polymers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5173 KiB  
Article
A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury
by Jue-Zong Yeh, Ding-Han Wang, Juin-Hong Cherng, Yi-Wen Wang, Gang-Yi Fan, Nien-Hsien Liou, Jiang-Chuan Liu and Chung-Hsing Chou
Polymers 2020, 12(10), 2245; https://doi.org/10.3390/polym12102245 - 29 Sep 2020
Cited by 13 | Viewed by 3659
Abstract
In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate [...] Read more.
In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI. Full article
(This article belongs to the Special Issue Biopolymers for Tissue Engineering)
Show Figures

Graphical abstract

9 pages, 1660 KiB  
Article
Using Thermally Crosslinkable Hole Transporting Layer to Improve Interface Characteristics for Perovskite CsPbBr3 Quantum-Dot Light-Emitting Diodes
by Chun-Cheng Lin, Shao-Yang Yeh, Wei-Lun Huang, You-Xun Xu, Yan-Siang Huang, Tzu-Hung Yeh, Ching-Ho Tien, Lung-Chien Chen and Zong-Liang Tseng
Polymers 2020, 12(10), 2243; https://doi.org/10.3390/polym12102243 - 29 Sep 2020
Cited by 17 | Viewed by 3570
Abstract
In this paper, a thermally crosslinkable 9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2,N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-fluorene-2,7-diamine (VB-FNPD) film served as the hole transporting layer (HTL) of perovskite CsPbBr3 quantum-dot light-emitting diodes (QD-LEDs) was investigated and reported. The VB-FNPD film crosslinked at various temperatures in the range of 100~230 °C followed by [...] Read more.
In this paper, a thermally crosslinkable 9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2,N7-di-1-naphthalenyl-N2,N7-diphenyl-9H-fluorene-2,7-diamine (VB-FNPD) film served as the hole transporting layer (HTL) of perovskite CsPbBr3 quantum-dot light-emitting diodes (QD-LEDs) was investigated and reported. The VB-FNPD film crosslinked at various temperatures in the range of 100~230 °C followed by a spin-coating process to improve their chemical bonds in an attempt to resist the erosion from the organic solvent in the remaining fabrication process. It is shown that the device with VB-FNPD HTL crosslinking at 170 °C has the highest luminance of 7702 cd/m2, the maximum current density (J) of 41.98 mA/cm2, the maximum current efficiency (CE) of 5.45 Cd/A, and the maximum external quantum efficiency (EQE) of 1.64%. Our results confirm that the proposed thermally crosslinkable VB-FNPD is a candidate for the HTL of QD-LEDs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 4245 KiB  
Review
Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering
by Hafez Jafari, Alberto Lista, Manuela Mafosso Siekapen, Pejman Ghaffari-Bohlouli, Lei Nie, Houman Alimoradi and Amin Shavandi
Polymers 2020, 12(10), 2230; https://doi.org/10.3390/polym12102230 - 28 Sep 2020
Cited by 208 | Viewed by 33250
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the [...] Read more.
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized. Full article
(This article belongs to the Special Issue Biopolymers for Tissue Engineering)
Show Figures

Figure 1

11 pages, 4045 KiB  
Article
Influence of Repetitive Square Voltage Duty Cycle on the Electrical Tree Characteristics of Epoxy Resin
by Peng Wang, Suxin Hui, Shakeel Akram, Kai Zhou, Muhammad Tariq Nazir, Yiwen Chen, Han Dong, Muhammad Sufyan Javed and Inzamam Ul Haq
Polymers 2020, 12(10), 2215; https://doi.org/10.3390/polym12102215 - 27 Sep 2020
Cited by 19 | Viewed by 2469
Abstract
The application of wide band-gap power electronic devices brings more challenges to insulating packaging technology. Knowing the influence of applied voltage parameters on insulation performance is helpful to evaluate the insulation condition of electric power equipment. In this paper, the effect of repetitive [...] Read more.
The application of wide band-gap power electronic devices brings more challenges to insulating packaging technology. Knowing the influence of applied voltage parameters on insulation performance is helpful to evaluate the insulation condition of electric power equipment. In this paper, the effect of repetitive square wave voltage duty cycle on the growth characteristics of electrical trees in epoxy resin was studied. The experimental results show that the square wave voltage duty cycle has a significant influence on treeing features. The electrical tree proportion initiation has shown a decreasing trend, and the shape of the electrical tree changes from pine-like to branch-like by increasing the duty cycles. The length and damaged area of electrical tree increased with the increase in the duty cycle up to 10% and then decrease by increasing the duty cycle higher than 30%. It indicates that a low duty cycle will enhance the electron injection and accumulate space charges and thus accelerate electrical tree development. Under short duty cycles, the electric field due to the shielding effect near the needle tip suppresses the electrical tree growth, which results in treeing growth stagnation. The obtained results are helpful to keep these parameters in mind during the design of epoxy-based insulation such high-voltage rotating machines and power electronic device packaging. Full article
Show Figures

Graphical abstract

13 pages, 26517 KiB  
Article
Barrier Film of Etherified Hemicellulose from Single-Step Synthesis
by Hui Shao, Yuelong Zhao, Hui Sun, Biao Yang, Baomin Fan, Huijuan Zhang and Yunxuan Weng
Polymers 2020, 12(10), 2199; https://doi.org/10.3390/polym12102199 - 25 Sep 2020
Cited by 8 | Viewed by 2887
Abstract
Hemicellulose with good biodegradability and low oxygen permeability shows great potential in food packaging. However, its strong hydrophilicity leads to its poor moisture resistance, which hinders its wider application. In this paper, a near-hydrophobic hemicellulose was obtained by using single-step synthesis from poplar [...] Read more.
Hemicellulose with good biodegradability and low oxygen permeability shows great potential in food packaging. However, its strong hydrophilicity leads to its poor moisture resistance, which hinders its wider application. In this paper, a near-hydrophobic hemicellulose was obtained by using single-step synthesis from poplar powder via etherification modification with epoxy chloropropane. This proposed approach has the advantage of avoiding the destruction of hemicellulose structure by secondary alkali-hydrolysis, which was what usually occurred in traditional etherification procedures. The feasibility of using epoxy chloropropane as an alkylation reagent to etherify hemicellulose was confirmed, and the reaction mechanism was elucidated. Contact angle test, thermogravimetric analysis, oxygen transmittance test, and infrared spectrum analysis showed that the barrier property and thermal stability of etherified hemicellulose films have been significantly improved. At an epoxy chloropropane/wood powder ratio (volume/weight) of 2/3 (mL/g), the epoxy hemicellulose films contained the most epoxy groups and displayed the best performance, i.e., tensile strength of 14.6 MPa, surface contact angle of 71.7° and oxygen transmission coefficient of 1.9 (cm3·µm)/(m2·d·kPa), showing great promise as barrier film in food-packaging. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Membrane Technology)
Show Figures

Graphical abstract

10 pages, 2220 KiB  
Communication
Fine-Structure Analysis of Perhydropolysilazane-Derived Nano Layers in Deep-Buried Condition Using Polarized Neutron Reflectometry
by Kazuhiro Akutsu-Suyama, Hiroshi Kira, Noboru Miyata, Takayasu Hanashima, Tsukasa Miyazaki, Satoshi Kasai, Dai Yamazaki, Kazuhiko Soyama and Hiroyuki Aoki
Polymers 2020, 12(10), 2180; https://doi.org/10.3390/polym12102180 - 24 Sep 2020
Cited by 6 | Viewed by 3256
Abstract
A large background scattering originating from the sample matrix is a major obstacle for fine-structure analysis of a nanometric layer buried in a bulk material. As polarization analysis can decrease undesired scattering in a neutron reflectivity (NR) profile, we performed NR experiments with [...] Read more.
A large background scattering originating from the sample matrix is a major obstacle for fine-structure analysis of a nanometric layer buried in a bulk material. As polarization analysis can decrease undesired scattering in a neutron reflectivity (NR) profile, we performed NR experiments with polarization analysis on a polypropylene (PP)/perhydropolysilazane-derived SiO2 (PDS)/Si substrate sample, having a deep-buried layer of SiO2 to elucidate the fine structure of the nano-PDS layer. This method offers unique possibilities for increasing the amplitude of the Kiessig fringes in the higher scattering vector (Qz) region of the NR profiles in the sample by decreasing the undesired background scattering. Fitting and Fourier transform analysis results of the NR data indicated that the synthesized PDS layer remained between the PP plate and Si substrate with a thickness of approximately 109 Å. Furthermore, the scattering length density of the PDS layer, obtained from the background subtracted data appeared to be more accurate than that obtained from the raw data. Although the density of the PDS layer was lower than that of natural SiO2, the PDS thin layer had adequate mechanical strength to maintain a uniform PDS layer in the depth-direction under the deep-buried condition. Full article
(This article belongs to the Special Issue Advances in Multifunctional Smart Coatings)
Show Figures

Graphical abstract

44 pages, 9288 KiB  
Review
Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis
by Tai-Lam Nghiem, Deniz Coban, Stefanie Tjaberings and André H. Gröschel
Polymers 2020, 12(10), 2190; https://doi.org/10.3390/polym12102190 - 24 Sep 2020
Cited by 26 | Viewed by 7862
Abstract
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. [...] Read more.
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize—from a personal perspective—prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy. Full article
(This article belongs to the Collection The Next Generation in Polymer Research)
Show Figures

Graphical abstract

14 pages, 2453 KiB  
Article
Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture
by José L. M. Gonçalves, Edgar J. Castanheira, Sérgio P. C. Alves, Carlos Baleizão and José Paulo Farinha
Polymers 2020, 12(10), 2175; https://doi.org/10.3390/polym12102175 - 23 Sep 2020
Cited by 11 | Viewed by 3523
Abstract
Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous [...] Read more.
Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous silica particles (MSNs), which are mechanically robust, have very large surface areas and available pore volumes, uniform and tunable pore sizes and a large diversity of surface functionalization options. Here, we explore the impact of different RAFT-based grafting strategies on the amount of a pH-responsive polymer incorporated in the shell of MSNs. Using a “grafting to” (gRAFT-to) approach we studied the effect of polymer chain size on the amount of polymer in the shell. This was compared with the results obtained with a “grafting from” (gRAFT-from) approach, which yield slightly better polymer incorporation values. These two traditional grafting methods yield relatively limited amounts of polymer incorporation, due to steric hindrance between free chains in “grafting to” and to termination reactions between growing chains in “grafting from.” To increase the amount of polymer in the nanocarrier shell, we developed two strategies to improve the “grafting from” process. In the first, we added a cross-linking agent (gRAFT-cross) to limit the mobility of the growing polymer and thus decrease termination reactions at the MSN surface. On the second, we tested a hybrid grafting process (gRAFT-hybrid) where we added MSNs functionalized with chain transfer agent to the reaction media containing monomer and growing free polymer chains. Our results show that both modifications yield a significative increase in the amount of grafted polymer. Full article
Show Figures

Graphical abstract

15 pages, 41306 KiB  
Article
Characterization of Bone Marrow and Wharton’s Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering
by Xing Liu, Adrien Baldit, Emilie de Brosses, Frédéric Velard, Ghislaine Cauchois, Yun Chen, Xiong Wang, Natalia de Isla and Cédric Laurent
Polymers 2020, 12(9), 2163; https://doi.org/10.3390/polym12092163 - 22 Sep 2020
Cited by 8 | Viewed by 2986
Abstract
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton’s [...] Read more.
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering. Full article
(This article belongs to the Special Issue Polymers for Cell Engineering)
Show Figures

Graphical abstract

25 pages, 2124 KiB  
Review
The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications—A Review
by A Richard Horrocks
Polymers 2020, 12(9), 2160; https://doi.org/10.3390/polym12092160 - 22 Sep 2020
Cited by 30 | Viewed by 4651
Abstract
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable [...] Read more.
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.The possibility of replacing currently used BrFRs for textiles structures that mimic naturally occurring organobromine-containing species is discussed, noting that of the nearly 2000 such species identified in both marine and terrestrial environments, a significant number are functionalised polybrominated diphenyl ethers, which form part of a series of little understood biosynthetic biodegradation cycles.The continued use of antimony III oxide as synergist and possible replacement by alternatives, such as the commercially available zinc stannates and the recently identified zinc tungstate, are discussed. Both are effective as synergists and smoke suppressants, but unlike Sb203, they have efficiencies dependent on BrFR chemistry and polymer matrix or textile structure. Furthermore, their effectiveness in textile coatings has yet to be more fully assessed.In conclusion, it is proposed that the future of sustainable BrFRs should be based on naturally occurring polybrominated structures developed in conjunction with non-toxic, smoke-suppressing synergists such as the zinc stannates or zinc tungstate, which have been carefully tailored for given polymeric and textile substrates. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 6130 KiB  
Article
Fatigue Behavior of 3D Braided Composites Containing an Open-Hole
by Shuangqiang Liang, Qihong Zhou, Haiyang Mei, Ge Chen and Frank Ko
Polymers 2020, 12(9), 2147; https://doi.org/10.3390/polym12092147 - 21 Sep 2020
Cited by 4 | Viewed by 2909
Abstract
The static and dynamic mechanical performances of notched and un-notched 3D braided composites were studied. The effect of longitudinal laid-in yarn was investigated in comparison with low braiding angle composites. The specimens were fatigue tested for up to millions of cycles, and the [...] Read more.
The static and dynamic mechanical performances of notched and un-notched 3D braided composites were studied. The effect of longitudinal laid-in yarn was investigated in comparison with low braiding angle composites. The specimens were fatigue tested for up to millions of cycles, and the residual strength of the samples that survived millions of cycles was tested. The cross-section of the 3D braided specimens was observed after fatigue loading. It was found that the static and fatigue properties of low angle 3D braided behaved better than longitudinally reinforced 3D braided composites. For failure behavior, pure braids contain damage better and show less damage area than the braids with longitudinal yarns under fatigue loading. More cracks occurred in the 3D braided specimen with axial yarn cross-section along the longitudinal and transverse direction. Full article
(This article belongs to the Special Issue Reinforced Polymer Composites II)
Show Figures

Figure 1

15 pages, 3463 KiB  
Article
Highly Thermal Stable Phenolic Resin Based on Double-Decker-Shaped POSS Nanocomposites for Supercapacitors
by Wei-Cheng Chen, Yuan-Tzu Liu and Shiao-Wei Kuo
Polymers 2020, 12(9), 2151; https://doi.org/10.3390/polym12092151 - 21 Sep 2020
Cited by 19 | Viewed by 3109
Abstract
In this study we incorporated various amounts of a double-decker silsesquioxane (DDSQ) into phenolic/DDSQ hybrids, which we prepared from a bifunctionalized phenolic DDSQ derivative (DDSQ-4OH), phenol, and CH2O under basic conditions (with DDSQ-4OH itself prepared through hydrosilylation of nadic anhydride with [...] Read more.
In this study we incorporated various amounts of a double-decker silsesquioxane (DDSQ) into phenolic/DDSQ hybrids, which we prepared from a bifunctionalized phenolic DDSQ derivative (DDSQ-4OH), phenol, and CH2O under basic conditions (with DDSQ-4OH itself prepared through hydrosilylation of nadic anhydride with DDSQ and subsequent reaction with 4-aminophenol). We characterized these phenolic/DDSQ hybrids using Fourier transform infrared spectroscopy; 1H, 13C, and 29Si nuclear magnetic resonance spectroscopy; X-ray photoelectron spectroscopy (XPS); and thermogravimetric analysis. The thermal decomposition temperature and char yield both increased significantly upon increasing the DDSQ content, with the DDSQ units providing an inorganic protection layer on the phenolic surface, as confirmed through XPS analyses. We obtained carbon/DDSQ hybrids from the phenolic/DDSQ hybrids after thermal curing and calcination at 900 °C; these carbon/DDSQ hybrids displayed electrochemical properties superior to those of previously reported counterparts. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites II)
Show Figures

Graphical abstract

19 pages, 2907 KiB  
Article
Strong Plasmon–Exciton Coupling in Ag Nanoparticle—Conjugated Polymer Core-Shell Hybrid Nanostructures
by Christopher E. Petoukhoff, Keshav M. Dani and Deirdre M. O’Carroll
Polymers 2020, 12(9), 2141; https://doi.org/10.3390/polym12092141 - 19 Sep 2020
Cited by 3 | Viewed by 3673
Abstract
Strong plasmon–exciton coupling between tightly-bound excitons in organic molecular semiconductors and surface plasmons in metal nanostructures has been studied extensively for a number of technical applications, including low-threshold lasing and room-temperature Bose-Einstein condensates. Typically, excitons with narrow resonances, such as J-aggregates, are [...] Read more.
Strong plasmon–exciton coupling between tightly-bound excitons in organic molecular semiconductors and surface plasmons in metal nanostructures has been studied extensively for a number of technical applications, including low-threshold lasing and room-temperature Bose-Einstein condensates. Typically, excitons with narrow resonances, such as J-aggregates, are employed to achieve strong plasmon–exciton coupling. However, J-aggregates have limited applications for optoelectronic devices compared with organic conjugated polymers. Here, using numerical and analytical calculations, we demonstrate that strong plasmon–exciton coupling can be achieved for Ag-conjugated polymer core-shell nanostructures, despite the broad spectral linewidth of conjugated polymers. We show that strong plasmon–exciton coupling can be achieved through the use of thick shells, large oscillator strengths, and multiple vibronic resonances characteristic of typical conjugated polymers, and that Rabi splitting energies of over 1000 meV can be obtained using realistic material dispersive relative permittivity parameters. The results presented herein give insight into the mechanisms of plasmon–exciton coupling when broadband excitonic materials featuring strong vibrational–electronic coupling are employed and are relevant to organic optoelectronic devices and hybrid metal–organic photonic nanostructures. Full article
(This article belongs to the Special Issue Polymeric Materials for Optical Applications II)
Show Figures

Graphical abstract

12 pages, 3915 KiB  
Article
Novel Conjugated Polymers Containing 3-(2-Octyldodecyl)thieno[3,2-b]thiophene as a π-Bridge for Organic Photovoltaic Applications
by Jong-Woon Ha, Jong Baek Park, Hea Jung Park and Do-Hoon Hwang
Polymers 2020, 12(9), 2121; https://doi.org/10.3390/polym12092121 - 17 Sep 2020
Cited by 5 | Viewed by 2810
Abstract
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, ( [...] Read more.
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, (PT-ODTTBT or PTT-ODTTBT respectively) through Stille polymerization. Inverted OPV devices with a structure of ITO/ZnO/polymer:PC71BM/MoO3/Ag were fabricated by spin-coating in ambient atmosphere or N2 within a glovebox to evaluate the photovoltaic performance of the synthesized polymers (effective active area: 0.09 cm2). The PTT-ODTTBT:PC71BM-based structure exhibited the highest organic photovoltaic (OPV) device performance, with a maximum power conversion efficiency (PCE) of 7.05 (6.88 ± 0.12)%, a high short-circuit current (Jsc) of 13.96 mA/cm2, and a fill factor (FF) of 66.94 (66.47 ± 0.63)%; whereas the PT-ODTTBT:PC71BM-based device achieved overall lower device performance. According to GIWAXS analysis, both neat and blend films of PTT-ODTTBT exhibited well-organized lamellar stacking, leading to a higher charge carrier mobility than that of PT-ODTTBT. Compared to PT-ODTTBT containing a thiophene donor unit, PTT-ODTTBT containing a thienothiophene donor unit exhibited higher crystallinity, preferential face-on orientation, and a bicontinuous interpenetrating network in the film, which are responsible for the improved OPV performance in terms of high Jsc, FF, and PCE. Full article
(This article belongs to the Special Issue High-Functional Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 2286 KiB  
Article
Effects of Poly(ethylene-co-glycidyl methacrylate) on the Microstructure, Thermal, Rheological, and Mechanical Properties of Thermotropic Liquid Crystalline Polyester Blends
by Sang Hoon Lee, Ha-Bin Jeon, Gyu-Hyun Hwang, Young Seung Kwon, Ji-Su Lee, Gyu-Tae Park, Soo-Yeon Kim, Ha-Eun Kang, Eun-Ji Choi, Sun-Hwa Jang, Youn Eung Lee and Young Gyu Jeong
Polymers 2020, 12(9), 2124; https://doi.org/10.3390/polym12092124 - 17 Sep 2020
Cited by 12 | Viewed by 3851
Abstract
In this study, a series of thermotropic liquid crystalline polyester (TLCP)-based blends containing 1–30 wt% poly(ethylene-co-glycidyl methacrylate) (PEGMA) were fabricated by masterbatch-assisted melt-compounding. The scanning electron microscopy (SEM) images showed a uniformly dispersed microfibrillar structure for the TLCP component in cryogenically-fractured [...] Read more.
In this study, a series of thermotropic liquid crystalline polyester (TLCP)-based blends containing 1–30 wt% poly(ethylene-co-glycidyl methacrylate) (PEGMA) were fabricated by masterbatch-assisted melt-compounding. The scanning electron microscopy (SEM) images showed a uniformly dispersed microfibrillar structure for the TLCP component in cryogenically-fractured blends, without any phase-separated domains. The FT-IR spectra showed that the carbonyl stretching bands of TLCP/PEGMA blends shifted to higher wavenumbers, suggesting the presence of specific interactions and/or grafting reactions between carboxyl/hydroxyl groups of TLCP and glycidyl methacrylate groups of PEGMA. Accordingly, the melting and crystallization temperatures of the PEGMA component in the blends were greatly lowered compared to the TLCP component. The thermal decomposition peak temperatures of the PEGMA and TLCP components in the blends were characterized as higher than those of neat PEGMA and neat TLCP, respectively. From the rheological data collected at 300 °C, the shear moduli and complex viscosities for the blend with 30 wt% PEGMA were found to be much higher than those of neat PEGMA, which supports the existence of PEGMA-g-TLCP formed during the melt-compounding. The dynamic mechanical thermal analysis (DMA) analyses demonstrated that the storage moduli of the blends decreased slightly with the PEGMA content up to 3 wt%, increased at the PEGMA content of 5 wt%, and decreased again at PEGMA contents above 7 wt%. The maximum storage moduli for the blend with 5 wt% PEGMA are interpreted to be due to the reinforcing effect of PEGMA-g-TLCP copolymers. Full article
(This article belongs to the Special Issue High-Functional Polymeric Materials)
Show Figures

Figure 1

11 pages, 4430 KiB  
Article
Semiconducting Properties of the Hybrid Film of Elastic Poly(styrene-b-butadiene-b-styrene) Block Copolymer and Semiconducting Poly(3-hexylthiophene) Nanofibers
by Takanori Goto, Jun Morita, Yuya Maekawa, Shinji Kanehashi and Takeshi Shimomura
Polymers 2020, 12(9), 2118; https://doi.org/10.3390/polym12092118 - 17 Sep 2020
Cited by 2 | Viewed by 2258
Abstract
We investigated the electrical properties of a composite film loaded with semi-conductive poly(3-hexylthiophene) (P3HT) nanofibers dispersed in poly(styrene-b-butadiene-b-styrene) (SBS). This structure can be regarded as the hybrid of SBS matrix with elastic mechanical properties and P3HT nanofibers with semiconducting [...] Read more.
We investigated the electrical properties of a composite film loaded with semi-conductive poly(3-hexylthiophene) (P3HT) nanofibers dispersed in poly(styrene-b-butadiene-b-styrene) (SBS). This structure can be regarded as the hybrid of SBS matrix with elastic mechanical properties and P3HT nanofibers with semiconducting properties. The P3HT nanofibers were embedded in the fingerprint pattern of microphase-separated SBS, as observed by scanning force microscopy. Furthermore, the electrical conductivity and field-effect mobility of the composite films were evaluated. The field-effect mobility was estimated to be 6.96 × 10−3 cm2 V−1 s−1, which is consistent with the results of previous studies on P3HT nanofibers dispersed in an amorphous polymer matrix including poly(methyl methacrylate) and polystyrene, and we found that the P3HT nanofiber network was connected in the SBS bulk matrix. The film was stretchable; however, at elongation by two times, the nanofiber network could not follow the elongation of the SBS matrix, and the conductivity decreased drastically. The field-effect transistor of this film was operated by bending deformation with a radius of curvature of 1.75 cm, though we could not obtain an off-state and the device operated in a normally-on state. Full article
(This article belongs to the Special Issue Conducting Polymer-Based Hybrid Nanomaterials)
Show Figures

Figure 1

17 pages, 3907 KiB  
Article
Tunable Wettability of Biodegradable Multilayer Sandwich-Structured Electrospun Nanofibrous Membranes
by A. K. M. Mashud Alam, Elena Ewaldz, Chunhui Xiang, Wangda Qu and Xianglan Bai
Polymers 2020, 12(9), 2092; https://doi.org/10.3390/polym12092092 - 15 Sep 2020
Cited by 13 | Viewed by 4018
Abstract
This research aims to develop multilayer sandwich-structured electrospun nanofiber (ENF) membranes using biodegradable polymers. Hydrophilic regenerated cellulose (RC) and hydrophobic poly (lactic acid) (PLA)-based novel multilayer sandwich-structures were created by electrospinning on various copper collectors, including copper foil and 30-mesh copper gauzes, to [...] Read more.
This research aims to develop multilayer sandwich-structured electrospun nanofiber (ENF) membranes using biodegradable polymers. Hydrophilic regenerated cellulose (RC) and hydrophobic poly (lactic acid) (PLA)-based novel multilayer sandwich-structures were created by electrospinning on various copper collectors, including copper foil and 30-mesh copper gauzes, to modify the surface roughness for tunable wettability. Different collectors yielded various sizes and morphologies of the fabricated ENFs with different levels of surface roughness. Bead-free thicker fibers were collected on foil collectors. The surface roughness of the fine fibers collected on mesh collectors contributed to an increase in hydrophobicity. An RC-based triple-layered structure showed a contact angle of 48.2°, which is comparable to the contact angle of the single-layer cellulosic fabrics (47.0°). The polar shift of RC membranes on the wetting envelope is indicative of the possibility of tuning the wetting behavior by creating multilayer structures. Wettability can be tuned by creating multilayer sandwich structures consisting of RC and PLA. This study provides an important insight into the manipulation of the wetting behavior of polymeric ENFs in multilayer structures for applications including chemical protective clothing. Full article
(This article belongs to the Special Issue Polymeric Materials for Filtration and Purification)
Show Figures

Figure 1

13 pages, 3832 KiB  
Article
Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams
by Maria Kurańska, Milena Leszczyńska, Elżbieta Malewska, Aleksander Prociak and Joanna Ryszkowska
Polymers 2020, 12(9), 2068; https://doi.org/10.3390/polym12092068 - 12 Sep 2020
Cited by 19 | Viewed by 2715
Abstract
The main strategy of the European Commission in the field of the building industry assumes a reduction of greenhouse gas emissions by up to 20% by 2020 and by up to 80% by 2050. In order to meet these conditions, it is necessary [...] Read more.
The main strategy of the European Commission in the field of the building industry assumes a reduction of greenhouse gas emissions by up to 20% by 2020 and by up to 80% by 2050. In order to meet these conditions, it is necessary to develop not only efficient thermal insulation materials, but also more environmentally friendly ones. This paper describes an experiment in which two types of bio-polyols were obtained using transesterification of used cooking oil with triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). The bio-polyols were next used to prepare low-density rigid polyurethane (PUR) foams. It was found that the bio-polyols increased the reactivity of the PUR systems, regardless of their chemical structures. The reactivity of the system modified with 60% of the diethylene glycol-based bio-polyol was higher than in the case of the reference system. The bio-foams exhibited apparent densities of 41–45 kg/m3, homogeneous cellular structures and advantageous values of the coefficient of thermal conductivity. It was observed that the higher functionality of bio-polyol UCO_TEA compared with UCO_DEG had a beneficial effect on the mechanical and thermal properties of the bio-foams. The most promising results were obtained in the case of the foams modified in 60% with the bio-polyol based on triethanoloamine. In conclusion, this approach, utilizing used cooking oil in the synthesis of high-value thermal insulating materials, provides a sustainable municipal waste recycling solution. Full article
(This article belongs to the Special Issue Plastics)
Show Figures

Graphical abstract

11 pages, 2765 KiB  
Article
Long-Period Fiber Grating Sensor Based on a Conductive Polymer Functional Layer
by Ching-Yu Hsu, Chia-Chin Chiang, Hsin-Yi Wen, Jian-Jie Weng, Jing-Lun Chen, Tao-Hsing Chen and Ya-Hui Chen
Polymers 2020, 12(9), 2023; https://doi.org/10.3390/polym12092023 - 4 Sep 2020
Cited by 5 | Viewed by 2342
Abstract
A temperature sensor was fabricated with a functional conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coating on a long-period fiber grating (LPFG). The LPFG was fabricated by laser-assisted wet-chemical etching for controlling the grating depth of the LPFG after the treated surface of an optical [...] Read more.
A temperature sensor was fabricated with a functional conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coating on a long-period fiber grating (LPFG). The LPFG was fabricated by laser-assisted wet-chemical etching for controlling the grating depth of the LPFG after the treated surface of an optical fiber was inscribed by laser light. The functional conductive polymer acts as a temperature sustained sensing layer and enhances the grating depth of the LPFG sensor as a strain buffer at various temperatures. The sensor was subjected to three cycles of temperature measurement to investigate the sensor’s wavelength shift and energy loss when exposed to temperatures between 30 and 100 °C. Results showed that the sensor’s average wavelength sensitivity and its linearity were 0.052 nm/°C and 99%, respectively; average transmission sensitivity and linearity were 0.048 (dB/°C) and 95%, respectively. Full article
(This article belongs to the Special Issue Selected Papers from IMETI 2021)
Show Figures

Figure 1

18 pages, 7936 KiB  
Article
pH-Responsive Polyketone/5,10,15,20-Tetrakis-(Sulfonatophenyl)Porphyrin Supramolecular Submicron Colloidal Structures
by Esteban Araya-Hermosilla, Ignacio Moreno-Villoslada, Rodrigo Araya-Hermosilla, Mario E. Flores, Patrizio Raffa, Tarita Biver, Andrea Pucci, Francesco Picchioni and Virgilio Mattoli
Polymers 2020, 12(9), 2017; https://doi.org/10.3390/polym12092017 - 3 Sep 2020
Cited by 4 | Viewed by 3508
Abstract
In this work, we prepared color-changing colloids by using the electrostatic self-assembly approach. The supramolecular structures are composed of a pH-responsive polymeric surfactant and the water-soluble porphyrin 5,10,15,20-tetrakis-(sulfonatophenyl)porphyrin (TPPS). The pH-responsive surfactant polymer was achieved by the chemical modification of an alternating aliphatic [...] Read more.
In this work, we prepared color-changing colloids by using the electrostatic self-assembly approach. The supramolecular structures are composed of a pH-responsive polymeric surfactant and the water-soluble porphyrin 5,10,15,20-tetrakis-(sulfonatophenyl)porphyrin (TPPS). The pH-responsive surfactant polymer was achieved by the chemical modification of an alternating aliphatic polyketone (PK) via the Paal–Knorr reaction with N-(2-hydroxyethyl)ethylenediamine (HEDA). The resulting polymer/dye supramolecular systems form colloids at the submicron level displaying negative zeta potential at neutral and basic pH, and, at acidic pH, flocculation is observed. Remarkably, the colloids showed a gradual color change from green to pinky-red due to the protonation/deprotonation process of TPPS from pH 2 to pH 12, revealing different aggregation behavior. Full article
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
Show Figures

Graphical abstract

19 pages, 5079 KiB  
Article
The Influence of Nanofiller Shape and Nature on the Functional Properties of Waterborne Poly(urethane-urea) Nanocomposite Films
by Milena Špírková, Jiří Hodan, Rafał Konefał, Luďka Machová, Pavel Němeček and Aleksandra Paruzel
Polymers 2020, 12(9), 2001; https://doi.org/10.3390/polym12092001 - 2 Sep 2020
Cited by 3 | Viewed by 2733
Abstract
A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual [...] Read more.
A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual steps of the synthesis of the poly(urethane-urea) matrix were followed by nuclear magnetic resonance (NMR) spectroscopy. The nanofillers (1 wt% in the final nanocomposite) differed in nature and shape. Starch, graphene oxide and nanocellulose were used as representatives of organic nanofillers, while halloysite, montmorillonite, nanosilica and hydroxyapatite were used as representatives of inorganic nanofillers. Moreover, the fillers differed in their shape and average particle size. The films were characterized by a set of methods to obtain the tensile, thermal and surface properties of the nanocomposites as well as the internal arrangement of the nanoparticles in the nanocomposite film. The degradation process was evaluated at 37 °C in a H2O2 + CoCl2 solution. Full article
(This article belongs to the Special Issue Polymer Connect: Polymer Science and Composite Materials)
Show Figures

Graphical abstract

17 pages, 3629 KiB  
Article
3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool
by María Puertas-Bartolomé, Małgorzata K. Włodarczyk-Biegun, Aránzazu del Campo, Blanca Vázquez-Lasa and Julio San Román
Polymers 2020, 12(9), 1986; https://doi.org/10.3390/polym12091986 - 31 Aug 2020
Cited by 39 | Viewed by 7438
Abstract
Hydrogel-based bio-inks have recently attracted more attention for 3D printing applications in tissue engineering due to their remarkable intrinsic properties, such as a cell supporting environment. However, their usually weak mechanical properties lead to poor printability and low stability of the obtained structures. [...] Read more.
Hydrogel-based bio-inks have recently attracted more attention for 3D printing applications in tissue engineering due to their remarkable intrinsic properties, such as a cell supporting environment. However, their usually weak mechanical properties lead to poor printability and low stability of the obtained structures. To obtain good shape fidelity, current approaches based on extrusion printing use high viscosity solutions, which can compromise cell viability. This paper presents a novel bio-printing methodology based on a dual-syringe system with a static mixing tool that allows in situ crosslinking of a two-component hydrogel-based ink in the presence of living cells. The reactive hydrogel system consists of carboxymethyl chitosan (CMCh) and partially oxidized hyaluronic acid (HAox) that undergo fast self-covalent crosslinking via Schiff base formation. This new approach allows us to use low viscosity solutions since in situ gelation provides the appropriate structural integrity to maintain the printed shape. The proposed bio-ink formulation was optimized to match crosslinking kinetics with the printing process and multi-layered 3D bio-printed scaffolds were successfully obtained. Printed scaffolds showed moderate swelling, good biocompatibility with embedded cells, and were mechanically stable after 14 days of the cell culture. We envision that this straightforward, powerful, and generalizable printing approach can be used for a wide range of materials, growth factors, or cell types, to be employed for soft tissue regeneration. Full article
(This article belongs to the Special Issue Advanced Polymers for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 8733 KiB  
Article
Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering
by Kexin Nie, Shanshan Han, Jianmin Yang, Qingqing Sun, Xiaofeng Wang, Xiaomeng Li and Qian Li
Polymers 2020, 12(9), 1977; https://doi.org/10.3390/polym12091977 - 31 Aug 2020
Cited by 34 | Viewed by 4414
Abstract
Soft tissue engineering has been seeking ways to mimic the natural extracellular microenvironment that allows cells to migrate and proliferate to regenerate new tissue. Therefore, the reconstruction of soft tissue requires a scaffold possessing the extracellular matrix (ECM)-mimicking fibrous structure and elastic property, [...] Read more.
Soft tissue engineering has been seeking ways to mimic the natural extracellular microenvironment that allows cells to migrate and proliferate to regenerate new tissue. Therefore, the reconstruction of soft tissue requires a scaffold possessing the extracellular matrix (ECM)-mimicking fibrous structure and elastic property, which affect the cell functions and tissue regeneration. Herein, an effective method for fabricating nanofibrous hydrogel for soft tissue engineering is demonstrated using gelatin–hydroxyphenylpropionic acid (Gel–HPA) by electrospinning and enzymatic crosslinking. Gel–HPA fibrous hydrogel was prepared by crosslinking the electrospun fibers in ethanol-water solution with an optimized concentration of horseradish peroxidase (HRP) and H2O2. The prepared fibrous hydrogel held the soft and elastic mechanical property of hydrogels and the three-dimensional (3D) fibrous structure of electrospun fibers. It was proven that the hydrogel scaffolds were biocompatible, improving the cellular adhesion, spreading, and proliferation. Moreover, the fibrous hydrogel showed rapid biodegradability and promoted angiogenesis in vivo. Overall, this study represents a novel biomimetic approach to generate Gel–HPA fibrous hydrogel scaffolds which have excellent potential in soft tissue regeneration applications. Full article
(This article belongs to the Special Issue Functional Gelatin)
Show Figures

Graphical abstract

8 pages, 1970 KiB  
Article
Tensile Strength and Moisture Absorption of Sugar Palm-Polyvinyl Butyral Laminated Composites
by Shamsudin N. Syaqira S, Z. Leman, S. M. Sapuan, T. T. Dele-Afolabi, M. A. Azmah Hanim and Budati S.
Polymers 2020, 12(9), 1923; https://doi.org/10.3390/polym12091923 - 26 Aug 2020
Cited by 13 | Viewed by 2652
Abstract
Natural fiber reinforced composites have had a great impact on the development of eco-friendly industrial products for several engineering applications. Sugar palm fiber (SPF) is one of the newly found natural fibers with limited experimental investigation. In the present work, sugar palm fiber [...] Read more.
Natural fiber reinforced composites have had a great impact on the development of eco-friendly industrial products for several engineering applications. Sugar palm fiber (SPF) is one of the newly found natural fibers with limited experimental investigation. In the present work, sugar palm fiber was employed as the natural fiber reinforcement. The composites were hot compressed with polyvinyl butyral (PVB) to form the structure of laminated composites and then were subjected to tensile testing and moisture absorption. The maximum modulus and tensile strength of 0.84 MPa and 1.59 MPa were registered for samples PVB 80-S and PVB 70-S, respectively. Subsequently, the latter exhibited the highest tensile strain at a maximum load of 356.91%. The moisture absorption test revealed that the samples exhibited better water resistance as the proportion of PVB increased relative to the proportion of SPF due to the remarkable hydrophobic property of PVB in comparison with that of SPF. Full article
(This article belongs to the Special Issue Recent Developments in Eco-Friendly Wood-Based Composites)
Show Figures

Graphical abstract

23 pages, 7714 KiB  
Article
Shape Memory Polymer Foam with Programmable Apertures
by Mario Walter, Fabian Friess, Martin Krus, Seyed Mohammad Hassan Zolanvari, Gunnar Grün, Hartmut Kröber and Thorsten Pretsch
Polymers 2020, 12(9), 1914; https://doi.org/10.3390/polym12091914 - 25 Aug 2020
Cited by 16 | Viewed by 5469
Abstract
In this work, a novel type of polyester urethane urea (PEUU) foam is introduced. The foam was produced by reactive foaming using a mixture of poly(1,10–decamethylene adipate) diol and poly(1,4–butylene adipate) diol, 4,4′-diphenylmethane diisocyanate, 1,4–butanediol, diethanolamine and water as blowing agent. As determined [...] Read more.
In this work, a novel type of polyester urethane urea (PEUU) foam is introduced. The foam was produced by reactive foaming using a mixture of poly(1,10–decamethylene adipate) diol and poly(1,4–butylene adipate) diol, 4,4′-diphenylmethane diisocyanate, 1,4–butanediol, diethanolamine and water as blowing agent. As determined by differential scanning calorimetry, the melting of the ester-based phases occurred at temperatures in between 25 °C and 61 °C, while the crystallization transition spread from 48 °C to 20 °C. The mechanical properties of the foam were simulated with the hyperplastic models Neo-Hookean and Ogden, whereby the latter showed a better agreement with the experimental data as evidenced by a Pearson correlation coefficient R² above 0.99. Once thermomechanically treated, the foam exhibited a maximum actuation of 13.7% in heating-cooling cycles under a constant external load. In turn, thermal cycling under load-free conditions resulted in an actuation of more than 10%. Good thermal insulation properties were demonstrated by thermal conductivities of 0.039 W·(m·K)−1 in the pristine state and 0.052 W·(m·K)−1 in a state after compression by 50%, respectively. Finally, three demonstrators were developed, which closed an aperture or opened it again simply by changing the temperature. The self-sufficient material behavior is particularly promising in the construction industry, where programmable air slots offer the prospect of a dynamic insulation system for an adaptive building envelope. Full article
Show Figures

Graphical abstract

17 pages, 6611 KiB  
Article
Multicomponent Non-Woven Fibrous Mats with Balanced Processing and Functional Properties
by Tatiana S. Demina, Anastasia S. Kuryanova, Polina Y. Bikmulina, Nadejda A. Aksenova, Yuri M. Efremov, Zulfar I. Khaibullin, Pavel L. Ivanov, Nastasia V. Kosheleva, Peter S. Timashev and Tatiana A. Akopova
Polymers 2020, 12(9), 1911; https://doi.org/10.3390/polym12091911 - 25 Aug 2020
Cited by 5 | Viewed by 2415
Abstract
The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely [...] Read more.
The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering. Full article
(This article belongs to the Special Issue Polymer-Based Nanocomposites for Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 3846 KiB  
Article
Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk
by Kifah Nasr, Julie Meimoun, Audrey Favrelle-Huret, Julien De Winter, Jean-Marie Raquez and Philippe Zinck
Polymers 2020, 12(9), 1907; https://doi.org/10.3390/polym12091907 - 24 Aug 2020
Cited by 11 | Viewed by 3296
Abstract
Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. [...] Read more.
Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. As a case study, we compare herein bulk and solution polycondensation of 1,6-hexanediol and diethyl adipate catalyzed by an immobilized lipase from Candida antarctica. The influence of various parameters including time, temperature, enzyme loading, and vacuum was assessed in the frame of a two-step polymerization with the help of response surface methodology, a statistical technique that investigates relations between input and output variables. Results in solution (diphenyl ether) and bulk conditions showed that a two-hour reaction time was enough to allow adequate oligomer growth for the first step conducted under atmospheric pressure at 100 °C. The number-average molecular weight (Mn) achieved varied between 5000 and 12,000 g·mol−1 after a 24 h reaction and up to 18,500 g∙mol−1 after 48 h. The statistical analysis showed that vacuum was the most influential factor affecting the Mn in diphenyl ether. In sharp contrast, enzyme loading was found to be the most influential parameter in bulk conditions. Recyclability in bulk conditions showed a constant Mn of the polyester over three cycles, while a 17% decrease was noticed in solution. The following work finally introduced a statistical approach that can adequately predict the Mn of poly(hexylene adipate) based on the choice of parameter levels, providing a handy tool in the synthesis of polyesters where the control of molecular weight is of importance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 3069 KiB  
Article
Total Life Cycle of Polypropylene Products: Reducing Environmental Impacts in the Manufacturing Phase
by Viktoria Mannheim and Zoltan Simenfalvi
Polymers 2020, 12(9), 1901; https://doi.org/10.3390/polym12091901 - 24 Aug 2020
Cited by 30 | Viewed by 8395
Abstract
This paper assesses the environmental burdens of a polypropylene product throughout the product’s life cycle, especially focusing on the injection-moulding stage. The complete life cycle model of the polypropylene product has been developed from the raw material extraction and production phase through its [...] Read more.
This paper assesses the environmental burdens of a polypropylene product throughout the product’s life cycle, especially focusing on the injection-moulding stage. The complete life cycle model of the polypropylene product has been developed from the raw material extraction and production phase through its usage to the end-of-life stage with the help of the life cycle assessment method. To find the answers to the posed problems, different impacts were analysed by GaBi 8.0 software. The analysis lasted from the cradle to the grave, expanding the analysis of the looping method. The aim of the research was to determine the energy and material resources, emissions, and environmental impact indicators. Basically, the article tried to answer three questions: (1) How can we optimize the production phase for the looping method? (2) Which materials and streams are recyclable in the design of the production process? (3) What is the relationship between life cycle stages and total life cycle of the product? As we inspect the life cycle of the product, the load on the environment was distributed as follows: 91% in the production phase, 3% in the use phase, and 6% in the end-of-life phase. The results of the research can be used to develop technologies, especially the injection-moulding process, with a lower environmental impact. Full article
(This article belongs to the Special Issue Eco-Innovative Engineering of the Polymer Material’s Life Cycle)
Show Figures

Graphical abstract

17 pages, 3169 KiB  
Article
Heat Shock Protein 90 (Hsp90)-Inhibitor-Luminespib-Loaded-Protein-Based Nanoformulation for Cancer Therapy
by Ankit K. Rochani, Sivakumar Balasubramanian, Aswathy Ravindran Girija, Toru Maekawa, Gagan Kaushal and D. Sakthi Kumar
Polymers 2020, 12(8), 1798; https://doi.org/10.3390/polym12081798 - 11 Aug 2020
Cited by 8 | Viewed by 3252
Abstract
Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) [...] Read more.
Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) nanoparticles (NPs) serve as carriers for anticancer drugs, which have been extensively explored for their therapeutic efficacy against cancers. Luminespib (also known as NVP-AUY922) is a new generation Hsp90 inhibitor that was introduced recently. It is one of the most studied Hsp90 inhibitors for a variety of cancers in Phase I and II clinical trials and is similar to its predecessors such as the ansamycin class of molecules. To our knowledge, nanoformulations for luminespib remain unexplored for their anticancer potential. In the present study, we developed aqueous dispensable BSA NPs for controlled delivery of luminespib. The luminespib-loaded BSA NPs were characterized by SEM, TEM, FTIR, XPS, UV-visible spectroscopy and fluorescence spectroscopy. The results suggest that luminespib interacts by non-covalent reversible interactions with BSA to form drug-loaded BSA NPs (DNPs). Our in vitro evaluations suggest that DNP-based aqueous nanoformulations can be used in both pancreatic (MIA PaCa-2) and breast (MCF-7) cancer therapy. Full article
(This article belongs to the Special Issue Emerging Polymeric Materials and Its Versatile Application)
Show Figures

Graphical abstract

22 pages, 6532 KiB  
Article
A Case Study of Polyether Ether Ketone (I): Investigating the Thermal and Fire Behavior of a High-Performance Material
by Aditya Ramgobin, Gaëlle Fontaine and Serge Bourbigot
Polymers 2020, 12(8), 1789; https://doi.org/10.3390/polym12081789 - 10 Aug 2020
Cited by 22 | Viewed by 2976
Abstract
The thermal and fire behaviors of a high-performance polymeric material—polyether ether ketone (PEEK) was investigated. The TG plots of PEEK under different oxygen concentrations revealed that the initial step of thermal decomposition does not greatly depend on the oxygen level. However, oxygen concentration [...] Read more.
The thermal and fire behaviors of a high-performance polymeric material—polyether ether ketone (PEEK) was investigated. The TG plots of PEEK under different oxygen concentrations revealed that the initial step of thermal decomposition does not greatly depend on the oxygen level. However, oxygen concentration plays a major role in the subsequent decomposition steps. In order to understand the thermal decomposition mechanism of PEEK several methods were employed, i.e., pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS), thermogravimetric analysis (TGA) coupled with a Fourier-transform infrared spectrometer (FTIR). It was observed that the initial decomposition step of the material may lead to the release of noncombustible gases and the formation of a highly crosslinked graphite-like carbonaceous structure. Moreover, during the mass loss cone calorimetry test, PEEK has shown excellent charring and fire resistance when it is subjected to an incident heat flux of 50 kW/m². Based on the fire behavior and the identification of pyrolysis gases evolved during the decomposition of PEEK, the enhanced fire resistance of PEEK was assigned to the dilution of the flammable decomposition gases as well as the formation of a protective graphite-like charred structure during its decomposition. Moreover, at 60 kW/m², ignition occurred more quickly. This is because a higher rate of release of decomposition products is achieved at such a heat flux, causing a higher concentration of combustibles, thus an earlier ignition. However, the peak of heat release rate of the material did not exceed 125 kW/m². Full article
(This article belongs to the Collection Fire and Polymers)
Show Figures

Figure 1

15 pages, 2044 KiB  
Article
Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin
by Lorenzo Lisuzzo, Giuseppe Cavallaro, Stefana Milioto and Giuseppe Lazzara
Polymers 2020, 12(8), 1766; https://doi.org/10.3390/polym12081766 - 7 Aug 2020
Cited by 62 | Viewed by 4038
Abstract
In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The [...] Read more.
In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium on the coating efficiency of the clay nanotubes was investigated. The surface charge properties of HNT/khellin and chitosan/HNT/khellin nanomaterials were determined by ζ potential experiments, while their morphology was explored through Scanning Electron Microscopy (SEM). Water contact angle experiments were conducted to explore the influence of the chitosan coating on the hydrophilic/hydrophobic character of halloysite external surface. Thermogravimetry (TG) experiments were conducted to study the thermal behavior of the composite nanomaterials. The amounts of loaded khellin and coated chitosan in the hybrid nanostructures were estimated by a quantitative analysis of the TG curves. The release kinetics of khellin were studied in aqueous solvents at different pH conditions (acidic, neutral and basic) and the obtained data were analyzed by the Korsmeyer–Peppas model. The release properties were interpreted on the basis of the TG and ζ potential results. In conclusion, this study demonstrates that halloysite nanotubes wrapped by chitosan layers can be effective as drug delivery systems. Full article
Show Figures

Figure 1

17 pages, 962 KiB  
Article
Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments
by Andrew Harrison, Michael P. Zeevi, Christopher L. Vasey, Matthew D. Nguyen and Christina Tang
Polymers 2020, 12(8), 1774; https://doi.org/10.3390/polym12081774 - 7 Aug 2020
Cited by 6 | Viewed by 2853
Abstract
Performing reactions in the presence of self-assembled hierarchical structures of amphiphilic macromolecules can accelerate reactions while using water as the bulk solvent due to the hydrophobic effect. We leveraged non-covalent interactions to self-assemble filled-polymer micelle nanoreactors (NR) incorporating gold nanoparticle catalysts into various [...] Read more.
Performing reactions in the presence of self-assembled hierarchical structures of amphiphilic macromolecules can accelerate reactions while using water as the bulk solvent due to the hydrophobic effect. We leveraged non-covalent interactions to self-assemble filled-polymer micelle nanoreactors (NR) incorporating gold nanoparticle catalysts into various amphiphilic polymer nanostructures with comparable hydrodynamic nanoreactor size and gold concentration in the nanoreactor dispersion. We systematically studied the effect of the hydrophobic co-precipitant on self-assembly and catalytic performance. We observed that co-precipitants that interact with gold are beneficial for improving incorporation efficiency of the gold nanoparticles into the nanocomposite nanoreactor during self-assembly but decrease catalytic performance. Hierarchical assemblies with co-precipitants that leverage noncovalent interactions could enhance catalytic performance. For the co-precipitants that do not interact strongly with gold, the catalytic performance was strongly affected by the hydrophobic microenvironment of the co-precipitant. Specifically, the apparent reaction rate per surface area using castor oil (CO) was over 8-fold greater than polystyrene (750 g/mol, PS 750); the turnover frequency was higher than previously reported self-assembled polymer systems. The increase in apparent catalytic performance could be attributed to differences in reactant solubility rather than differences in mass transfer or intrinsic kinetics; higher reactant solubility enhances apparent reaction rates. Full conversion of 4-nitrophenol was achieved within three minutes for at least 10 sequential reactions demonstrating that the nanoreactors could be used for multiple reactions. Full article
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
Show Figures

Graphical abstract

17 pages, 4151 KiB  
Article
Water-Soluble and Cytocompatible Phospholipid Polymers for Molecular Complexation to Enhance Biomolecule Transportation to Cells In Vitro
by Kazuhiko Ishihara, Shohei Hachiya, Yuuki Inoue, Kyoko Fukazawa and Tomohiro Konno
Polymers 2020, 12(8), 1762; https://doi.org/10.3390/polym12081762 - 6 Aug 2020
Cited by 5 | Viewed by 2943
Abstract
Water-soluble and cytocompatible polymers were investigated to enhance a transporting efficiency of biomolecules into cells in vitro. The polymers composed of a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit, a hydrophobic monomer unit, and a cationic monomer unit bearing an amino group were synthesized for complexation [...] Read more.
Water-soluble and cytocompatible polymers were investigated to enhance a transporting efficiency of biomolecules into cells in vitro. The polymers composed of a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit, a hydrophobic monomer unit, and a cationic monomer unit bearing an amino group were synthesized for complexation with model biomolecules, siRNA. The cationic MPC polymer was shown to interact with both siRNA and the cell membrane and was successively transported siRNA into cells. When introducing 20–50 mol% hydrophobic units into the cationic MPC polymer, transport of siRNA into cells. The MPC units (10–20 mol%) in the cationic MPC polymer were able to impart cytocompatibility, while maintaining interaction with siRNA and the cell membrane. The level of gene suppression of the siRNA/MPC polymer complex was evaluated in vitro and it was as the same level as that of a conventional siRNA transfection reagent, whereas its cytotoxicity was significantly lower. We concluded that these cytocompatible MPC polymers may be promising complexation reagent for introducing biomolecules into cells, with the potential to contribute to future fields of biotechnology, such as in vitro evaluation of gene functionality, and the production of engineered cells with biological functions. Full article
(This article belongs to the Special Issue Polymer Micelles II)
Show Figures

Graphical abstract

15 pages, 7347 KiB  
Article
Bending Behavior of Lightweight Wood-Based Sandwich Beams with Auxetic Cellular Core
by Krzysztof Peliński and Jerzy Smardzewski
Polymers 2020, 12(8), 1723; https://doi.org/10.3390/polym12081723 - 31 Jul 2020
Cited by 21 | Viewed by 3647
Abstract
The work concerns a three-point bending test of beams made of plywood, high density fibre boards, cardboard, and wood-epoxy mass. The goal of the investigation was to determine the effect of thickness and type of wood-based facings on stiffness, strength, ability to absorb, [...] Read more.
The work concerns a three-point bending test of beams made of plywood, high density fibre boards, cardboard, and wood-epoxy mass. The goal of the investigation was to determine the effect of thickness and type of wood-based facings on stiffness, strength, ability to absorb, and dissipate the energy of sandwich beams with an auxetic core. The cognitive goal of the work was to demonstrate the possibility of using recycled materials for facings and cores instead of popular wood composites. Experimental studies and numerical calculations were performed on correctly calibrated models. Experimental studies have shown that the beams with HDF facings (E = 1528 MPa, MOR = 12.61 MPa) and plywood facings (E = 1248–1395 MPa, MOR = 8.34–10.40 MPa) have the most favourable mechanical properties. Beams with plywood facings also have a good ability to absorb energy (1.380–1.746 J), but, in this respect, the beams manufactured of HDF (2.223 J) exhibited better capacity. The use of an auxetic core and facings of plywood and cardboard significantly reduces the amount of dissipated energy (0.0093 J, 0.0067 J). Therefore, this type of structures can be used for modeling beams carrying high deflections. Full article
(This article belongs to the Special Issue Recent Developments in Eco-Friendly Wood-Based Composites)
Show Figures

Graphical abstract

11 pages, 1171 KiB  
Article
Improvement in the Microbial Resistance of Resin-Based Dental Sealant by Sulfobetaine Methacrylate Incorporation
by Myung-Jin Lee, Utkarsh Mangal, Se-Jin Kim, Yeo-Phil Yoon, Eun-So Ahn, Ee-Seul Jang, Jae-Sung Kwon and Sung-Hwan Choi
Polymers 2020, 12(8), 1716; https://doi.org/10.3390/polym12081716 - 30 Jul 2020
Cited by 6 | Viewed by 2964
Abstract
Prevention of dental caries is a key research area, and improvement of the pit and fissure sealants used for caries prevention has been of particular interest. This report describes results of incorporating a zwitterion, sulfobetaine methacrylate (SB), into photo-polymerized resin-based sealants to enhance [...] Read more.
Prevention of dental caries is a key research area, and improvement of the pit and fissure sealants used for caries prevention has been of particular interest. This report describes results of incorporating a zwitterion, sulfobetaine methacrylate (SB), into photo-polymerized resin-based sealants to enhance resistance to cariogenic bacteria and protein adhesion. Varying amounts (1.5–5 wt%) of SB were incorporated into a resin-based sealant, and the flexural strength, wettability, depth of cure, protein adhesion, bacterial viability, and cell cytotoxicity of the resultant sealants were evaluated. The flexural strength decreased with the increasing SB content, but this decrease was statistically significant only for sealants containing ≥3 wt% SB. Incorporating a zwitterion led to a significant reduction in the water contact angle and protein adhesion. The colony-forming unit count showed a significant reduction in the bacterial viability of S. mutans, which was confirmed with microscopic imaging. Moreover, cell cytotoxicity analysis of SB-modified sealants using an L929 fibroblast showed a cytotoxicity comparable to that of an unmodified control, suggesting no adverse effects on the cellular metabolism upon SB introduction. Hence, we conclude that the addition of 1.5–3 wt% SB can significantly enhance the inherent ability of sealants to resist S. mutans adhesion and prevent dental caries. Full article
(This article belongs to the Special Issue Polymer-Based Materials in Dentistry)
Show Figures

Graphical abstract

19 pages, 4065 KiB  
Article
Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation
by Miran Hannah Choi, Alexandra Blanco, Samuel Stealey, Xin Duan, Natasha Case, Scott Allen Sell, Muhammad Farooq Rai and Silviya Petrova Zustiak
Polymers 2020, 12(8), 1712; https://doi.org/10.3390/polym12081712 - 30 Jul 2020
Cited by 16 | Viewed by 4320
Abstract
Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly [...] Read more.
Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly from the body diminishing its therapeutic efficacy. This highlights a need for a delivery vehicle for a sustained release of PRP to improve its therapeutic effect. In this study, we used microfluidics to fabricate biodegradable PRP-loaded polyethylene glycol (PEG) microspheres. PRP was incorporated into the microspheres as a lyophilized PRP powder either as is (powder PRP) or first solubilized and pre-clotted to remove clots (liquid PRP). A high PRP loading of 10% w/v was achieved for both PRP preparations. We characterized the properties of the resulting PRP-loaded PEG microspheres including swelling, modulus, degradation, and protein release as a function of PRP loading and preparation. Overall, loading powder PRP into the PEG microspheres significantly affected the properties of microspheres, with the most pronounced effect noted in degradation. We further determined that microsphere degradation in the presence of powder PRP was affected by platelet aggregation and clotting. Platelet aggregation did not prevent but prolonged sustained PRP release from the microspheres. The delivery system developed and characterized herein could be useful for the loading and releasing of PRP to promote tissue regeneration and wound healing or to suppress tissue degeneration in osteoarthritis, and intervertebral disc degeneration. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Biomedical Applications of Hydrogels)
Show Figures

Graphical abstract

14 pages, 1423 KiB  
Article
Copolymerized Natural Fibre from the Mesocarp of Orbignya phalerata (Babassu Fruit) as an Irrigating-Fertilizer for Growing Cactus Pears
by Ricardo Edvan, Mariane Sá, Regina Magalhães, Rafael Ratke, Heldeney R. Sousa, Lucas Mateus Lima Neri, Edson C. Silva-Filho, Jose Pereira Filho and Leilson Bezerra
Polymers 2020, 12(8), 1699; https://doi.org/10.3390/polym12081699 - 29 Jul 2020
Cited by 4 | Viewed by 2169
Abstract
Cactus pears face challenges due to global climate change, which is leading to in-depth research to monitor and increase their water activity. The objective of this study was to evaluate the use of the natural test hydrogel (TH) from Orbignya phalerata fibre as [...] Read more.
Cactus pears face challenges due to global climate change, which is leading to in-depth research to monitor and increase their water activity. The objective of this study was to evaluate the use of the natural test hydrogel (TH) from Orbignya phalerata fibre as nutrients and water for growing cactus pear genotypes (“Baiana” and “Doce” [Nopalea cochenillifera], ‘Gigante’ [Opuntia fícus-indica], and “Mexican Elephant Ear” [Opuntia stricta]) compared to the use of commercial hydrogel (CH), which is based on polymers composed of polyacrylamide, and a treatment without the use of hydrogel (WH). A completely randomized design was used, in a factorial scheme (4 × 3), with four genotypes of cactus pear and three forms of hydration, with five replications. The number and area of cladode was greatest (p < 0.01) in plants with CH and TH irrigation-fertilization in the ‘Doce’ cactus genotype. The dry biomass of the cladode and root in the ‘Gigante’ cactus genotype was greatest (p < 0.01) in the treatments with CH and TH irrigation-fertilisation. The ‘Baiana’, ‘Doce’, and ‘Gigante’ cactus genotypes exhibited more (p < 0.01) dry matter content with the TH irrigation-fertilisation. The highest (p < 0.01) neutral detergent fibre content was observed in the ‘Baiana’ and ‘Doce’ cactus genotypes when irrigation occurred with WH treatment, and the highest acid detergent fibre content in the ‘Gigante’ genotype. The copolymerized natural fibre from the mesocarp of Orbignya phalerata (babassu fruit) induced a better growth and chemical composition of cactus pear genotypes than the hydrogel based on polymers composed of polyacrylamide. Full article
(This article belongs to the Special Issue Advances in Polysaccharides)
Show Figures

Figure 1

21 pages, 883 KiB  
Review
A Review on Citric Acid as Green Modifying Agent and Binder for Wood
by Seng Hua Lee, Paridah Md Tahir, Wei Chen Lum, Li Peng Tan, Paiman Bawon, Byung-Dae Park, Syeed SaifulAzry Osman Al Edrus and Ummi Hani Abdullah
Polymers 2020, 12(8), 1692; https://doi.org/10.3390/polym12081692 - 29 Jul 2020
Cited by 57 | Viewed by 9351
Abstract
Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common [...] Read more.
Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered. Full article
(This article belongs to the Special Issue Recent Developments in Eco-Friendly Wood-Based Composites)
Show Figures

Graphical abstract

15 pages, 4262 KiB  
Article
New Insights into Crystallization of Heterophasic Isotactic Polypropylene by Fast Scanning Chip Calorimetry
by Daniela Mileva, Jingbo Wang, Markus Gahleitner, Katalee Jariyavidyanont and René Androsch
Polymers 2020, 12(8), 1683; https://doi.org/10.3390/polym12081683 - 28 Jul 2020
Cited by 12 | Viewed by 3208
Abstract
The crystallization kinetics of metallocene-catalyzed heterophasic isotactic polypropylene composed of a matrix of isotactic polypropylene (iPP) and rubbery particles made of random ethylene–propylene copolymers (EPC), often denoted as heterophasic iPP copolymers, was analyzed as a function of the cooling rate and supercooling in [...] Read more.
The crystallization kinetics of metallocene-catalyzed heterophasic isotactic polypropylene composed of a matrix of isotactic polypropylene (iPP) and rubbery particles made of random ethylene–propylene copolymers (EPC), often denoted as heterophasic iPP copolymers, was analyzed as a function of the cooling rate and supercooling in nonisothermal and isothermal crystallization experiments, respectively. Fast scanning chip calorimetry (FSC) allowed assessing crystallization at processing-relevant conditions, and variation of the content (0–39 wt %) and composition (0–35 wt % propylene counits) of the EPC particles revealed qualitatively new insight about mechanisms of heterogeneous crystal nucleation. For neat iPP homopolymer, the characteristic bimodal temperature dependence of the crystallization rate due to predominance of heterogeneous and homogeneous crystal nucleation at high and low temperatures, respectively, is reconfirmed. At high temperatures, in heterophasic iPP, the here studied ethylene-(C2)-rich EPC particles accelerate crystallization of the iPP-matrix, with the acceleration or nucleation efficacy correlating with the EPC-particle content. The crystallization time reduces by more than half in presence of 39 wt % EPC particles. An additional nucleating effect of the EPC particles on iPP-matrix crystallization is detected after their crystallization, suggesting that liquid/rubbery particles are less effective than solid/semicrystalline particles in affecting crystallization of the surrounding iPP-matrix. At low temperature, homogeneous crystal nucleation in the iPP-matrix outpaces all heterogeneous nucleation effects, and the matrix-crystallization rate is independent of the sample composition. The obtained results lead to the conclusion that the crystallization kinetics of iPP can be affected significantly by the content and composition of EPC particles, even towards superfast crystallizing iPP grades. Full article
Show Figures

Figure 1

21 pages, 2677 KiB  
Article
Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry
by Jan K. Zaręba, Marcin Nyk and Marek Samoć
Polymers 2020, 12(8), 1670; https://doi.org/10.3390/polym12081670 - 27 Jul 2020
Cited by 10 | Viewed by 2881
Abstract
Nonlinear optical (NLO) pigments are compounds insoluble in solvents that exhibit phenomena related to nonlinear optical susceptibilities (χ(n) where n = 2,3,...), e.g., two-photon absorption (2PA) which is related to the imaginary part of χ(3). Determination of spectrally-resolved 2PA properties [...] Read more.
Nonlinear optical (NLO) pigments are compounds insoluble in solvents that exhibit phenomena related to nonlinear optical susceptibilities (χ(n) where n = 2,3,...), e.g., two-photon absorption (2PA) which is related to the imaginary part of χ(3). Determination of spectrally-resolved 2PA properties for NLO pigments of macromolecular nature, such as coordination polymers or crosslinked polymers, has long been a challenging issue due to their particulate form, precluding characterizations with standard techniques such as Z-scan. In this contribution, we investigate thus far unknown spectrally-resolved 2PA properties of a new subclass of NLO pigments—crosslinked conjugated polymers. The studied compounds are built up from electron-donating (triphenylamine) and electron-withdrawing (2,2’-bipyridine) structural fragments joined by vinylene (Pol1) or vinyl(4-ethynylphenyl) (Pol2) aromatic bridges. 2PA properties of these polymers have been characterized in broad spectral range by specially modified two-photon excited fluorescence (TPEF) techniques: solid state TPEF (SSTPEF) and internal standard TPEF (ISTPEF). The impact of self-aggregation of aromatic backbones on the 2PA properties of the polymers has been evaluated through extended comparisons of NLO parameters, i.e., 2PA cross sections (σ2) and molar-mass normalized 2PA merit factors (σ2/M) with those of small-molecular model compounds: Mod1 and Mod2. By doing this, we found that the 2PA response of Pol1 and Pol2 is improved 2–3 times versus respective model compounds in the solid state form. Further comparisons with 2PA results collected for diluted solutions of Mod1 and Mod2 supports the notion that self-aggregated structure contributes to the observed enhancement of 2PA response. On the other hand, it is clear that Pol1 and Pol2 suffer from aggregation-caused quenching phenomenon, well reflected in time-resolved fluorescence properties as well as in relatively low values of quantum yield of fluorescence. Accordingly, despite improved intrinsic 2PA response, the effective intensity of two-photon excited emission for Pol1 and Pol2 is slightly lower relative to Mod1 and Mod2. Finally, we explore temperature-resolved luminescence properties under one- (377 nm), two- (820 nm), and three-photon excitation (1020 nm) conditions of postsynthetically Eu3+-functionalized material, Pol1-Eu, and discuss its suitability for temperature sensing applications. Full article
(This article belongs to the Special Issue Fluorescent Polymeric Probes)
Show Figures

Figure 1

17 pages, 3339 KiB  
Review
Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
by Valentina Siracusa and Ignazio Blanco
Polymers 2020, 12(8), 1641; https://doi.org/10.3390/polym12081641 - 23 Jul 2020
Cited by 260 | Viewed by 39828
Abstract
In recent year, there has been increasing concern about the growing amount of plastic waste coming from daily life. Different kinds of synthetic plastics are currently used for an extensive range of needs, but in order to reduce the impact of petroleum-based plastics [...] Read more.
In recent year, there has been increasing concern about the growing amount of plastic waste coming from daily life. Different kinds of synthetic plastics are currently used for an extensive range of needs, but in order to reduce the impact of petroleum-based plastics and material waste, considerable attention has been focused on “green” plastics. In this paper, we present a broad review on the advances in the research and development of bio-based polymers analogous to petroleum-derived ones. The main interest for the development of bio-based materials is the strong public concern about waste, pollution and carbon footprint. The sustainability of those polymers, for general and specific applications, is driven by the great progress in the processing technologies that refine biomass feedstocks in order to obtain bio-based monomers that are used as building blocks. At the same time, thanks to the industrial progress, it is possible to obtain more versatile and specific chemical structures in order to synthetize polymers with ad-hoc tailored properties and functionalities, with engineering applications that include packaging but also durable and electronic goods. In particular, three types of polymers were described in this review: Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET). The recent advances in their development in terms of processing technologies, product development and applications, as well as their advantages and disadvantages, are reported. Full article
(This article belongs to the Special Issue Biopolymer Modifications and Characterization)
Show Figures

Graphical abstract

18 pages, 5197 KiB  
Review
Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter
by Atsushi Takahara, Yuji Higaki, Tomoyasu Hirai and Ryohei Ishige
Polymers 2020, 12(7), 1624; https://doi.org/10.3390/polym12071624 - 21 Jul 2020
Cited by 15 | Viewed by 5994
Abstract
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using [...] Read more.
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix. Full article
(This article belongs to the Collection The Next Generation in Polymer Research)
Show Figures

Figure 1

20 pages, 5179 KiB  
Article
Synthetic Approaches for Poly(Phenylene) Block Copolymers via Nickel Coupling Reaction for Fuel Cell Applications
by Adam F. Nugraha, Songmi Kim, Farid Wijaya, Byungchan Bae and Dongwon Shin
Polymers 2020, 12(7), 1614; https://doi.org/10.3390/polym12071614 - 20 Jul 2020
Cited by 4 | Viewed by 4366
Abstract
Several methods to synthesize poly(phenylene) block copolymers through the nickel coupling reaction were attempted to reduce the use of expensive nickel catalysts in polymerization. The model reaction for poly(phenylene) having different types of dichlorobenzene derivative monomers illustrated the potential use of cost-effective catalysts, [...] Read more.
Several methods to synthesize poly(phenylene) block copolymers through the nickel coupling reaction were attempted to reduce the use of expensive nickel catalysts in polymerization. The model reaction for poly(phenylene) having different types of dichlorobenzene derivative monomers illustrated the potential use of cost-effective catalysts, such as NiBr2 and NiCl2, as alternatives to more expensive catalysts (e.g., bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2)). By catalyzing the polymerization of multi-block poly(phenylene) with NiBr2 and NiCl2, random copolymers with similar molecular weights could be prepared. However, these catalysts did not result in a high-molecular-weight polymer, limiting their wide scale application. Further, the amount of Ni(COD)2 could be reduced in this study by approximately 50% to synthesize poly(phenylene) multi-block copolymers, representing significant cost savings. Gel permeation chromatography and nuclear magnetic resonance results showed that the degree of polymerization and ion exchange capacity of the copolymers were almost the same as those achieved through conventional polymerization using 2.5 times as much Ni(COD)2. The flexible quaternized membrane showed higher chloride ion conductivity than commercial Fumatech membranes with comparable water uptake and promising chemical stability. Full article
(This article belongs to the Special Issue Advanced Polymers for Electrochemical Applications)
Show Figures

Graphical abstract

20 pages, 8186 KiB  
Review
Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes
by Kensuke Osada
Polymers 2020, 12(7), 1603; https://doi.org/10.3390/polym12071603 - 19 Jul 2020
Cited by 8 | Viewed by 3624
Abstract
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models [...] Read more.
DNA folding is a core phenomenon in genome packaging within a nucleus. Such a phenomenon is induced by polyelectrolyte complexation between anionic DNA and cationic proteins of histones. In this regard, complexes formed between DNA and cationic polyelectrolytes have been investigated as models to gain insight into genome packaging. Upon complexation, DNA undergoes folding to reduce its occupied volume, which often results in multi-complex associated aggregates. However, when cationic copolymers comprising a polycation block and a neutral hydrophilic polymer block are used instead, DNA undergoes folding as a single molecule within a spontaneously formed polyplex micelle (PM), thereby allowing the observation of the higher-order structures that DNA forms. The DNA complex forms polymorphic structures, including globular, rod-shaped, and ring-shaped (toroidal) structures. This review focuses on the polymorphism of DNA, particularly, to elucidate when, how, and why DNA organizes into these structures with cationic copolymers. The interactions between DNA and the copolymers, and the specific nature of DNA in rigidity; i.e., rigid but foldable, play significant roles in the observed polymorphism. Moreover, PMs serve as potential gene vectors for systemic application. The significance of the controlled DNA folding for such an application is addressed briefly in the last part. Full article
(This article belongs to the Special Issue Bio-Based Polyelectrolytes: Development and Applications)
Show Figures

Graphical abstract

14 pages, 2389 KiB  
Article
Film Blowing of Linear and Long-Chain Branched Poly(ethylene terephthalate)
by Michael Härth and Andrea Dörnhöfer
Polymers 2020, 12(7), 1605; https://doi.org/10.3390/polym12071605 - 19 Jul 2020
Cited by 16 | Viewed by 5532
Abstract
Film blowing of Poly(ethylene terephthalate) (PET) is challenging due its inherently low melt viscosity and poor melt strength. In this study, it is shown how the rheological properties of a commercial PET can be altered by reactive extrusion using either pyromellitic dianhydride (PMDA) [...] Read more.
Film blowing of Poly(ethylene terephthalate) (PET) is challenging due its inherently low melt viscosity and poor melt strength. In this study, it is shown how the rheological properties of a commercial PET can be altered by reactive extrusion using either pyromellitic dianhydride (PMDA) or a multifunctional epoxy (Joncryl® ADR 4368) as chain extender, in order to improve the processing behavior during film blowing. The modified materials were characterized by shear and elongation rheometry and relevant processing characteristics, like melt pressure, bubble stability, and film thickness uniformity, were used to assess the influence of the type of modifier on processing and product performance. It is shown that PMDA is useful to increase the melt strength which leads to an improved bubble stability, while epoxy modified PET shows a reduced drawability that can cause problems at high take-up ratios. On the other hand, the epoxy modifier indicates a pronounced strain hardening during elongational deformation, and therefore leads to a better film thickness uniformity compared to the neat PET and the PET modified with PMDA. The differences with respect to processing performance are discussed and ascribed to the molecular structure of the materials. Full article
(This article belongs to the Special Issue Extensional Rheology and Processing of Polymeric Materials)
Show Figures

Graphical abstract

10 pages, 1939 KiB  
Article
Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites
by Luca Valentini, Silvia Bittolo Bon and Giacomo Giorgi
Polymers 2020, 12(7), 1596; https://doi.org/10.3390/polym12071596 - 18 Jul 2020
Cited by 7 | Viewed by 3347
Abstract
From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, [...] Read more.
From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, therefore, developing an electric field induced by the heterostructure formation. Experiments on GO polymer composite film supports the theoretical findings, showing that the interaction with water aerosol generates a voltage output signal of up to −2 V. We then developed an electrostatic composite fiber by the coagulation method mixing GO with poly(methyl methacrylate) (PMMA). These findings could be used to design protective fabrics with antiviral activity against negatively charged spike proteins of airborne viruses. Full article
(This article belongs to the Special Issue Multifunctional Polymer Nanocomposites)
Show Figures

Figure 1

16 pages, 5841 KiB  
Article
Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning
by Mohd Reusmaazran Yusof, Roslinda Shamsudin, Sarani Zakaria, Muhammad Azmi Abdul Hamid, Fatma Yalcinkaya, Yusof Abdullah and Norzita Yacob
Polymers 2020, 12(7), 1593; https://doi.org/10.3390/polym12071593 - 17 Jul 2020
Cited by 6 | Viewed by 2676
Abstract
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ [...] Read more.
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% v/v carboxy-methyl starch (CMS) and 0.25 wt% of β-TCP with the PLLA as a matrix component. The composites nanofibers were exposed under 5, 30, and 100 kGy of irradiation dose. The electron-beam irradiation showed no morphological damage to the fibers, and slight reduction in the water-contact angle and mechanical strength at the higher-irradiation doses. The chain scission was found to be a dominant effect; the higher doses of electron-beam irradiation thus increased the in vitro degradation rate of the composite nanofibers. The chemical interaction due to irradiation was indicated by the Fourier transform infrared (FTIR) spectrum and thermal behavior was investigated by a differential scanning calorimeter (DSC). The results showed that the electron-beam-induced poly L-lactide acid/carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers may have great potential for bone-tissue engineering. Full article
(This article belongs to the Special Issue Electrospinning of Biopolymer Nanofibers)
Show Figures

Graphical abstract

20 pages, 7261 KiB  
Article
A Case Study of Polyetheretherketone (II): Playing with Oxygen Concentration and Modeling Thermal Decomposition of a High-Performance Material
by Aditya Ramgobin, Gaëlle Fontaine and Serge Bourbigot
Polymers 2020, 12(7), 1577; https://doi.org/10.3390/polym12071577 - 16 Jul 2020
Cited by 10 | Viewed by 2789
Abstract
Kinetic decomposition models for the thermal decomposition of a high-performance polymeric material (polyetheretherketone, PEEK) were determined from specific techniques. Experimental data from thermogravimetric analysis (TGA) and previously elucidated decomposition mechanisms were combined with a numerical simulating tool to establish a comprehensive kinetic model [...] Read more.
Kinetic decomposition models for the thermal decomposition of a high-performance polymeric material (polyetheretherketone, PEEK) were determined from specific techniques. Experimental data from thermogravimetric analysis (TGA) and previously elucidated decomposition mechanisms were combined with a numerical simulating tool to establish a comprehensive kinetic model for the decomposition of PEEK under three atmospheres: nitrogen, 2% oxygen, and synthetic air. Multistepped kinetic models with subsequent and competitive reactions were established by taking into consideration the different types of reactions that may occur during the thermal decomposition of the material (chain scission, thermo-oxidation, char formation). The decomposition products and decomposition mechanism of PEEK which were established in our previous report allowed for the elucidation of the kinetic decomposition models. A three-stepped kinetic thermal decomposition pathway was a good fit to model the thermal decomposition of PEEK under nitrogen. The kinetic model involved an autocatalytic type of reaction followed by competitive and successive nth order reactions. Such types of models were set up for the evaluation of the kinetics of the thermal decomposition of PEEK under 2% oxygen and in air, leading to models with satisfactory fidelity. Full article
(This article belongs to the Collection Fire and Polymers)
Show Figures

Figure 1

9 pages, 5661 KiB  
Article
High Refractive-Index Hybrids Consisting of Water-Soluble Matrices with Bipyridine-Modified Polyhedral Oligomeric Silsesquioxane and Lanthanoid Cations
by Kazunari Ueda, Takahiro Kakuta, Kazuo Tanaka and Yoshiki Chujo
Polymers 2020, 12(7), 1560; https://doi.org/10.3390/polym12071560 - 14 Jul 2020
Cited by 4 | Viewed by 2675
Abstract
We report high refractive-index (RI) films composed of polyhedral oligomeric silsesquioxane (SSQ) matrices and various lanthanoid cations. The SSQ matrices were constructed from octaammonium SSQ by connecting with bipyridine dicarboxylic acid, which is expected to capture cations. By modulating the feed ratio between [...] Read more.
We report high refractive-index (RI) films composed of polyhedral oligomeric silsesquioxane (SSQ) matrices and various lanthanoid cations. The SSQ matrices were constructed from octaammonium SSQ by connecting with bipyridine dicarboxylic acid, which is expected to capture cations. By modulating the feed ratio between SSQ and dicarboxylic acid, the series of the SSQ matrices were obtained with variable cross-linking ratios among the SSQ units. Thin transparent films were able to be prepared through the drop-casting method with the aqueous mixtures containing SSQ matrices and various kinds of lanthanoid salts up to 40 wt %. From RI measurements, it was revealed that the increase of the amount of the metal ion can significantly lift up the RI values. In particular, critical losses of Abbe numbers, which theoretically have the trade-off relationship toward increases in RI values, were hardly detected. This effect could be obtained by cation assembly in local spots that are assisted by SSQ. Full article
(This article belongs to the Special Issue Silsesquioxane (POSS) Polymers, Copolymers and Nanoparticles)
Show Figures

Figure 1

29 pages, 13876 KiB  
Review
Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping
by Jingyi Wang and Ting Lei
Polymers 2020, 12(7), 1548; https://doi.org/10.3390/polym12071548 - 13 Jul 2020
Cited by 36 | Viewed by 6579
Abstract
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors. However, large-scale, as-produced [...] Read more.
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors. However, large-scale, as-produced SWNTs have poor solubility, and they are mixtures of metallic SWNTs (m-SWNTs) and s-SWNTs, which limits their practical applications. Conjugated polymer wrapping is a promising method to disperse and separate s-SWNTs, due to its high selectivity, high separation yield and simplicity of operation. In this review, we summarize the recent progress of the conjugated polymer wrapping method, and discuss possible separation mechanisms for s-SWNTs. We also discuss various parameters that may affect the selectivity and sorting yield. Finally, some electronic applications of polymer-sorted s-SWNTs are introduced. The aim of this review is to provide polymer chemist a basic concept of polymer based SWNT separation, as well as some polymer design strategies, influential factors and potential applications. Full article
Show Figures

Figure 1

Back to TopTop