this study was to identify proteins involved in human sperm motility deficiency by using label-free mass-spectrometry liquid chromatography (LC−MS/MS). For this purpose, we selected sperm samples with three different classes of progressive motility: low, medium (asthenozoospermic samples) and high (normozoospermic samples). We found that several differential expressed proteins in asthenozoospermic samples were related to energetic metabolism, suggesting an interesting link between bioenergetics pathways and the regulation of sperm motility, necessary for the flagellum movement. Therefore, our results provide strong evidence that mass spectrometry-based proteomics represents an integrated approach to detect novel biochemical markers of sperm motility and quality with diagnostic relevance for male infertility and unravel the molecular etiology of idiopathic cases. Full article
(This article belongs to the Section Biochemistry)
Figures

Graphical abstract

Open AccessCommunication
Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals
Int. J. Mol. Sci. 2019, 20(12), 2999; https://doi.org/10.3390/ijms20122999
Received: 31 May 2019 / Revised: 10 June 2019 / Accepted: 10 June 2019 / Published: 19 June 2019
Viewed by 108 | PDF Full-text (3262 KB) | HTML Full-text | XML Full-text
Abstract
Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible [...] Read more.
Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V’O2max > 55 mL/min/kg) and untrained (V’O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks. Full article
(This article belongs to the Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants)
Figures

Figure 1

Open AccessArticle
Transcriptomic Insights into the Response of the Olfactory Bulb to Selenium Treatment in a Mouse Model of Alzheimer’s Disease
Int. J. Mol. Sci. 2019, 20(12), 2998; https://doi.org/10.3390/ijms20122998
Received: 20 May 2019 / Revised: 5 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 121 | PDF Full-text (2421 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by the presence of extracellular senile plaques primarily composed of Aβ peptides and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins. Olfactory dysfunction is an early clinical phenotype in AD and was reported [...] Read more.
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by the presence of extracellular senile plaques primarily composed of Aβ peptides and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins. Olfactory dysfunction is an early clinical phenotype in AD and was reported to be attributable to the presence of NFTs, senile Aβ plaques in the olfactory bulb (OB). Our previous research found that selenomethionine (Se-Met), a major form of selenium (Se) in organisms, effectively increased oxidation resistance as well as reduced the generation and deposition of Aβ and tau hyperphosphorylation in the olfactory bulb of a triple transgenic mouse model of AD (3×Tg-AD), thereby suggesting a potential therapeutic option for AD. In this study, we further investigated changes in the transcriptome data of olfactory bulb tissues of 7-month-old triple transgenic AD (3×Tg-AD) mice treated with Se-Met (6 µg/mL) for three months. Comparison of the gene expression profile between Se-Met-treated and control mice revealed 143 differentially expressed genes (DEGs). Among these genes, 21 DEGs were upregulated and 122 downregulated. The DEGs were then annotated against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results show that upregulated genes can be roughly classified into three types. Some of them mainly regulate the regeneration of nerves, such as Fabp7, Evt5 and Gal; some are involved in improving cognition and memory, such as Areg; and some are involved in anti-oxidative stress and anti-apoptosis, such as Adcyap1 and Scg2. The downregulated genes are mainly associated with inflammation and apoptosis, such as Lrg1, Scgb3a1 and Pglyrp1. The reliability of the transcriptomic data was validated by quantitative real time polymerase chain reaction (qRT-PCR) for the selected genes. These results were in line with our previous study, which indicated therapeutic effects of Se-Met on AD mice, providing a theoretical basis for further study of the treatment of AD by Se-Met. Full article
(This article belongs to the Section Molecular Neurobiology)
Figures

Figure 1

Open AccessReview
Ubiquitination and Long Non-coding RNAs Regulate Actin Cytoskeleton Regulators in Cancer Progression
Int. J. Mol. Sci. 2019, 20(12), 2997; https://doi.org/10.3390/ijms20122997
Received: 7 May 2019 / Revised: 16 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 112 | PDF Full-text (676 KB) | HTML Full-text | XML Full-text
Abstract
Actin filaments are a major component of the cytoskeleton in eukaryotic cells and play an important role in cancer metastasis. Dynamics and reorganization of actin filaments are regulated by numerous regulators, including Rho GTPases, PAKs (p21-activated kinases), ROCKs (Rho-associated coiled-coil containing kinases), LIMKs [...] Read more.
Actin filaments are a major component of the cytoskeleton in eukaryotic cells and play an important role in cancer metastasis. Dynamics and reorganization of actin filaments are regulated by numerous regulators, including Rho GTPases, PAKs (p21-activated kinases), ROCKs (Rho-associated coiled-coil containing kinases), LIMKs (LIM domain kinases), and SSH1 (slingshot family protein phosphate 1). Ubiquitination, as a ubiquitous post-transcriptional modification, deceases protein levels of actin cytoskeleton regulatory factors and thereby modulates the actin cytoskeleton. There is increasing evidence showing cytoskeleton regulation by long noncoding RNAs (lncRNAs) in cancer metastasis. However, which E3 ligases are activated for the ubiquitination of actin-cytoskeleton regulators involved in tumor metastasis remains to be fully elucidated. Moreover, it is not clear how lncRNAs influence the expression of actin cytoskeleton regulators. Here, we summarize physiological and pathological mechanisms of lncRNAs and ubiquitination control mediators of actin cytoskeleton regulators which that are involved in tumorigenesis and tumor progression. Finally, we briefly discuss crosstalk between ubiquitination and lncRNA control mediators of actin-cytoskeleton regulators in cancer. Full article
Figures

Figure 1

Open AccessReview
The Role of Telomerase and Telomeres in Interstitial Lung Diseases: From Molecules to Clinical Implications
Int. J. Mol. Sci. 2019, 20(12), 2996; https://doi.org/10.3390/ijms20122996
Received: 23 May 2019 / Revised: 12 June 2019 / Accepted: 15 June 2019 / Published: 19 June 2019
Viewed by 108 | PDF Full-text (471 KB) | HTML Full-text | XML Full-text
Abstract
Telomeres are distal chromosome regions associated with specific protein complexes that protect the chromosome against degradation and aberrations. Telomere maintenance capacity is an essential indication of healthy cell populations, and telomere damage is observed in processes such as malignant transformation, apoptosis, or cell [...] Read more.
Telomeres are distal chromosome regions associated with specific protein complexes that protect the chromosome against degradation and aberrations. Telomere maintenance capacity is an essential indication of healthy cell populations, and telomere damage is observed in processes such as malignant transformation, apoptosis, or cell senescence. At a cellular level, telomere damage may result from genotoxic stress, decreased activity of telomerase enzyme complex, dysfunction of shelterin proteins, or changes in expression of telomere-associated RNA such as TERRA. Clinical evidence suggests that mutation of telomerase genes (Tert/Terc) are associated with increased risk of congenital as well as age-related diseases (e.g., pneumonitis, idiopathic pulmonary fibrosis (IPF), dyskeratosis congenita, emphysema, nonspecific interstitial pneumonia, etc.). Thus, telomere length and maintenance can serve as an important prognostic factor as well as a potential target for new strategies of treatment for interstitial lung diseases (ILDs) and associated pulmonary pathologies. Full article
(This article belongs to the Special Issue Role of Telomeres and Telomerase in Cancer and Aging 2019)
Figures

Figure 1

Open AccessArticle
Cucumber Mildew Resistance Locus O Interacts with Calmodulin and Regulates Plant Cell Death Associated with Plant Immunity
Int. J. Mol. Sci. 2019, 20(12), 2995; https://doi.org/10.3390/ijms20122995
Received: 10 May 2019 / Revised: 5 June 2019 / Accepted: 11 June 2019 / Published: 19 June 2019
Viewed by 104 | PDF Full-text (14589 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pathogen-induced cell death is closely related to plant disease susceptibility and resistance. The cucumber (Cucumis sativus L.) mildew resistance locus O (CsMLO1) and calmodulin (CsCaM3) genes, as molecular components, are linked to nonhost resistance and hypersensitive cell death. In this study, we [...] Read more.
Pathogen-induced cell death is closely related to plant disease susceptibility and resistance. The cucumber (Cucumis sativus L.) mildew resistance locus O (CsMLO1) and calmodulin (CsCaM3) genes, as molecular components, are linked to nonhost resistance and hypersensitive cell death. In this study, we demonstrate that CsMLO1 interacts with CsCaM3 via yeast two-hybrid, firefly luciferase (LUC) complementation and bimolecular fluorescence complementation (BiFC) experiments. A subcellular localization analysis of green fluorescent protein (GFP) fusion reveals that CsCaM3 is transferred from the cytoplasm to the plasma membrane in Nicotiana benthamiana, and CsCaM3 green fluorescence is significantly attenuated via the coexpression of CsMLO1 and CsCaM3. CsMLO1 negatively regulates CsCaM3 expression in transiently transformed cucumbers, and hypersensitive cell death is disrupted by CsCaM3 and/or CsMLO1 expression under Corynespora cassiicola infection. Additionally, CsMLO1 silencing significantly enhances the expression of reactive oxygen species (ROS)-related genes (CsPO1, CsRbohD, and CsRbohF), defense marker genes (CsPR1 and CsPR3) and callose deposition-related gene (CsGSL) in infected cucumbers. These results suggest that the interaction of CsMLO1 with CsCaM3 may act as a cell death regulator associated with plant immunity and disease. Full article
(This article belongs to the Section Molecular Biology)
Figures

Figure 1

Open AccessReview
Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions
Int. J. Mol. Sci. 2019, 20(12), 2994; https://doi.org/10.3390/ijms20122994
Received: 21 March 2019 / Revised: 31 May 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 107 | PDF Full-text (1364 KB) | HTML Full-text | XML Full-text
Abstract
Reactive oxygen species (ROS) play a dual role in fruit–pathogen interaction, which largely depends on their different levels in cells. Fruit recognition of a pathogen immediately triggers an oxidative burst that is considered an integral part of the fruit defense response. ROS are [...] Read more.
Reactive oxygen species (ROS) play a dual role in fruit–pathogen interaction, which largely depends on their different levels in cells. Fruit recognition of a pathogen immediately triggers an oxidative burst that is considered an integral part of the fruit defense response. ROS are also necessary for the virulence of pathogenic fungi. However, the accumulation of ROS in cells causes molecular damage and finally leads to cell death. In this review, on the basis of data regarding ROS production and the scavenging systems determining ROS homeostasis, we focus on the role of ROS in fruit defense reactions against pathogens and in fungi pathogenicity during fruit–pathogen interaction. Full article
(This article belongs to the Special Issue Oxidative Stress and Redox Regulation in Plants)
Figures

Figure 1

Open AccessArticle
Suppression of STAT3 Phosphorylation and RelA/p65 Acetylation Mediated by MicroRNA134 Plays a Pivotal Role in the Apoptotic Effect of Lambertianic Acid
Int. J. Mol. Sci. 2019, 20(12), 2993; https://doi.org/10.3390/ijms20122993
Received: 28 May 2019 / Revised: 17 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 99 | PDF Full-text (2506 KB) | HTML Full-text | XML Full-text
Abstract
As p300-mediated RelA/p65 hyperacetylation by signal transducers and activators of transcription 3 (STAT3) is critical for NF-κB activation, in the current study, the apoptotic mechanism of lambertianic acid (LA) was explored in relation to STAT3 phosphorylation and RelA/p65 acetylation in MCF-7, DU145, PC-3, [...] Read more.
As p300-mediated RelA/p65 hyperacetylation by signal transducers and activators of transcription 3 (STAT3) is critical for NF-κB activation, in the current study, the apoptotic mechanism of lambertianic acid (LA) was explored in relation to STAT3 phosphorylation and RelA/p65 acetylation in MCF-7, DU145, PC-3, and MDA-MB-453 cells. LA significantly increased the cytotoxicity, sub G 1 population, and the cleavage of poly (ADP-ribose) polymerase (PARP) in MDA-MB-453 or PC-3 cells (STAT3 mutant), more than in the MCF-7 or DU145 cells (STAT3 wild). Consistently, LA inhibited the phosphorylation of STAT3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and disrupted the interaction between p-STAT3, p300, NF-κB, and RelA/p65 acetylation (Ac-RelA/p65) in the MCF-7 and DU145 cells. Also, LA reduced the nuclear translocation of STAT3 and NF-κB via their colocalization, and also suppressed the protein expression of XIAP, survivin, Bcl-2, Bcl-xL, vascular endothelial growth factor (VEGF), Cox-2, c-Myc and mRNA expression of interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in MCF-7 cells. Conversely, IL-6 blocked the ability of LA to suppress the cytotoxicity and PARP cleavage, while the depletion of STAT3 or p300 enhanced the PARP cleavage of LA in the MCF-7 cells. Notably, LA upregulated the level of miRNA134 and so miRNA134 mimic attenuated the expression of pro-PARP, p-STAT3, and Ac-RelA, while the miRNA134 inhibitor reversed the ability of LA to reduce the expression of Ac-RelA and pro-PARP in MCF-7 cells. Overall, these findings suggest that LA induced apoptosis via the miRNA-134 mediated inhibition of STAT3 and RelA/p65 acetylation. Full article
(This article belongs to the Special Issue Bioactive Phytochemicals for Cancer Prevention and Treatment)
Figures

Graphical abstract

Open AccessArticle
Biphasic Effect of Sildenafil on Energy Sensing is Mediated by Phosphodiesterases 2 and 3 in Adipocytes and Hepatocytes
Int. J. Mol. Sci. 2019, 20(12), 2992; https://doi.org/10.3390/ijms20122992
Received: 11 June 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
Viewed by 113 | PDF Full-text (1772 KB) | HTML Full-text | XML Full-text
Abstract
Sirt1 (Sirtuin 1), AMPK (AMP-activated protein kinase), and eNOS (endothelial nitric oxide synthase) modulate hepatic energy metabolism and inflammation and play a major role in the development of NASH. Cyclic nucleotide phosphodiesterases (PDEs) play an important role in signal transduction by modulating intracellular [...] Read more.
Sirt1 (Sirtuin 1), AMPK (AMP-activated protein kinase), and eNOS (endothelial nitric oxide synthase) modulate hepatic energy metabolism and inflammation and play a major role in the development of NASH. Cyclic nucleotide phosphodiesterases (PDEs) play an important role in signal transduction by modulating intracellular levels of cyclic nucleotides. We previously found the PDE5 inhibitor sildenafil to synergize with leucine and leucine-metformin combinations in preclinical studies of NASH and obesity. However, efficacy is diminished at higher sildenafil concentrations. Herein, we have successfully modeled the U-shaped sildenafil dose-response in vitro and utilized this model to assess potential mechanisms of this dose-response relationship. Adipocytes and liver cells were treated with leucine (0.5 mM) and different concentrations of sildenafil (1 nM to 100 µM). cAMP, cGMP, and P-AMPK protein expression were used to demonstrate the biphasic response for increasing concentrations of sildenafil. The reversal with higher sildenafil levels was blunted by PDE2 inhibition. These data indicate that sildenafil-mediated increases in cGMP inhibits PDE3 at lower concentrations, which increases cAMP. However, further increases in cGMP from higher sildenafil concentrations activate PDE2 and consequently decrease cAMP, which demonstrates crosstalk between cAMP and cGMP via PDE2, PDE3, and PDE5. These changes in cAMP concentration are further reflected in downstream effects, including AMPK activation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Figures

Graphical abstract

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top