Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, K.J.; Bandrauk, A.D. Symmetry in circularly polarized molecular high-order harmonic generation with intense bicircular laser pulses. Phys. Rev. A 2018, 97, 023408. [Google Scholar] [CrossRef]
- Sansone, G.; Benedetti, E.; Calegari, F.; Vozzi, C.; Avaldi, L.; Flammini, R.; Poletto, L.; Villoresi, P.; Altucci, C.; Velotta, R.; et al. Isolated Single-Cycle Attosecond Pulses. Science 2006, 314, 443–446. [Google Scholar] [CrossRef]
- Bartels, R.A.; Paul, A.; Green, H.; Kapteyn, H.C.; Murnane, M.M.; Backus, S.; Christov, I.P.; Liu, Y.; Attwood, D.; Jacobsen, C. Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths. Science 2002, 297, 376–378. [Google Scholar] [CrossRef]
- Ferray, M.; L’Huillier, A.; Li, X.F.; Lompre, L.A.; Mainfray, G.; Manus, C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 1988, 21, L31. [Google Scholar] [CrossRef]
- Gopal, D.; Álvaro, J.G.; Lukas, M.; Misha, I. Control of the helicity of high-order harmonic radiation using bichromatic circularly polarized laser fields. Phys. Rev. A 2018, 98, 053402. [Google Scholar]
- Ayuso, D.; Jiménez-Galán, A.; Morales, F.; Ivanov, M.; Smirnova, O. Attosecond control of spin polarization in electron–ion recollision driven by intense tailored fields. New J. Phys. 2017, 19, 073007. [Google Scholar] [CrossRef]
- Li, M.; Xie, M.F.; Wang, H.; Jia, L.; Li, J.; Wang, W.; Cai, J.; Hong, X.; Shi, X.; Lv, Y.; et al. Observation of Laser-Assisted Dynamic Interference by Attosecond Controlled Photoelectron Spectroscopy. Phys. Rev. Lett. 2024, 133, 253201. [Google Scholar] [CrossRef]
- Xu, N.; Zhou, S.S.; Wang, Y. Regulation of helium atom higher harmonic emission and attosecond pulse angle in inhomogeneous fields. Results Phys. 2025, 72, 108190. [Google Scholar] [CrossRef]
- Peters, M.; Dang, T.N.; Charron, E.; Keller, A.; Atabek, O. Laser-induced electron diffraction: A tool for molecular orbital imaging. Phys. Rev. A 2012, 85, 053417. [Google Scholar] [CrossRef]
- Vozzi, C.; Negro, M.; Calegari, F.; Sansone, G.; Nisoli, M.; Silvestri, S.D.; Stagira, S. Generalized molecular orbital tomography. Nat. Phys. 2011, 7, 822–826. [Google Scholar] [CrossRef]
- Niikura, H.; Dudovich, N.; Villeneuve, D.M.; Corkum, P.B. Mapping Molecular Orbital Symmetry on High-Order Harmonic Generation Spectrum Using Two-Color Laser Fields. Phys. Rev. Lett. 2010, 105, 053003. [Google Scholar] [CrossRef]
- Itatani, J.; Levesque, J.; Zeidler, D.; Hiromichi, N.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic imaging of molecular orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef]
- Corkum, P.; Krausz, F. Attosecond science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov., M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef]
- Gallmann, L.; Cirelli, C.; Keller, U. Attosecond Science: Recent Highlights and Future Trends. Annu. Rev. Phys. Chem. 2012, 63, 447–469. [Google Scholar] [CrossRef]
- Puthumpally-Joseph, R.; Viau-Trudel, J.; Peters, M.; Nguyen-Dang, T.T.; Atabek, O.; Charron, E. Inversion of strong-field photoelectron spectra for molecular orbital imaging. Phys. Rev. A 2016, 94, 023421. [Google Scholar] [CrossRef]
- Krečinić, F.; Wopperer, P.; Frusteri, B.; Brauße, F.; Brisset, J.G.; De Giovannini, U.; Rubio, A.; Rouzée, A.; Vrakking, M.J.J. Multiple-orbital effects in laser-induced electron diffraction of aligned molecules. Phys. Rev. A 2018, 98, 041401. [Google Scholar] [CrossRef]
- Laurell, H.; Luo, S.; Weissenbilder, R. Measuring the quantum state of photoelectrons. Nat. Photonics 2025, 19, 1–6. [Google Scholar] [CrossRef]
- Luo, S.; Weissenbilder, R.; Laurell, H.; Bello, R.Y.; Marante, C.; Ammitzböll, M.; Neoričić, L.; Ljungdahl, A.; Squibb, R.J.; Feifel, R.; et al. Influence of final state interactions in attosecond photoelectron interferometry. Phys. Rev. Res. 2024, 6, 043271. [Google Scholar] [CrossRef]
- Xing, M.; Wang, J.; Zhao, X.; Zhou, S. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules. Chin. Phys. Lett. 2025, 42, 043201. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, H.; Hu, M.; Sun, Y.; Zhao, X. Review of the Generation, Regulation, and Applications of High-Order Harmonic Generation in Gases Studied Using Time-Dependent Density Functional Theory. Symmetry 2025, 17, 359. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, S.; Jiang, W.; Guo, F.; Wang, J.; Chen, J.; Yang, Y. Modulation of harmonics from solids by laser pulses with a small chirp. Phys. Rev. A 2025, 111, 013501. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Liu, A.; He, L.; Zhao, X. Non vertical ionization-dissociation model for strong IR induced dissociation dynamics of D2O2+. Sci. Rep. 2025, 15, 117. [Google Scholar] [CrossRef]
- Corkum, P.B. Plasma Perspective on Strong-Field Multiphoton Ionization. Phys. Rev. Lett. 1994, 71, 1994–1997. [Google Scholar] [CrossRef]
- Böwering, N.; Lischke, T.; Schmidtke, B.; Müller, N.; Khalil, T.; Heinzmann, U. Asymmetry in Photoelectron Emission from Chiral Molecules Induced by Circularly Polarized Light. Phys. Rev. Lett. 2001, 86, 1187–1190. [Google Scholar] [CrossRef]
- Hergenhahn, U.; Rennie, E.E.; Kugeler, O.; Marburger, S.; Lischke, T.; Powis, I.; Garcia, G. Photoelectron circular dichroism in core level ionization of randomly oriented pure enantiomers of the chiral molecule camphor. J. Chem. Phys. 2004, 120, 4553–4556. [Google Scholar] [CrossRef]
- Samuel, B.; Antoine, C.; Baptiste, F.; Dominique, D.; Amélie, F.; Gustavo, G.; Romain, G.; Francois, L.; Laurent, N.; Stéphane, P.; et al. Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discuss. 2016, 194, 325–348. [Google Scholar]
- Neufeld, O.; Cohen, O. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation. Phys. Rev. Lett. 2018, 120, 133206. [Google Scholar] [CrossRef]
- Cho, M. Drive round the twist. Nat. Phys. 2015, 11, 621–622. [Google Scholar] [CrossRef]
- Schneider, C.M.; Kirschner, J. Spin- and angle-resolved photoelectron spectroscopy from solid surfaces with circularly polarized light. Crit. Rev. Solid State Mater. Sci. 1995, 20, 179–283. [Google Scholar] [CrossRef]
- Isabella, G.; Matti, L.; Hartmut, H.; Christian, R.A.; Klaus, K. Graphene sublattice symmetry and isospin determined by circular dichroism in angle-resolved photoemission spectroscopy. Nano Lett. 2012, 12, 3900–3904. [Google Scholar]
- Ferré, A.; Handschin, C.; Dumergue, M. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nat. Photonics 2015, 9, 93–98. [Google Scholar] [CrossRef]
- Radu, I.; Vahaplar, K.; Stamm, C.; Kachel, T.; Pontius, N.; Dürr, H.A.; Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 2011, 472, 205–208. [Google Scholar] [CrossRef]
- Bandrauk, A.D.; Jing, G.; Kai-Jun, Y. Circularly polarized attosecond pulse generation and applications to ultrafast magnetism. J. Opt. 2017, 19, 124016. [Google Scholar] [CrossRef]
- Yuan, K.J.; Bandrauk, A.D. Attosecond-magnetic-field-pulse generation by coherent circular molecular electron wave packets. Phys. Rev. A 2015, 91, 042509. [Google Scholar] [CrossRef]
- Yuan, K.J.; Guo, J.; Bandrauk, A.D. Generation of ultrafast magnetic fields from molecular coherent electron currents. Phys. Rev. A 2018, 98, 043410. [Google Scholar] [CrossRef]
- Möller, M.; Cheng, Y.; Khan, S.D.; Zhao, B.; Zhao, K.; Chini, M.; Paulus, G.G.; Chang, Z. Dependence of high-order-harmonic-generation yield on driving-laser ellipticity. Phys. Rev. A 2012, 86, 011401. [Google Scholar] [CrossRef]
- Weihe, F.A.; Dutta, S.K.; Korn, G.; Du, D.; Bucksbaum, P.H.; Shkolnikov, P.L. Polarization of high-intensity high-harmonic generation. Phys. Rev. A 1995, 51, R3433–R3436. [Google Scholar] [CrossRef]
- Heslar, J.; Telnov, D.A.; Chu, S.I. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields. Phys. Rev. A 2017, 96, 063404. [Google Scholar] [CrossRef]
- Jin, W.; Jiang, T.; Liu, J.; Luo, S.; Ren, D.; Li, X.; Wang, C.; Lang, Y.; Wang, X.; Zhao, J.; et al. Strong Field Ionization Dynamics Resolved by Two-Color Elliptical Phase-of-Phase Spectroscopy. Ultrafast Sci. 2024, 4, 0066. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Zhou, S.; Chen, J.; Jiang, S.; Yang, Y. Modulation of High-Order Harmonic Generation from a Monolayer ZnO by Co-rotating Two-Color Circularly Polarized Laser Fields. Chin. Phys. Lett. 2024, 41, 14205. [Google Scholar] [CrossRef]
- Long, S.; Becker, W.; McIver, J.K. Model calculations of polarization-dependent two-color high-harmonic generation. Phys. Rev. A 1995, 52, 2262–2278. [Google Scholar] [CrossRef]
- Eichmann, H.; Egbert, A.; Nolte, S.; Momma, C.; Wellegehausen, B.; Becker, W.; Long, S.; McIver, J.K. Polarization-dependent high-order two-color mixing. Phys. Rev. A 1995, 51, R3414–R3417. [Google Scholar] [CrossRef]
- Fleischer, A.; Kfir, O.; Diskin, T.; Sidorenko, P.; Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics 2014, 8, 543–549. [Google Scholar] [CrossRef]
- Watanabe, S.; Kondo, K.; Nabekawa, Y.; Sagisaka, A.; Kobayashi, Y. Two-Color Phase Control in Tunneling Ionization and Harmonic Generation by a Strong Laser Field and Its Third Harmonic. Phys. Rev. Lett. 1994, 73, 2692–2695. [Google Scholar] [CrossRef]
- Milošević, D.B.; Becker, W. X-ray harmonic generation by orthogonally polarized two-color fields: Spectral shape and polarization. Phys. Rev. A 2019, 100, 031401. [Google Scholar] [CrossRef]
- Xia, C.-L.; Miao, X.-Y. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse. Chin. Phys. Lett. 2015, 32, 043202. [Google Scholar] [CrossRef]
- Xia, C.-L.; Miao, X.-Y. Broadband-Isolated Attosecond Pulse Generation by Two-Color Elliptically Polarized Laser Pulses. Spectrosc. Lett. 2015, 48, 605–609. [Google Scholar] [CrossRef]
- Huo, X.X.; Xing, Y.H.; Qi, T.; Sun, Y.; Li, B.; Zhang, J.; Liu, X.S. Elliptical high-order harmonic generation from driven by orthogonally polarized two-color laser fields. Phys. Rev. A 2021, 103, 053116. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High-order harmonic generation from H2+ irradiated by a co-rotating two-color circularly polarized laser field. Phys. Rev. A 2019, 100, 063428. [Google Scholar] [CrossRef]
- Zhai, C.; Shao, R.; Lan, P.; Wang, B.; Zhang, Y.; Yuan, H.; Njoroge, S.M.; He, L.; Lu, P. Ellipticity control of high-order harmonic generation with nearly orthogonal two-color laser fields. Phys. Rev. A 2020, 101, 053407. [Google Scholar] [CrossRef]
- Li, M.Z.; Xu, Y.; Jia, G.R.; Bian, X.B. Controlling polarization of high-order harmonic generation by molecular alignment in a bicircular laser field. Phys. Rev. A 2019, 100, 033410. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Liu, X.; Wang, D.; Zhang, Q.; Lan, P.; Lu, P. Ellipticity-tunable attosecond XUV pulse generation with a rotating bichromatic circularly polarized laser field. Opt. Lett. 2017, 42, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Odžak, S.; Milošević, D.B. Bicircular-laser-field-assisted electron-ion radiative recombination. Phys. Rev. A 2015, 92, 053416. [Google Scholar] [CrossRef]
Parameter | Value/Description |
---|---|
Spatial grid size | 409.6 a.u. (radius) with 0.2 a.u. spacing |
Absorbing boundary | 51.2 a.u. thick cosine mask starting at 358.4 a.u. |
Pulse duration | 8 optical cycles (≈21.1 fs at 800 nm), trapezoidal envelope |
Time step | 0.1 a.u. (≈2.4 attoseconds) |
Laser wavelength | Fundamental: 800 nm; third harmonic: 266 nm |
Intensity | W/cm2 for both fields ( = 0.085 a.u.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wang, H.; Qiao, Y.; Xu, N.; Guo, F.; Yang, Y.; Hu, M. Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields. Symmetry 2025, 17, 967. https://doi.org/10.3390/sym17060967
Zhou S, Wang H, Qiao Y, Xu N, Guo F, Yang Y, Hu M. Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields. Symmetry. 2025; 17(6):967. https://doi.org/10.3390/sym17060967
Chicago/Turabian StyleZhou, Shushan, Hao Wang, Yue Qiao, Nan Xu, Fuming Guo, Yujun Yang, and Muhong Hu. 2025. "Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields" Symmetry 17, no. 6: 967. https://doi.org/10.3390/sym17060967
APA StyleZhou, S., Wang, H., Qiao, Y., Xu, N., Guo, F., Yang, Y., & Hu, M. (2025). Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields. Symmetry, 17(6), 967. https://doi.org/10.3390/sym17060967