Open AccessArticle
Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid
by
Guiquan Wang, Fenfen Li, Yu Suo, Cuilong Kong, Xiaoguang Wang and Lingzhi Zhou
Symmetry 2025, 17(7), 981; https://doi.org/10.3390/sym17070981 (registering DOI) - 21 Jun 2025
Abstract
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression
[...] Read more.
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression experiments. An improved Hooke–Brown anisotropic strength criterion has been established to quantitatively characterize the degradation effects. Additionally, a dynamic mechanism of pore pressure accumulation was simulated. The research findings indicate the following: (1) As the intrusion pressure increases from 6 MPa to 8 MPa, the penetration depth significantly increases. In the horizontal bedding direction (0°), cracks dominate the flow mode, resulting in a sudden drop in strength; (2) An increase in bedding density or opening exacerbates the degree of invasion and strength degradation in the horizontal bedding direction, with a degradation rate exceeding 40%. In contrast, the vertical bedding direction is influenced by permeability anisotropy and crack blockage, leading to limited seepage and minimal degradation. By optimizing the dosage of emulsifiers and other treatment agents through orthogonal experiments, a low-viscosity, high-shear-strength plugging oil-based drilling fluid system was developed, effectively reducing the invasion depth of the drilling fluid by over 30%. The primary innovations of this article include the establishment of a quantitative model for Reynolds number degradation for the first time, which elucidates the mechanism of accelerated crack propagation during turbulent transition (when the Reynolds number exceeds the critical value of 10). Additionally, a novel method for synergistic control between sealing and rheology is introduced, significantly decreasing the degradation rate of horizontal bedding. Furthermore, the development of the Darcy–Forchheimer partitioning algorithm addresses the issue of prediction bias exceeding 15% in high-Reynolds-number regions (Re > 30). The research findings provide a crucial theoretical foundation and data support for the optimized design of drilling fluids.
Full article
►▼
Show Figures