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Abstract

Accurately predicting stock prices is crucial for investment and risk management, but
the non-stationarity of the financial market and the complex correlations among stocks
pose challenges to traditional models (ARIMA, LSTM, XGBoost), resulting in difficulties in
effectively capturing dynamic patterns and limited prediction accuracy. To this end, this
paper proposes the Financial Spatio-Temporal Graph Attention Network (FSTGAT), with
the following core innovations: temporal modelling through gated causal convolution to
avoid future information leakage and capture long- and short-term fluctuations; enhanced
spatial correlation learning by adopting the Dynamic Graph Attention Mechanism (GATv2)
that incorporates industry information; designing the Multiple-Input-Multiple-Output
(MIMO) architecture of industry grouping for the simultaneous learning of intra-group
synergistic and inter-group influence; symmetrically fusing spatio-temporal modules to
construct a hierarchical feature extraction framework. Experiments in the commercial
banking and metals sectors of the New York Stock Exchange (NYSE) show that FSTGAT
significantly outperforms the benchmark model, especially in high-volatility scenarios,
where the prediction error is reduced by 45–69%, and can accurately capture price turning
points. This study confirms the potential of graph neural networks to model the structure of
financial interconnections, providing an effective tool for stock forecasting in non-stationary
markets, and its forecasting accuracy and industry correlation capturing ability can support
portfolio optimization, risk management improvement and supply chain decision guidance.

Keywords: FSTGAT; stock price prediction; spatio-temporal graph neural network; graph
attention network; causal convolution; financial market modeling

1. Introduction
In the dynamic evolution of financial markets, stock price forecasting remains a

core issue in theoretical research and practical applications [1], guiding investors’ asset
allocation and serving as a key basis for financial institutions’ risk management, asset
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pricing, and strategy formulation—helping capture gains and avoid systemic risks. In
recent years, global markets have faced heightened volatility from macroeconomic shifts,
geopolitical conflicts, and black swan events (e.g., the 2020 pandemic, 2022 energy crisis),
boosting demand for robust prediction models and highlighting forecasting’s practical
value in uncertain environments. However, forecasting remains inherently complex and
susceptible to multiple uncertainties [2]; the core challenge lies in modeling stock prices
systemically within non-stationary financial systems, where interconnected factors shape
market dynamics, making accurate future price prediction exceptionally formidable.

Traditional stock price prediction methods like ARIMA models and statistical regres-
sion analysis [3] are constrained by linearity assumptions and data smoothness require-
ments, leaving them ill-equipped to capture financial markets’ inherent complexity and
non-stationarity. Shaped by fundamental factors (e.g., corporate earnings) and behav-
ioral factors (e.g., investor sentiment), markets experience abrupt fluctuations from events
like earnings announcements and policy releases. Industry synergies (e.g., supply chain
links) and sector rotations further create dynamic stock interdependencies. These features
render financial systems inherently non-linear, making traditional models ineffective at
representing their dynamics [4].

While machine learning approaches [5] overcome some linearity limitations, they
often depend on handcrafted features and lack the capacity to model intricate inter-stock
relationships or adapt to evolving market structures, thus limiting their generalizability
and robustness. Consequently, these traditional and machine learning methods frequently
fall short in delivering accurate, reliable, and timely stock price forecasts.

The boom in deep learning has revolutionized financial market analysis [6]. Among
them, Recurrent Neural Network (RNN) [7] and its classical variant Long Short-Term
Memory (LSTM) [8] can capture the dynamics of stock prices in the time dimension by
virtue of its sequence modelling capability, and LSTM effectively solves the bottleneck
of long-term memory of traditional RNNs through the gating mechanism consisting of
forgetting gates, input gates, and output gates, and performs excellently in the task of
dealing with the dependency of long sequences [9]. However, LSTM is essentially a single-
sequence modelling tool, and its core capability is limited to capturing the time-series
dependencies of individual stocks, which cannot directly deal with cross-asset correlations
that are common among stocks in the financial market. This limitation makes it difficult for
LSTM to integrate multi-stock information to improve the prediction accuracy when facing
the linkage effect of “all gain and all loss” in the stock market.

However, complex correlations among stocks in the financial market (such as industry
linkages and sector rotations) urgently require more efficient structured modeling tools.
Thus, Graph Neural Networks (GNNs) have become a new paradigm [10]. GNNs naturally
represent the dependency relationships among stocks through the topological structure
of nodes and edges, and can effectively capture non-Euclidean space correlations such
as upstream and downstream of the industrial chain and sector collaboration [11]. Here,
the topological structure refers to the way stocks (nodes) are connected via meaningful rela-
tionships (edges), such as price correlations or industry ties, forming an irregular network
rather than a fixed grid. Non-Euclidean spatial correlations describe such relationships that
are not based on physical distance or sequential order, but on domain-specific associations
like supply chain proximity or co-movement.

In contrast, the rise of graph neural networks (GNNs) has provided a new paradigm
for structured modelling of financial markets [10]. GNNs naturally characterize inter-stock
dependencies through the topology of nodes and edges, and are able to effectively capture
non-Euclidean spatial associations such as upstream and downstream of industrial chains,
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industry synergies, and so forth, which is a cross-stock modelling capability that is not
possible with time-series models such as LSTM.

Based on this, Spatio-Temporal Graph Attention Networks (STGATs) [12] further
integrate time-series dynamics and graph-structure representation. Through the attention
mechanism, they adaptively focus on key nodes and temporal patterns. This not only
breaks through the limitations of traditional methods in spatial correlation modeling but
also strengthens the ability to fuse multi-scale spatio-temporal features, providing a highly
promising solution for improving the accuracy and robustness of stock price prediction.

This paper proposes a Financial Spatio-Temporal Graph Attention Network (FSTGAT)
for modeling non-stationary financial systems and develops a spatio-temporal adaptive
prediction framework specifically tailored for stock price forecasting. Compared with
existing methods, our work incorporates dynamic industry-aware graph construction,
strictly causal temporal modeling, and sector-based multi-output forecasting to address
the challenges of volatility and time-varying correlations in financial markets. The main
contributions are summarized as follows:

1. Causal Temporal Modeling Mechanism: We adopt a Gated Causal Convolution
architecture, which strictly enforces temporal causality in financial time series to
prevent future information leakage, while supporting efficient parallel computation
compared to recurrent architectures.

2. Dynamic Industry-Aware Graph Attention: We design an adaptive GATv2-based
graph attention mechanism that integrates industry classification priors and market
correlation matrices as edge attributes. This enables the model to dynamically update
inter-stock association weights over time, distinguishing genuine industry-driven
relationships from spurious correlations caused by transient market sentiment.

3. Multi-Scale Sector-Level MIMO Framework: We propose a multi-input multi-output
prediction architecture grouped by industry sectors. Homogeneous financial entities
are clustered into subgraphs, allowing the graph attention layers to capture both
intra-sector synergies and inter-sector spillover effects, overcoming the limitations of
single-asset modeling.

4. Sector-Specific Robustness and Significance Validation: We conduct extensive ex-
periments on NYSE commercial banking and metals sectors, incorporating Diebold–
Mariano significance tests and ablation studies to rigorously validate the effectiveness
and robustness of FSTGAT under different volatility regimes.

We select NYSE commercial banking and metal sectors as testbeds for their contrasts:
banking, rate-sensitive with intra-sector contagion (e.g., 2008 crisis); metals, tied to com-
modity cycles and global supply chains. For example, banking stocks react sharply to rate
policies, while metals correlate closely with commodity cycles. This dual-sector approach
validates cross-regime generalizability. Empirical tests show the FSTGAT model outper-
forms SARIMA, LSTM, and XGBOOST, innovating by modeling stocks as an interconnected
network (not isolated entities). It bridges the gap by addressing the need for frameworks
integrating temporal and spatial dependencies.

Despite challenges in real-world deployment, including trading latency (e.g., <10 ms
response for high-frequency trading systems), regulatory compliance (e.g., SEC Rule 15c3-5),
and model interpretability, the FSTGAT model retains significant value. It expands financial
forecasting methodologies, highlights graph neural networks’ potential for modeling
complex financial systems, and provides critical theoretical support and practical guidance
for applications like portfolio optimization and risk management, fostering advancements
in financial quantitative analysis and decision support.

The remainder of the paper is structured as follows: Section 2 reviews related work
on traditional statistical models, machine learning, and spatio-temporal graph neural net-
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works. Section 3 introduces core theoretical fundamentals. Section 4 details the FSTGAT
architecture, including temporal convolution, spatial attention, and output layers. Section 5
describes experimental design, datasets, and evaluation metrics. Section 6 presents exper-
imental results with ablation studies and complexity analysis. Section 7 concludes and
outlines future work.

2. Literature Review
Early financial forecasting primarily relied on traditional statistical models. The

ARIMA model [13,14], while effective for modeling smooth time series and applied to
stock price forecasting [15], is limited by its linear assumptions and inability to handle the
non-stationarity and abrupt changes common in financial markets. To address volatility,
Engle introduced the ARCH model [16], later extended to GARCH by Bollerslev [17], which
models volatility clustering. However, these models remain constrained by their linear
frameworks and cannot fully capture the complex nonlinear relationships in financial data.

With machine learning, models like SVMs [18] and random forests [19] enabled mod-
eling nonlinear time series patterns but relied heavily on manual feature engineering,
limiting generalizability and scalability. Advanced tree-based models XGBoost [20] and
LightGBM [21] emerged as alternatives; XGBoost uses regularization and greedy feature
selection to boost performance, while LightGBM employs histogram splitting and leaf-wise
growth for faster training on large datasets. Yet they still depend partially on manual
feature engineering to capture temporal dependencies.

The advent of deep learning has significantly advanced time series modeling. LSTM,
proposed by Hochreiter and Schmidhuber [22], addresses the gradient vanishing/ex-
ploding issues in RNNs through gating mechanisms, enabling the capture of long-range
dependencies. In financial forecasting, LSTM has demonstrated strong potential for model-
ing long-term correlations [23], yet it remains limited in capturing cross-asset linkages [24].
Temporal Convolutional Networks (TCN) [25] utilize dilated convolutions to expand the
receptive field and support parallel computation, improving efficiency over traditional
RNNs and making them suitable for low-latency scenarios such as high-frequency trading.
WaveNet [26] employs causal convolutions to ensure temporal causality and prevent infor-
mation leakage from the future, setting a benchmark for time series modeling. However,
these models primarily focus on single-sequence data and struggle to capture cross-asset
or spatial relationships, underscoring the need for approaches that can model complex
dependencies across multiple sequences.

The rise of graph neural networks (GNNs) is naturally adapted to the “entity associa-
tion network” features of financial markets (e.g., stock industry chain linkages, institutional
position networks, and credit bond collateral relationships); the basic GCN proposed by
Kipf & Welling [27] pioneered graph convolution operators to enable node information
propagation. Notably, as behavioral finance reveals the presence of irrational pricing mech-
anisms driven by interconnected market participants, graph structures become critical
for expressing such complex interaction-driven dynamics [28]. GAT, proposed by Velick-
ovic et al. [29], introduces an attention mechanism to dynamically allocate neighbor node
weights and accurately identify differences in association strength; GATv2, optimized by
Brody et al. [30], improves dynamic attention computational logic, emerging as the current
state-of-the-art architecture in graph learning.

In order to break through the modelling limitations of a single model and single
variable in financial and other scenarios, the researchers also tried to build hybrid models
with multivariate inputs by combining multiple deep learning and classical models.

Spatio-Temporal Graph Neural Networks (STGNNs) focus on the “spatio-temporal
coupling” characteristics of financial data, and fill the research gap through spatio-temporal
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joint modeling. In the field of traffic flow prediction, Yu et al. [12] proposed STGCN, which
pioneered the fusion architecture of graph convolution and 1D-CNN to depict spatio-
temporal dependencies, and Wu et al. [31] proposed Graph WaveNet, which introduced
an adaptive adjacency matrix to dynamically capture time-varying spatial correlations,
laying the foundation for technology transfer in financial scenarios. In terms of financial
application exploration, Sawhney et al. [32] proposed STHAN-SR, which integrated spatio-
temporal attention mechanisms and hypergraph structures to adapt to complex financial
correlations, attempting to depict the dynamic interactions of the asset network.

Kanwal et al. [33] proposed a hybrid deep learning model, BiCuDNNLSTM-1dCNN,
integrating CUDA-accelerated bidirectional LSTM and one-dimensional CNN to capture
both long-term temporal dependencies and short-term local patterns in stock price time
series, demonstrating superior prediction accuracy across five datasets compared to four
state-of-the-art models, although noting limitations in data scale dependency and hyperpa-
rameter optimization complexity.

Jin [34] proposes GraphCNNPred, a hybrid model integrating graph neural networks
(GAT/GCN) and convolutional neural networks (CNNs), which leverages feature correla-
tion graphs and temporal convolutional layers to predict trends in stock market indices
(S&P 500, NASDAQ, etc.), achieving a 4–15% improvement in F measure over baseline
algorithms and demonstrating effective trading strategy performance with a Sharpe ratio
exceeding 3.

Liu and Paterlini [35] proposed an LSTM-GCN model that integrates a graphical
convolutional network (GCN), which is used to capture spatial dependencies in supplier–
customer value chain relationships, and a long- and short-term memory network (LSTM),
which is used to simulate the temporal dynamics of stock returns in relation to the Euro
Stoxx 600 Index and the S&P 500 Index. The model improves forecast accuracy and
risk-adjusted returns compared to the baseline model for the Euro Stoxx 600 and S&P
500 datasets.

Wenbo Yan and Ying Tan [36] propose a time-correlation graph pre-training network
(TCGPN), which integrates time series and node dependencies through a time-correlation
fusion encoder, combines self-supervised time-completion and semi-supervised graph
recovery tasks to optimize representations, and solves the problem of large-scale node
memory by using a node/graph/time-masked data augmentation strategy, which has been
proposed in CSI300/Performance breakthroughs in non-periodic time series forecasting on
CSI300/CSI500 stock datasets with lightweight MLP fine-tuning.

The recent STGAT model proposed by Feng et al. [37] has made valuable contri-
butions to stock prediction, particularly in demonstrating the potential of integrating
spatio-temporal features into financial forecasting. Specifically, it uses a standard GAT to
model stock relationships via static price correlations and applies STL decomposition for
temporal pattern extraction, laying a useful foundation for exploring market dynamics.

However, our work differs in several key aspects. First, unlike Feng et al., we incor-
porate explicit industry-aware grouping mechanisms to construct dynamic sector-specific
subgraphs, enabling the model to capture intra-sector synergy and inter-sector spillovers.
Second, we target industry-specific, high-volatility sectors (NYSE commercial banking
and metals) rather than broad-market indices (CSI 500/S&P 500), allowing robustness
validation across distinct volatility regimes. Third, our temporal module employs a causal
convolution + GLU design to ensure strict temporal causality and parallel efficiency, in con-
trast to their reliance on standard temporal convolution. Finally, while Feng et al. emphasize
portfolio optimization performance, we focus on prediction accuracy and statistical sig-
nificance validation through Diebold–Mariano tests and ablation studies. Please refer
to Table 1.
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Table 1. Key differences between [37] STGAT and our proposed FSTGAT.

Aspect [37] STGAT Our FSTGAT

Graph construction Standard GAT with static price
correlation adjacency

Dynamic GATv2 with industry-aware edge
attributes (sector classification + market correlations)

Temporal modeling STL decomposition + standard
temporal convolution

Causal convolution + GLU gating to ensure strict
causality and parallelization

Data scope Broad-market indices (CSI 500,
S&P 500)

Industry-specific stocks (NYSE commercial banking
and metals)

Objective focus Portfolio optimization and
return maximization

Prediction accuracy, robustness, and statistical
significance validation (DM tests, ablation)

Industry structure No explicit sector-based
subgraph grouping

Explicit sector-based multi-input
multi-output framework

Currently, there are several aspects of financial prediction models that can be opti-
mized. In the causal constraint dimension, traditional convolution faces the problem of
future data leakage [12], while RNN models encounter obstacles in parallelization, which
negatively affects both the reliability and efficiency of forecasting. Second, in terms of
dynamic relationship modeling, traditional methods rely excessively on static graph struc-
tures and have a single source of correlation, limited to the use of price correlation or
industry classification [34]. However, dynamic changes such as industry restructuring and
black swan events occur frequently in financial markets, and the market environment is
complex and volatile. Under such circumstances, forecasting models perform poorly in
dealing with unexpected events and also ignore the interactions between stocks, especially
those in the same industry sector. Furthermore, in terms of model magnitude, most of
today’s models focus on a single stock or a single indicator, and rarely consider a specific
industry sector or system level [33].

This paper proposes a Financial Spatio-Temporal Graph Attention Network (FSTGAT)
for non-stationary financial systems. It provides an innovative solution that combines
logical self-consistency and market adaptability for stock price prediction. For readers
seeking a deeper understanding of the theoretical foundations and methodological devel-
opments in graph theory and graph neural networks relevant to this study, we recommend
consulting [38–49].

3. Theory Fundamentals
This section lays the mathematical foundation for the FSTGAT model, and the core

sub-modules are related to the model structure; the graph convolution theory explained
in Section 3.1 supports the design of the spatial convolution layer (GATv2) in Section 4.2,
the temporal convolution method and gating mechanism in Sections 3.2 and 3.3 corresponds
to the implementation of the temporal convolution layer (causal GLU) in Section 4.1, and the
temporal and spatial fusion mechanism in Section 3.4 is the main body of the model. The
spatio - temporal framework provides the theoretical basis.

This section lays the mathematical foundation for the FSTGAT model, and the core
sub-modules form a correspondence with the model structure; the graph convolution
theory explained in Section 3.1 supports the design of the spatial convolution layer (GATv2)
in Section 4.2, the temporal convolution method in Section 3.2 corresponds to the imple-
mentation of the temporal convolution layer (causal GLU) in Section 4.1, and the temporal
and spatial fusion mechanism in Section 3.3 is the industry used in the output layer in
Section 4.3. The MIMO framework is used for the output layer in Section 4.3.
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3.1. Graph Theory and Graph Convolutional Networks

Graph theory provides the mathematical foundation for modeling graph-structured
data [50]. In mathematics, a graph is denoted as G = (V, E), where the node set

V = {v1, v2, . . . , vN} (1)

represents entities, and the edge set E represents the relationships between entities. The ad-
jacency matrix A ∈ RN×N describes the connection strength between nodes, and the degree
matrix D is a diagonal matrix with elements Dii = ∑j Aij.

Graph Convolutional Networks (GCN) extend the convolution operation to graph
structures via spectral or spatial domain methods [27]. Spectral domain GCN is based on
the eigen decomposition of the graph Laplacian matrix

L = D− A (2)

which maps signals from the spatial domain to the frequency domain for processing.
For example, the simplified GCN layer proposed by Kipf and Welling is expressed as:

H(l+1) = σ
(

Ã−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(3)

where Ã = A + I (adding self-loops), D̃ is the degree matrix of Ã, W(l) is the learnable
weight matrix, and σ is the activation function. This approach implicitly captures depen-
dencies between nodes through the adjacency matrix, enabling the propagation of features
over the graph structure.

3.2. Convolutional Neural Network

Convolutional Neural Networks (CNNs) [51] were originally designed for processing
grid-structured data such as images, with their core advantage lying in capturing local
features through shared convolutional kernels. In time series processing, one-dimensional
convolution (1D Conv) in CNNs extracts local patterns along the temporal axis through
sliding windows, offering advantages of parameter efficiency and parallel computation.

The Temporal Convolutional Network (TCN) [25] extends CNNs for temporal mod-
eling by introducing causal convolution and dilated convolution. Causal convolution
ensures that the output at the current time step depends only on past inputs, satisfying
the causality requirement for time series prediction. Dilated convolution expands the
receptive field by setting a dilation factor d, enabling the kernel to capture longer-range
temporal dependencies:

F(s) =
K−1

∑
k=0

f (k) · xs−d·k (4)

where K is the convolution kernel size and x is the input sequence. By stacking multiple
dilated convolutional layers with exponentially increasing dilation factors, TCN efficiently
captures long-term temporal patterns without increasing the number of parameters.

3.3. Gating Mechanism

The gating mechanism is a key component in deep learning for dynamically control-
ling the flow of information. It is widely used in models such as recurrent neural networks
(e.g., LSTM, GRU), Transformer, and graph neural networks. Its core idea is to generate
weights between 0 and 1 through learnable “gating units” (usually implemented by activa-
tion functions such as sigmoid or softmax) to dynamically screen, retain, or suppress input
information. For example, in temporal models, it filters out noise and focuses on key tem-
poral features, and in the attention mechanism, it highlights the contributions of important
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nodes or sequence positions. Through this adaptive adjustment mechanism, the model can
more effectively handle long-range dependencies, reduce the interference of redundant
information, and thus improve the learning ability and generalization performance in
complex scenarios.

3.4. The Fusion of Spatio-Temporal Graph Convolutional Network

Spatio-temporal Graph Convolutional Networks (STGCNs) [12] integrate the advan-
tages of graph theory and CNNs to simultaneously process spatial dependencies and
temporal dynamics in data. The core concept of STGCN involves designing specialized
spatio-temporal convolution modules that separately capture spatial relationships in graph
structures and temporal evolution in sequential data.

In the spatial dimension, STGCN typically employs GCN or its variants (e.g., ChebNet,
GAT) for graph structure modeling. In the temporal dimension, it utilizes CNNs (e.g., TCN)
or RNNs (e.g., LSTM) to process temporal features. For instance, the STGCN framework
proposed by Yu et al. decomposes spatio-temporal convolution into two sequential opera-
tions: spatial graph convolution and temporal convolution:

Xt+1 = σ(G(Xt, Ws) ∗ T(Xt, Wt)) (5)

where G(·) denotes the spatial graph convolution operation, T(·) represents the temporal
convolution operation, and Ws and Wt are learnable weights for spatial and temporal
dimensions respectively. This decomposition enables the model to learn simultaneously
node dependency relationships in space and evolution patterns in time.

4. FSTGAT: Model Structure and Innovation
This innovative architecture enables FSTGAT to simultaneously capture (1) long-term

evolutionary trends and short-term volatility patterns in the time dimension, (2) complex
market linkage effects in the spatial dimension, and (3) local features of unexpected market
events. As such, it is expected to enhance the training of the model and is expected to
produce good forecasting results.

We propose an innovative Financial Spatio-Temporal Graph Attention Network (FST-
GAT) that aims to significantly improve the accuracy of stock price prediction while
effectively capturing the complex spatio-temporal dependencies in financial markets.

The model we design contains two core components that work in tandem: a gated
temporal convolution module and an augmented graph attention module, which together
build a hierarchical feature extraction architecture. The former employs strict causal
constraints and an innovative gating mechanism to capture long-term evolutionary patterns
in the temporal dimension, preserving key features and suppressing noise, while the latter
learns complex spatial relationships among stocks using a multi-attention mechanism,
which adjusts the attention coefficients with the help of edge attributes.

The two modules work together through a “time-convolution-graph-attention-time-
convolution” sandwich symmetry structure, and the model achieves hierarchical feature
abstraction through a cascading spatio-temporal block architecture: the first block extracts
the underlying spatio-temporal patterns, and the second captures the higher-order market
dynamics. The final prediction layer generates accurate forecasts through feature fusion
coupled with a fully connected network.

This innovative architecture enables FSTGAT to simultaneously capture (1) long-term
evolutionary trends and short-term volatility patterns in the time dimension, (2) complex
market linkage effects in the spatial dimension, and (3) local features of unexpected market
events. As such, it is expected to enhance the training of the model and produce robust
forecasting results.
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Figure 1 illustrates the schematic of our model. This model architecture takes the
Financial Spatio-Temporal Graph Attention Network (FSTGAT) as the core. After the input
data is processed by cascaded STGAT blocks, the output layer generates the results.

Figure 1. The figure illustrates the hierarchical architecture of the Financial Spatio-Temporal Graph
Attention Network (FSTGAT), which enables hierarchical extraction and fusion of spatio-temporal
features through cascading blocks.

First, the Temporal ConvLayer, which contains causal gated convolution and residual
feature fusion, is used to extract temporal patterns. Another temporal convolution layer is
employed to fuse features. Residual connections within the temporal block further enhance
feature propagation.

Subsequently, the GATv2 layer, equipped with dynamic attention and query-
awareness capabilities, learns complex spatial relationships among stocks. Within the
spatial block, operations such as GATv2, ReLU, BN layer, and Dropout are configured to
effectively capture the spatio-temporal dependencies of financial data.

The combination of causal convolution and gating mechanisms (Sigmoid, Hadamard
Product) optimizes information transmission, enabling hierarchical feature abstraction and
accurate prediction.

4.1. Temporal Convolutional Layer

Building on the traditional TCN framework, which uses causal convolution to ensure
temporal causality and dilated convolution to capture long-range dependencies, the tem-
poral convolution layer introduces a dual-branch structure integrating gating mechanisms
and residual connections. This design maintains TCN’s ability to model dynamic temporal
dependencies while enhancing the focus on key temporal patterns through the gating
mechanism, addressing the challenge of inadequate attention to local critical information
in non-stationary sequences in traditional TCNs.

• Causal Conv: Causal convolution [52] is a special one-dimensional convolutional
structure that strictly guarantees the temporal causality between the output and
the input by restricting the sensory field of the convolutional kernel to rely only on



Symmetry 2025, 17, 1344 10 of 27

inputs from past moments. In the implementation, causal convolution is realized by a
two-dimensional convolution kernel, where the time dimension controls the history
dependency length, and the spatial dimension is fixed to 1 to indicate a standard
convolution without nulls, which effectively avoids the leakage of future information,
and conforms to the causal constraints of practical prediction scenarios.

• Gating Mechanism: The Gated Linear Unit (GLU) [53] controls information flow
through a gating mechanism, defined as:

GLU(x) = (W1x + b1)⊗ σ(W2x + b2) (6)

where x is Input feature vector, W1, W2 are Weight matrices for linear transforma-
tions, b1, b2 are Bias vectors, σ(·) is Sigmoid activation function (maps to (0, 1)), ⊗ is
Hadamard product.
The input undergoes two linear transformations: one produces a feature vector, and the
other generates a gating signal (0 to 1) via the Sigmoid function. The gating signal
is element-wise multiplied by the feature vector to selectively filter relevant features.
For efficiency, the input can be split along the feature dimension. GLU’s flexibility and
variants enable its application to diverse tasks, enhancing the model’s ability to focus
on critical information.
This model leverages the Gated Linear Unit (GLU) to optimize temporal feature processing.
The temporal convolution layer adopts a dual-branch structure, with its core being
the generation of a feature map with doubled channels (X ∈ RB×2C×T×N) through a
single causal convolution layer.
One of the branches (denoted as Xq) applies the Sigmoid activation function to the
output of the causal convolution, generating gating coefficients within the range
of (0, 1), which can precisely adjust the proportion of information transmitted in
temporal feature processing. In the other branch, the “main features” are formed by
the sum of the causal convolution results (denoted as X p) and the input of the residual
connection (denoted as X in).
Subsequently, the gating coefficients gate the main features through the Hadamard
product to obtain the final output of the gating mechanism. In the process of feature
fusion, the residual components are optimized to enhance effective temporal features.
Meanwhile, the residual connection can stabilize the training process and retain key
features, making this structure a spatiotemporal variant of the Gated Linear Unit
(GLU) mechanism.

4.2. Spatial Convolution Layer

The main function of the spatial convolution layer is to capture the features of data in
the spatial dimension, that is, the relationships between nodes. Through the graph attention
mechanism, it adaptively learns the importance among nodes, thereby better extracting the
spatial information in graph-structured data.

• GATv2: GATv2 (Graph Attention Network v2) [30] is an improved version of the
traditional Graph Attention Network (GAT), and the core innovation is to solve the
“masking bias” problem of the attention mechanism in the original GAT. Traditional
GAT applies masks to invisible nodes (e.g., non-neighbor nodes) when calculating
the attention weights, which leads to bias in the attention calculation process. GATv2,
on the other hand, by redesigning the calculation of the attention mechanism, makes
the model no longer rely on masks when calculating the attention weights, so that
it can deal with all the nodes in a fairer way, and improves the model’s expressive
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and generalization abilities. This optimization builds on advanced graph attention
techniques, enhancing spatial relationship modeling in FSTGAT.
The core operation of GATv2 is represented as follows:

αij =
exp

(
LeakyReLU

(
aT [Whi ||Whj]

))
∑k∈N (i) exp(LeakyReLU(aT [Whi ||Whk]))

(7)

where hi and hj represent the feature vectors of nodes i and j, W is a learnable weight
matrix, and a represents the attention mechanism.

• Explicit Edge Attributes: Traditional GATv2 [30] relies solely on node features, limiting
its use of edge semantic information, graph structure, and domain knowledge. By in-
corporating edge attributes, such as industry correlation weights and stock relevance
coefficients, into the GATv2 layer’s attention calculation, our model enhances domain
knowledge integration and graph structure modeling. This approach dynamically
adjusts attention weights, shifting from node-centered to edge-node synergistic mod-
eling. It effectively addresses complex applications, such as financial modeling, where
edge attributes carry rich semantic information.

4.3. Output Layer

The output layer of the FSTGAT model employs a hierarchical fully connected ar-
chitecture with a ReLU activation function, which maps the spatio-temporal features ex-
tracted by the previous modules into task-specific predictions. The output layer consists of
two consecutive “fully-connected-ReLU” layers followed by a final linear projection layer,
which dynamically aggregates multi-scale temporal and spatial dependencies through a
learnable weight matrix to efficiently transform high-dimensional graph structural features
into predictions of future time steps.

5. Experimental Design and Process
Figure 2 illustrates the stock price analysis pipeline using the Financial Spatio-

Temporal Graph Attention Network (FSTGAT). The NYSE stock price dataset is prepro-
cessed, including feature extraction, normalization, and graph structure construction, then
split into training and test sets. The training set is processed through an input layer, stacked
FSTGAT blocks, and an output layer for model training. The test set undergoes infer-
ence, followed by post-processing, enabling model evaluation and visualization to achieve
spatio-temporal correlation-driven stock prediction.

Figure 2. This flowchart illustrates the FSTGAT pipeline for stock price prediction, integrating data
preprocessing, model training, inference, and evaluation.

5.1. Data Description

The dataset integrates New York Stock Exchange (NYSE) stock data (2000–2024) and
Fortune 500 company data (2024), including ticker symbols and industry information. We
merged the NYSE dataset with Fortune 500 industry details. Stocks were filtered based on
consistent trading days and trade frequency to ensure data validity. Ultimately, 273 stocks
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with complete industry sector data were selected, forming a comprehensive dataset for
spatio-temporal stock price analysis.

We select the following financial indicators:

• Basic trading indicators: Open ,High, Low, Close, Volume;
• Technical indicators: EMA (Exponential Moving Average), RSI_14 (Relative Strength

Index with 14-day period);
• Daily return: Return.

5.2. Data Processes

Below is an overview of our experimental process, covering data preprocessing, fitting
the data into a deep learning (DL) model, and finally evaluating the trained model.

All numerical features are normalized using Min-Max scaling to the range [0, 1]:

Normalized(x) =
x− xmin

xmax − xmin
(8)

This mitigates the impact of different feature scales on model performance.
In the data preprocessing stage, the sliding window method is used to generate time

series samples with window size w = 10:

• Each window contains features from t− w + 1 to t;
• The label for each window is the target value at time t + 1;
• If future data is unavailable, the label is set to 0.

The sampling process can be formalized as:

Samplei = ([xi−w+1, xi−w+2, . . . , xi], yi+1) (9)

where xt denotes the feature vector at time t, and yi+1 is the corresponding label.

5.3. Graph Structure Construction

This graph structure integrates spatial and temporal dependencies through a three-
stage process as follows. An example of a subgraph is shown in Figure 3.

Figure 3. Stocks in the same industry form a subgraph, where the solid line indicates the same
industry side and the dashed line indicates the high correlation side of it.

5.3.1. Node Feature Construction

Nodes are composed of stocks with complete trading dates on the New York Stock
Exchange. Each node feature includes numerical features such as opening price, highest
price, lowest price, closing price, trading volume, EMA, RSI_14, and Return. After MinMax
normalization, time series information is extracted through a sliding window of size 10.
The window data is used as the node input, and the target value of the corresponding next
time step is used as the label. Finally, all node data is integrated through tensor operations
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to form a four-dimensional tensor structure of [number of samples, number of nodes, time
steps, number of features].

5.3.2. Spatial Edge Construction

We define two types of edges to model spatial relationships. For each pair of nodes vi

and vj, their final edge weight wij is computed as the sum of individual edge weights from
different relationship types:

• Industry-based Edges: Encode domain prior knowledge. Stocks in the same sector are
connected with a fixed weight of 1.0:

windustry
ij =

1.0, if Sector(vi) = Sector(vj)

0, otherwise
(10)

• Correlation-based Edges: Data-driven edges computed from Pearson correlation
coefficients of daily closing prices:

wcorr
ij =

ρij, if |ρij| > 0.7

0, otherwise
(11)

where ρij is the Pearson correlation coefficient between the closing prices of vi and vj.

The combined edge weight between nodes vi and vj is:

wij = windustry
ij + wcorr

ij (12)

All edges are undirected, enforced by adding reciprocal pairs (vi, vj) and (vj, vi) to
ensure the symmetry of the graph convolution operation.

5.3.3. Temporal Extension

The spatial edge set Es is replicated across time steps within the sliding window.
For each time step t (1 ≤ t ≤ w, where w = 10 is the window size), node indices are offset
by t× N (N is the number of stocks) to distinguish nodes across time:

vt
i = vi+t×N (13)

Temporal edges are constructed by replicating spatial edges at each time step with
preserved weights:

Et =
{(

vt
i , vt

j

)
:
(

v0
i , v0

j

)
∈ Es and w(vt

i , vt
j) = w(v0

i , v0
j )
}

(14)

The final spatio-temporal edge set is:

E =
w⋃

t=1

Et (15)

This process fuses spatial connectivity with temporal dynamics, forming a structured
input for spatio-temporal graph neural networks.

Algorithm 1 shows the logic of spatial edge construction and temporal expansion.



Symmetry 2025, 17, 1344 14 of 27

Algorithm 1: Spatio-temporal Graph Construction
Input: Industry information I, Price correlation matrix C, Window size w,

Number of stocks N
Output: Spatio-temporal edge set E with combined weights

1 Es ← ∅ ; // Initialize spatial edge set
2 E← ∅ ; // Initialize spatio-temporal edge set
3 W ← ∅ ; // Edge weight dictionary

// Construct spatial edges with combined weights (Equation (12))
4 foreach pair (vi, vj) ∈ combinations(V, 2) do
5 wij ← 0
6 if I(vi) = I(vj) then
7 wij ← wij + 1.0 ; // Industry edge (Equation (10))
8 if |Cij| > 0.7 then
9 wij ← wij + Cij ; // Correlation edge (Equation (11))

10 if wij > 0 then
11 Es ← Es ∪ {(vi, vj), (vj, vi)} ; // Undirected edges
12 W(vi, vj)← wij W(vj, vi)← wij

13 end
14 end

// Temporal extension (Equation (13))
15 for t← 0 to w− 1 do
16 foreach (vi, vj) ∈ Es do
17 vt

i ← vi + t× N ; // Temporal node offset
18 vt

j ← vj + t× N weight←W(vi, vj)

E← E ∪
{(

vt
i , vt

j, weight
)

,
(

vt
j, vt

i , weight
)}

19 end
20 end
21 return E

5.4. Experimental Setup and Evaluation

The training framework is implemented using a custom trainer (CustomTrainer),
integrating data partition, model optimization, and performance evaluation. Key configu-
rations are as follows:

5.4.1. Data Partition and Optimization Strategy

Data Partition: The dataset is partitioned into training and test sets at a 9:1 ratio,
with the test set used to evaluate model generalization.

• Train Data: The time range is from 1 January 2000 to 14 December 2021, which is used
for the parameter learning and fitting of the model.

• Test Data: The time range is from 15 December 2021 to 22 May 2024, which is used to
evaluate the generalization ability of the model.

Optimizer: The Adam optimizer is employed with the following configurations:

• Learning rate: 1× 10−3;
• Weight decay: 1× 10−4;
• AMSGrad variant enabled for training stability.

Batch Processing: A batch size of 512 is used, with efficient data loading and shuffling
implemented via DataLoader.
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Hardware Configuration: NVIDIA GeForce RTX3060-16GB.

5.4.2. Loss Function and Evaluation Metrics

Loss Function: The Mean Squared Error (MSE) is used as the optimization objective:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

where yi and ŷi denote the ground truth and predicted values, respectively, and n is the
number of samples.

Evaluation Metric: The Root Mean Square Error (RMSE) is consistent with the unit of
the ground truth, providing an intuitive measure of average prediction. It is defined as:

RMSE =
√

MSE (17)

The Mean Absolute Error (MAE) is a pivotal regression evaluation metric that quanti-
fies the average magnitude of prediction errors without considering their direction. Mathe-
matically, it is defined as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (18)

5.5. Comparison Models in the Experiment

In order to evaluate the performance of the Financial Spatio-temporal Graph Attention
Network (FSTGAT) model proposed in this study, we compare it with the traditional
Autoregressive Integrated Moving Average model (SARIMA), Long Short-Term Memory
network (LSTM), and Gradient Boosting Tree model (XGBoost).

• SARIMA: As a classic time series analysis method, SARIMA performs well in handling
data with seasonality and trend. The model structure constructed based on statistical
principles can effectively capture the internal laws of the data.

• LSTM: As a powerful recurrent neural network, LSTM solves the problems of gra-
dient vanishing and gradient explosion in traditional recurrent neural networks by
introducing a gating mechanism, and can better handle the dependency relationships
in long-sequence data.

• XGBOOST: XGBoost [20,54] is an ensemble learning algorithm. It iteratively trains
multiple weak classifiers to finally form a powerful prediction model, which has high
accuracy in handling complex non-linear relationships.

6. Experimental Results and Analysis
As mentioned before, we will start from the relatively macro perspective of industry

sectors to study the stock prediction effect of the model. In the experiment, we take
two different stock industry datasets as examples, namely the commercial bank dataset and
the energy industry dataset. We report the research results in the following two subsections:
first, regarding the commercial banks sector, and second, the metal sector.

6.1. Performance on Commercial Banking Sector

To evaluate the forecasting performance of models for commercial bank share prices,
we compare FSTGAT, XGBoost, LSTM, and SARIMA across 15 banks, using root-mean-
square error (RMSE) and mean absolute error (MAE) as primary metrics. We derive key
observations from Figures 4 and 5, highlighting their predictive accuracy. For details, see
Tables A1 and A2 in the Appendix A.
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Figure 4. RMSE values of fifteen stocks in commercial banks.

Figure 5. MAE values of fifteen stocks in commercial banks.

Combined with the bar chart and experimental data, in the task of commercial bank
stock price prediction, the FSTGAT model shows significant advantages.

Using mean absolute error (MAE) and root mean square error (RMSE) metrics, FSTGAT
consistently outperforms XGBoost, LSTM, and SARIMA across 15 banks in high-volatility
scenarios (e.g., GS and JPM) and stable scenarios (e.g., RF). For GS bank, FSTGAT achieves
an MAE of 23.39 and RMSE of 33.58, substantially lower than XGBoost (MAE 114.61, RMSE
117.77) and LSTM (MAE 75.55, RMSE 89.51), highlighting its ability to capture complex
volatility patterns.

Stock price volatility varies significantly across banks, with higher errors for high-
volatility banks (e.g., GS, JPM) and lower errors for low-volatility banks (e.g., RF) across
all models. FSTGAT maintains low MAE and RMSE across diverse volatility conditions,
demonstrating superior robustness and adaptability compared to other models, thus con-
firming its effectiveness for stock price prediction.
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Comparing the predicted and original stock prices of four models is highly informative
for commercial bank stock price prediction. Figures 6 and 7 plot the original and predicted
stock prices for the models on commercial bank stocks KEY and RF, illustrating their
forecasting accuracy over time.

Figure 6. Comparisonof original and predicted values of KEY in commercial banks.

Figure 7. Comparisonof original and predicted values of RF in commercial banks.

In Figure 6, FSTGAT’s root-mean-square error (RMSE, approximately 1.57) is
15–32% lower than XGBoost’s (2.28), LSTM’s (1.83), and SARIMA’s (2.11), demonstrating
superior predictive accuracy.

For KEY stock, FSTGAT accurately captures inflection point slopes during the
2023 Q2 downturn (18 to 12) and early 2024 rebound (10 to 15). In contrast, XGBoost
exhibits step-wise fitting errors due to piecewise linear modeling, and SARIMA fails to
capture nonlinear rebounds due to its linear assumptions. This highlights FSTGAT’s ability
to effectively model time-series structures, achieving significant improvements in volatile
scenarios through its architecture.

In Figure 7, RF stock prices exhibit moderate stability with narrow fluctuations and
consistent trends. FSTGAT’s RMSE (approximately 4.89) surpasses XGBoost (5.27), LSTM
(5.49), and SARIMA (6.32). FSTGAT precisely captures short-term inflection points, e.g., the
March 2022 pullback (1–2 trading days earlier than XGBoost), and aligns closely with
actual prices in smooth sequences, avoiding SARIMA’s underestimated trends and XG-
Boost’s slope distortions. This confirms FSTGAT’s robust adaptation to dynamic trends in
moderately stable scenarios via spatio-temporal correlation modeling.

FSTGAT exhibits superior stability in rate-sensitive scenarios—such as GS and JPM
during Fed policy shifts—reducing prediction errors by 45–69% compared to benchmarks.
This performance enables minimized rebalancing costs during interest rate volatility for
portfolio optimization, as well as early detection of intra-sector spillovers (e.g., the 2023
regional bank crisis) [55] for contagion risk control.
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6.2. Performance on Metal Sector

To further evaluate model generalization for stock price prediction in the energy
sector, we compare FSTGAT, XGBoost, LSTM, and SARIMA across six energy companies.
Figures 8 and 9 present key observations, highlighting their predictive performance. For
details, see Tables A3 and A4 in Appendix A.

Figure 8. RMSE values of six stocks in metal sector.

Figure 9. MAE values of six stocks in metal sector.

Model errors vary significantly across metal sector stocks, e.g., AA, CLF, and RS,
reflecting how individual stock volatility affects prediction difficulty.

For most stocks, such as AA and CMC, FSTGAT achieves lower RMSE and MAE than
XGBoost, LSTM, and SARIMA, demonstrating superior capability in capturing complex
volatility patterns. However, for highly volatile stocks like RS, all models exhibit higher
errors, indicating challenges in predicting complex volatility.

FSTGAT shows better stability and accuracy in predicting metal sector stock prices
across diverse volatility levels, confirming its adaptability for financial time-series fore-
casting. Nonetheless, its performance in highly volatile scenarios, such as RS, can be
further improved.
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Figures 10 and 11 illustrate the original and predicted stock prices for four models on
metals sector stocks AA and CLF, enabling a case study of these stocks.

Figure 10. Comparisonof original and predicted values of AA in metal sector.

Figure 11. Comparisonof original and predicted values of CLF in metal sector.

For AA stock, FSTGAT’s RMSE (4.35) and MAE (3.55), and for CLF stock, RMSE (2.98)
and MAE (1.99), are significantly lower than those of XGBoost, LSTM, and SARIMA,
confirming FSTGAT’s superior predictive accuracy.

Based on fitted curve details, FSTGAT accurately captures short-term inflection points
for AA in 2022 Q2, mitigating XGBoost’s lag and SARIMA’s slow response. For CLF in
2022 Q2 peak and 2023 Q3 bottom, FSTGAT precisely aligns with inflection point slopes
and time nodes, effectively filtering noise and reconstructing trends, thus overcoming local
overfitting and trend underestimation in traditional models.

Despite commodity-cycle-induced volatility, it maintains robust accuracy (e.g.,
32% RMSE reduction for AA/CLF), supporting supply chain hedging through predicting
price co-movements in global metal markets and inventory management by optimizing
production schedules via reliable price trend forecasts.

It is worth noting that, although Feng et al. [37] also adopt a spatio-temporal graph
attention framework for stock prediction, their model design differs substantially in both
architectural choices and experimental scope, leading to different empirical outcomes.
Feng’s STGAT employs a standard GAT with static price correlation graphs and STL de-
composition to capture temporal patterns, achieving notable portfolio optimization results
on broad-market datasets (CSI 500 and S&P 500). In contrast, our FSTGAT integrates a dy-
namic industry-aware GATv2 mechanism with edge attributes reflecting industry rotations,
combined with a causal temporal convolutional module. This design enables the model to
dynamically adapt inter-stock relationships under varying market regimes, especially in
sector-specific contexts such as the NYSE commercial banking and metals sectors. Empirical
results (Tables A1–A5) show that this dynamic, industry-specific approach consistently
yields lower prediction errors and statistically significant improvements across most stocks
compared to baseline models, highlighting the advantage of embedding domain-specific
structural priors into the spatio-temporal learning process.
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6.3. Statistical Testing

In the stock prediction task, a comparative analysis of FSTGAT with XGBOOST, LSTM,
and SARIMA models using the two-sided Diebold–Mariano (DM) test is presented in
Table A5. The table reports both the DM test statistics and the corresponding p-values
(five-decimal precision). The results show that the advantage of FSTGAT is highly sig-
nificant for the majority of stocks, with extremely small p-values (e.g., p < 0.0005) for
cases such as BK, CLF, NUE, and RS, indicating substantial improvements in predictive
accuracy relative to other models. However, differences in market characteristics lead to
varying dominance patterns; for example, BAC and AA only show statistically significant
improvements when compared with the LSTM model, suggesting that model suitability is
strongly correlated with the volatility profile of individual stocks. Conversely, for a few
stocks such as GS and USB, the DM test indicates no statistically significant difference
between FSTGAT and certain baseline models, highlighting that predictive advantage may
diminish under specific market dynamics.

6.4. Ablation Study

To evaluate the contributions of the Financial Spatio-Temporal Graph Attention Net-
work (FSTGAT) components, we conducted ablation experiments—defined in Section 5
as experiments that systematically remove specific modules to test their independent
contributions to model performance. In these experiments, we removed or replaced
key modules, including the temporal convolution module, the spatial graph attention
(GATv2) layer, and the final fully connected layer, to quantify their individual impacts on
predictive performance.

In the temporal convolution ablation, we substituted the temporal module with an
identity mapping, disabling temporal modeling to assess its role in stock price prediction.
For the spatial graph attention ablation, we excluded the GATv2 layer, relying solely on
temporal convolution to evaluate spatial correlation significance. In the fully connected
layer ablation, we omitted the final dimension transformation, directly outputting convolu-
tional features.

All ablated models were designed to maintain the original FSTGAT’s network depth
and parameter count, trained for 200 epochs with a batch size of 512 and an Adam optimizer
(learning rate 0.0005). Performance was assessed using root-mean-square error (RMSE) on
the test set, enabling quantitative comparison of predictive accuracy. Results for stocks,
e.g., KEY, RF, AA, and CLF, are shown in Figures 12 and 13.

Figure 12. Comparison of all ablated models in KEY and RF.
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Figure 13. Comparison of all ablated models in AA and CLF.

Ablation experiments confirm the essential role of each Financial Spatio-Temporal
Graph Attention Network (FSTGAT) component in stock price prediction. Across datasets
(e.g., KEY, RF, AA, CLF), FSTGAT achieves consistently lower RMSE, e.g., 1.84 for RF.

Removing the temporal convolution module significantly increases RMSE, e.g., from
2.43 to 6.33 for KEY and 1.84 to 5.13 for RF, underscoring temporal modeling’s role in
capturing stock price trends and fluctuations.

Excluding the spatial graph attention (GATv2) module moderately raises RMSE,
e.g., from 2.43 to 2.79 for KEY and 1.84 to 2.01 for RF, highlighting its importance in
aggregating cross-stock correlations and industry patterns. Omitting the fully connected
layer increases RMSE, e.g., from 2.43 to 3.46 for KEY and 1.84 to 2.16 for RF, indicating
its role in optimizing predictions through feature transformation. These components
collectively enable FSTGAT’s effective stock price forecasting.

6.5. Time Complexity

The Financial Spatio-Temporal Graph Attention Network (FSTGAT) integrates spatio-
temporal features in a hybrid architecture. Its computational complexity is analyzed across
its core components.

Temporal Dimension Complexity: The temporal convolution layer employs causal
dilated convolution, with time complexity given by:

O(B× N × T × Cin × Kt × Cout)

where B is the batch size, N is the number of nodes, T is the time step length, Cin and Cout

are input and output channels, and Kt is the temporal kernel size.
Spatial Dimension Complexity: The graph attention layer (GATv2) constitutes the

primary computational cost of FSTGAT, with complexity:

O(B× T × (|E| × C + N2 × H × Chead))

where B is the batch size, T is the time step length, |E| is the edge count, N is the node
count, H is the number of attention heads, and Chead is the head dimension. In a fully
connected graph, |E|∼O(N2), creating a computational bottleneck.

Table 2 compares the computational time of FSTGAT and baseline models across the
entire experiment.

As graph size increases, training time rises significantly. Table 2 shows FSTGAT’s
training time is not the highest among models, but its predictive accuracy justifies the
additional computational cost compared to baseline models.
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Table 2. Training time in seconds.

Model Total Time Unit
Commercial Bank Sector Metals Sector

FSTGAT 1344 530 seconds
XGBOOST 1503 213 seconds
LSTM 397 180 seconds
SARIMA 813 231 seconds

7. Conclusions
This study introduces a Financial Spatio-Temporal Graph Attention Network (FST-

GAT) for non-stationary financial systems. By integrating gated causal temporal convo-
lution with an enhanced graph attention module, FSTGAT effectively captures complex
spatio-temporal dependencies in financial markets. It incorporates causal time modeling,
industry-related graph attention, and a multi-scale industry-sector framework, surpassing
traditional single-asset models by constructing dynamic correlation networks based on
intra-industry stock relationships.

Compared with the STGAT proposed by Feng et al. [37], our FSTGAT advances the
state of the art by integrating a dynamic industry-aware GATv2 mechanism with edge
attributes that reflect industry rotations, together with a causal temporal convolutional
module and a multi-input multi-output (MIMO) sector modeling framework. This design
allows the model to dynamically adapt inter-stock relationships under varying market
regimes, particularly within structurally heterogeneous sectors. While Feng’s work demon-
strates the feasibility of combining spatio-temporal features for portfolio optimization on
broad-market datasets such as CSI 500 and S&P 500, our approach specifically targets
sector-level prediction in highly volatile domains (e.g., NYSE commercial banking and
metal sectors). This sector-focused framework not only delivers consistently lower predic-
tion errors—validated by Diebold–Mariano significance tests and ablation studies—but
also yields actionable insights for risk management and trading strategies that depend
on sector-specific dynamics. These distinctions underscore both the originality and the
practical value of FSTGAT for real-world non-stationary financial systems.

Experiments on the New York Stock Exchange’s commercial banking and metal sec-
tors demonstrate FSTGAT’s superior predictive accuracy compared to XGBoost, LSTM,
and SARIMA, particularly in high-volatility scenarios. Ablation studies confirm the critical
contributions of each component to performance.

This research underscores the efficacy of graph neural networks in modeling stock
markets as interconnected networks, offering insights for advancing financial prediction
methods and optimizing investment portfolios. FSTGAT will have a wide range of applica-
tions in finance: helping algorithmic trading to capture volatility linkages, risk control to
warn of systemic risk, and portfolio management to optimize allocation. Deployment needs
to address computational latency, lack of interpretability, data compliance and market
adaptation issues. Limitations include a static graph structure unable to capture real-time
industry rotations, and the exclusion of external factors (e.g., interest rates, geopolitical
events). Future work will explore robustness analysis under noisy scenarios, sensitivity
studies with alternative loss functions, multi-modal data fusion, large-scale computational
efficiency, cross-market generalization, and enhanced model interpretability to further
strengthen FSTGAT’s applicability, as well as integrating FSTGAT as a state modeler for
reinforcement learning agents [56]—leveraging its ability to capture complex spatiotem-
poral dependencies in financial markets to provide accurate state representations for RL,
facilitating optimized intelligent trading strategies, dynamic real-time risk control decisions,
and asset portfolio optimization in financial scenarios.
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Appendix A

Table A1. Comparison of RMSE and standard deviation of stock forecasting models for commercial
bank stocks.

Stock Code FSTGAT XGBOOST LSTM SARIMA

BAC 5.11 5.60 10.89 10.31
BK 7.05 9.37 10.37 9.34
C 5.87 94.93 24.49 12.08
COF 11.48 35.86 30.81 33.13
GS 33.58 117.77 90.10 51.04
JPM 23.03 55.43 70.84 26.99
KEY 3.13 3.49 4.74 3.53
MS 6.52 26.11 15.21 11.01
MTB 11.93 30.19 27.00 21.70
PNC 13.75 45.42 61.61 60.34
RF 1.84 1.43 4.45 3.60
STT 5.71 13.50 20.27 19.42
TFC 9.72 15.98 10.05 19.05
USB 5.73 8.53 13.53 15.69
WFC 5.64 8.48 6.60 7.80

Average 10.32 33.11 27.67 20.67
Standard Deviation 8.47 34.25 25.58 16.85

https://finance.yahoo.com
http://www.fortune.com
http://www.fortune.com
https://www.kaggle.com/datasets/rm1000/fortune-500-companies
https://www.kaggle.com/datasets/rm1000/fortune-500-companies
https://www.kaggle.com/datasets/eren2222/nasdaq-nyse-nyse-a-otc-daily-stock-1962-2024
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Table A2. Comparison of MAE and standard deviation of stock forecasting models for commercial
bank stocks.

Stock Code FSTGAT XGBOOST LSTM SARIMA

BAC 6.90 6.43 9.89 9.80
BK 1.25 5.64 9.03 9.03
C 5.67 94.80 29.70 11.61
COF 9.72 26.35 33.51 29.51
GS 23.39 114.61 79.32 43.99
JPM 19.98 51.78 59.48 27.86
KEY 1.58 2.76 5.85 1.85
MS 4.95 25.67 17.72 14.42
MTB 8.96 26.73 20.84 19.38
PNC 19.38 41.96 67.41 56.97
RF 1.38 1.57 3.70 3.20
STT 5.45 9.93 19.83 18.83
TFC 5.77 9.86 17.16 16.88
USB 4.65 5.99 13.83 13.76
WFC 5.27 5.26 9.71 9.17

Average 8.23 27.59 25.75 20.22
Standard Deviation 6.84 32.97 23.24 15.88

Table A3. Comparison of RMSE and standard deviation of stock forecasting models for metal sector.

Stock Code FSTGAT XGBOOST LSTM SARIMA

AA 4.95 10.17 9.61 16.34
CLF 1.98 3.90 3.33 3.62
OMC 13.63 23.08 18.23 14.30
NUE 38.35 81.99 99.21 44.40
RS 78.81 146.86 177.70 82.22
X 3.23 13.79 12.95 10.96

Average 23.16 46.63 53.50 28.64
Standard Deviation 29.67 55.90 67.46 29.95

Table A4. Comparison of MAE and standard deviation of stock forecasting models for metal sector.

Stock Code FSTGAT XGBOOST LSTM SARIMA

AA 2.55 8.68 6.51 13.34
CLF 0.97 1.93 1.33 1.98
OMC 12.06 12.92 11.89 11.66
NUE 34.09 74.93 85.35 37.25
RS 67.84 134.13 168.22 69.24
X 1.93 5.00 7.34 7.51

Average 19.91 39.60 46.81 23.50
Standard Deviation 26.58 52.67 65.63 26.68
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Table A5. Diebold–Mariano test statistics and p-values (two-tailed).

Stock Code
FSTGAT_vs_XGBOOST FSTGAT_vs_LSTM FSTGAT_vs_SARIMA

DM Stat. p-Value DM Stat. p-Value DM Stat. p-Value

BAC 5.729 0.00001 6.606 0.00000 4.064 0.00005
BK 5.024 0.00005 5.716 0.00001 6.255 0.00000
C 5.005 0.00005 5.916 0.00000 4.931 0.00004
COF 6.294 0.00000 5.359 0.00009 5.410 0.00006
GS 5.349 0.00009 4.718 0.00024 5.661 0.00002
JPM 4.249 0.00002 4.770 0.00023 6.891 0.00000
KEY 4.817 0.00001 6.232 0.00000 5.115 0.00003
MS 5.151 0.00003 6.362 0.00000 6.169 0.00000
MTB 4.572 0.00005 4.892 0.00001 4.951 0.00004
PNC 6.061 0.00000 5.242 0.00005 5.043 0.00003
RF 7.463 0.00000 5.524 0.00003 5.043 0.00003
STT 5.717 0.00001 4.501 0.00007 6.198 0.00000
TFC 5.481 0.00004 5.578 0.00002 5.680 0.00001
USB 5.148 0.00003 5.795 0.00000 5.303 0.00005
WFC 4.398 0.00001 7.276 0.00000 7.264 0.00000
AA 4.061 0.00005 6.383 0.00000 6.708 0.00000
CLF 5.860 0.00000 6.445 0.00000 6.420 0.00000
OMC 4.936 0.00004 6.892 0.00000 4.984 0.00003
NUE 5.765 0.00000 6.366 0.00000 6.769 0.00000
RS 5.146 0.00003 5.057 0.00003 4.421 0.00001
X 5.479 0.00004 6.931 0.00000 5.015 0.00004

Note: DM Stat. refers to the Diebold–Mariano test statistic, which measures whether the predictive accuracy
of two competing forecasting models is significantly different. A positive DM statistic indicates that FSTGAT
performs better than the benchmark model, and the associated p-value tests the null hypothesis of equal predictive
accuracy. p-values are computed from the Diebold–Mariano test statistic using a two-sided test with the null
hypothesis that the predictive accuracy of the two models is equal. p-values are reported with five-decimal
precision; values shown as 0.00000 indicate p < 0.000005.
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