Open AccessArticle
MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges
by
Baili Lu, Zhanxi Xie, Junhao Wei, Yanzhao Gu, Yuzheng Yan, Zikun Li, Shirou Pan, Ngai Cheong, Ying Chen and Ruishen Zhou
Symmetry 2025, 17(8), 1295; https://doi.org/10.3390/sym17081295 (registering DOI) - 11 Aug 2025
Abstract
To address the limitations of the Red-billed Blue Magpie Optimization algorithm (RBMO), such as its tendency to get trapped in local optima and its slow convergence rate, an enhanced version called MRBMO was proposed. MRBMO was improved by integrating Good Nodes Set Initialization,
[...] Read more.
To address the limitations of the Red-billed Blue Magpie Optimization algorithm (RBMO), such as its tendency to get trapped in local optima and its slow convergence rate, an enhanced version called MRBMO was proposed. MRBMO was improved by integrating Good Nodes Set Initialization, an Enhanced Search-for-food Strategy, a newly designed Siege-style Attacking-prey Strategy, and Lens-Imaging Opposition-Based Learning (LIOBL). The experimental results showed that MRBMO demonstrated strong competitiveness on the CEC2005 benchmark. Among a series of advanced metaheuristic algorithms, MRBMO exhibited significant advantages in terms of convergence speed and solution accuracy. On benchmark functions with 30, 50, and 100 dimensions, the average Friedman values of MRBMO were 1.6029, 1.6601, and 1.8775, respectively, significantly outperforming other algorithms. The overall effectiveness of MRBMO on benchmark functions with 30, 50, and 100 dimensions was 95.65%, which confirmed the effectiveness of MRBMO in handling problems of different dimensions. This paper designed two types of simulation experiments to test the practicability of MRBMO. First, MRBMO was used along with other heuristic algorithms to solve four engineering design optimization problems, aiming to verify the applicability of MRBMO in engineering design optimization. Then, to overcome the shortcomings of metaheuristic algorithms in antenna S-parameter optimization problems—such as time-consuming verification processes, cumbersome operations, and complex modes—this paper adopted a test suite specifically designed for antenna S-parameter optimization, with the goal of efficiently validating the effectiveness of metaheuristic algorithms in this domain. The results demonstrated that MRBMO had significant advantages in both engineering design optimization and antenna S-parameter optimization.
Full article
►▼
Show Figures