Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid
Abstract
:1. Introduction
2. Experimental Study on the Compressive Strength of Deep-Bedded Shale Under Drilling Fluid Invasion
2.1. Core Sampling and Experimental Design
2.2. Compressive Strength Testing Apparatus
2.3. Compressive Strength Test Results
3. Strength Criteria for Drilling Fluid Invasion in Bedding Shale
4. Numerical Simulation Study on the Strength Degradation of Bedding Shale Due to Drilling Fluid Invasion
4.1. Establishment and Validation of the Numerical Model
4.2. Fluid Permeability Characteristics in the 0° and 90° Bedding Directions Under Varying Invasion Pressures
4.3. Fluid Permeability Characteristics in the 0° and 90° Bedding Directions Under Varying Numbers of Bedding Planes
4.4. Fluid Permeability Characteristics in the 0° and 90° Bedding Directions Under Varying Degrees of Bedding-Plane Opening
4.5. Flow Characteristics of Drilling Fluids: Flow States and Model Applicability
5. Field Applications
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, K. Study on Mechanism of Wellbore Collapse and Instability in Horizontal Well of Layered Shale. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2023. [Google Scholar]
- Zheng, D.; Ozbayoglu, E.; Miska, S.; Zhang, J. Experimental study of anisotropic strength properties of shale. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023; p. ARMA-2023-0128. [Google Scholar]
- Lee, H.; Ong, S.; Azeemuddin, M.; Goodman, H. A wellbore stability model for formations with anisotropic rock strengths. J. Pet. Sci. Eng. 2012, 96, 109–119. [Google Scholar] [CrossRef]
- Zhang, J. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int. J. Rock Mech. Min. Sci. 2013, 60, 160–170. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hayfaa, L.S.; Nuhad, A.; Erfan, M.A.L.; Ahmed, I.A.; Swadi, M.; Tariq, K.K. Investigation of the rock strength anisotropy on the wellbore stability analysis. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019; p. ARMA-2019-0137. [Google Scholar]
- Asaka, M.; Holt, R.M. Anisotropic wellbore stability analysis: Impact on failure prediction. Rock Mech. Rock Eng. 2021, 54, 583–605. [Google Scholar] [CrossRef]
- Ma, T.S.; Tang, T.; Chen, P.; Chen, C.; Sun, S.L.; Liu, Y.Y. Prediction of borehole fracture pressure in anisotropic formations. J. China Univ. Pet. Nat. Sci. Ed. 2019, 43, 80–89. [Google Scholar]
- Li, Z.T.; Zhang, Z.; Wu, P.C.; Ma, T.S.; Fu, J.H. Mechanical mechanism of wellbore instability in deep anisotropic shale in southern Sichuan. J. Southwest Pet. Univ. Nat. Sci. Ed. 2021, 43, 11–25. [Google Scholar]
- Yan, B.; Wang, P.; Ren, F.; Guo, Q.; Cai, M. A review of mechanical properties and constitutive theory of rock mass anisotropy. Arab. J. Geosci. 2020, 13, 487. [Google Scholar] [CrossRef]
- Luo, M.; Gao, D.L.; Huang, H.L.; Li, J.; Yang, H.W.; Zhang, G.; Liu, K. Influence of drilling fluid on shale mechanical properties and wellbore stability. Oil Drill. Prod. Technol. 2022, 44, 693–700. [Google Scholar]
- Zhou, X.; Liu, X.; Liang, L. Analysis of changes in shale mechanical properties and fault instability activation caused by drilling fluid invasion into formations. J. Pet. Explor. Prod. Technol. 2024, 14, 2343–2358. [Google Scholar] [CrossRef]
- Wang, H.; Feng, F.; Zhang, J.; Han, X.; Zhang, Y.; Zhang, K. Effects of drilling fluid intrusion on the strength characteristics of layered shale. Heliyon 2025, 11, e42878. [Google Scholar] [CrossRef]
- Liu, H.B.; Sun, H.R.; Cui, S.; Wang, S.; Du, S. Study on deformation mechanism and mechanical properties of bedding shale. Chin. J. Undergr. Space Eng. 2023, 19, 174–180. [Google Scholar]
- Geng, D.D.; Qi, X.Y.; Fu, P.; Wang, S.W.; Ke, T. Mechanical properties and damage constitutive model of shale under different drilling fluid immersion conditions. Coal Sci. Technol. 2023, 51, 109–118. [Google Scholar]
- Wang, J.M.; Zhang, S. Degree and influence of drilling fluid invasion in ultra-low permeability sandstone reservoirs. Acta Pet. Sin. 2019, 40, 1095–1103. [Google Scholar]
- Dong, L.; Wu, N.Y.; Leonenko, Y.; Wan, Y.; Liao, H.; Hu, G.; Li, Y. A coupled thermal-hydraulic-mechanical model for drilling fluid invasion into hydrate-bearing sediments. Energy 2023, 278, 127785. [Google Scholar] [CrossRef]
- Deng, F.Y. Study on the Law of Drilling Fluid Invasion into Shale Formations and its Influence on Wellbore Stability. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2019. [Google Scholar]
- Li, P.; Wang, Y.; Liu, J.; Li, P. Evaluation of Carbon Emission Efficiency and Analysis of Influencing Factors of Chinese Oil and Gas Enterprises. Energy Sci. Eng. 2025, 13, 1156–1170. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Zhang, K.; Zhang, Q.H.; Song, T.; Zhang, C.; Zhuo, L.B.; Hao, C.; Feng, F.P.; Wang, H.; et al. The invasion law of drilling fluid along bedding fractures of shale. Front. Earth Sci. 2023, 11, 1112441. [Google Scholar] [CrossRef]
- Suo, Y.; Li, F.F.; He, W.Y.; Fu, X.F.; Pan, Z.J.; Feng, F.P.; Zhao, W.C. A model of drilling fluid invasion into laminated shale. J. Eng. Sci. 2024, 46, 547–555. [Google Scholar]
- Wang, H.Y.; Feng, F.P.; Zhang, J.W.; Han, X.; Zhang, Y.H.; Zhang, K. Impact of rock strength degradation by fluid intrusion on borehole stability in shale. Nat. Gas Ind. B 2024, 11, 553–568. [Google Scholar] [CrossRef]
- Ma, T.S.; Chen, P. Wellbore stability analysis of horizontal wells in bedding shale. J. Cent. South Univ. Nat. Sci. Ed. 2015, 46, 1375–1383. [Google Scholar]
- Saroglou, H.; Tsiambaos, G. A modified Hoek–Brown failure criterion for anisotropyic intact rock. Int. J. Rock Mech. Min. Sci. 2008, 45, 223–234. [Google Scholar] [CrossRef]
Drilling Fluid Type | Coring Direction (°) | Well Number | Rock Sample Number | Confining Pressure (MPa) | Soaking Time (h) | Rock Mechanics Parameters | ||
---|---|---|---|---|---|---|---|---|
Triaxial Compressive Strength (MPa) | Young’s Modulus (MPa) | Poisson’s Ratio | ||||||
Oil-Based Drilling Fluid | 0 | G2 | 1-1 | 30 | 0 | 70.87 | 23.44 | 0.172 |
G2 | 1-2 | 30 | 24 | 66.44 | 22.89 | 0.155 | ||
G2 | 1-3 | 30 | 48 | 59.92 | 23.15 | 0.106 | ||
G2 | 1-4 | 30 | 72 | 30.82 | 11.72 | 0.167 | ||
G2 | 1-5 | 30 | 96 | 30.52 | 11.68 | 0.15 | ||
G2 | 1-6 | 30 | 120 | 30.36 | 11.56 | 0.174 | ||
90 | G4 | 2-1 | 30 | 0 | 76.98 | 20.13 | 0.178 | |
G4 | 2-2 | 30 | 24 | 75.86 | 20.06 | 0.143 | ||
G4 | 2-3 | 30 | 48 | 74.55 | 19.89 | 0.157 | ||
G4 | 2-4 | 30 | 72 | 73.91 | 15.92 | 0.138 | ||
G4 | 2-5 | 30 | 96 | 73.55 | 13.24 | 0.159 | ||
G4 | 2-6 | 30 | 120 | 73.43 | 13.56 | 0.145 |
Coring Direction (°) | Before and After Soaking | Rock Sample Number | Confining Pressure (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio | Compressive Strength (MPa) | Cohesion (MPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|---|---|---|
0 | Before Soaking | 1-7 | 0 | 23.15 | 0.196 | 69.34 | 11.683 | 13.65 |
1-8 | 15 | 23.54 | 0.218 | 70.65 | ||||
1-1 | 30 | 23.44 | 0.172 | 70.87 | ||||
90 | Before Soaking | 2-7 | 0 | 20.53 | 0.269 | 73.71 | 25.638 | 15.42 |
2-8 | 15 | 19.76 | 0.204 | 75.18 | ||||
2-1 | 30 | 20.13 | 0.178 | 76.98 | ||||
0 | After Soaking | 1-9 | 0 | 11.57 | 0.187 | 30.16 | 6.225 | 8.11 |
1-10 | 15 | 11.79 | 0.202 | 30.73 | ||||
1-4 | 30 | 11.72 | 0.167 | 30.82 | ||||
90 | After Soaking | 2-9 | 0 | 15.11 | 0.159 | 70.75 | 25.524 | 8.78 |
2-10 | 15 | 10.37 | 0.171 | 72.11 | ||||
2-4 | 30 | 15.92 | 0.138 | 73.91 |
Parameter | Value | Unit |
---|---|---|
Shale Elastic Modulus | 25 | GPa |
Shale Poisson’s Ratio | 0.25 | / |
Shale Density | 2500 | kg/m3 |
Shale Matrix Porosity | 3 | % |
Shale Matrix Permeability | 1 × 10−20 | m2 |
Shale Bedding-Plane Porosity | 15 | % |
Shale Bedding-Plane Permeability | 1 × 10−9 | m2 |
Oil-Based Drilling Fluid Density | 1800 | kg/m3 |
Intrusion Pressure | 6, 7, 8 | MPa |
Number of Shale Bedding Planes | 3, 5, 9 | Line |
Shale Bedding-Plane Aperture | 1 × 10−6, 1 × 10−4, 1 × 10−3 | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, F.; Suo, Y.; Kong, C.; Wang, X.; Zhou, L. Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid. Symmetry 2025, 17, 981. https://doi.org/10.3390/sym17070981
Wang G, Li F, Suo Y, Kong C, Wang X, Zhou L. Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid. Symmetry. 2025; 17(7):981. https://doi.org/10.3390/sym17070981
Chicago/Turabian StyleWang, Guiquan, Fenfen Li, Yu Suo, Cuilong Kong, Xiaoguang Wang, and Lingzhi Zhou. 2025. "Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid" Symmetry 17, no. 7: 981. https://doi.org/10.3390/sym17070981
APA StyleWang, G., Li, F., Suo, Y., Kong, C., Wang, X., & Zhou, L. (2025). Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid. Symmetry, 17(7), 981. https://doi.org/10.3390/sym17070981