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Abstract: To expand the use of wood plastic composites in the structural and engineering construc-
tions applications, continuous aramid fiber (CAF) with nondestructive modification was incorporated
as reinforcement material into wood-flour and high-density-polyethylene composites (WPC) by ex-
trusion method with a special die. CAF was treated with dopamine (DPA), vinyl triethoxysilane
(VTES), and DPA/VTES, respectively. The effects of these modifications on compatibility between
CAF and WPCs and the properties of the resulting composites were explored. The results showed
that compared with the original CAF, the adhesion strength of DPA and VTES combined modified
CAF and WPCs increased by 143%. Meanwhile, compared with pure WPCs, CAF after modification
increased the tensile strength, tensile modulus, and impact strength of the resulting composites by
198, 92, and 283%, respectively.

Keywords: continuous aramid fiber; chemical modification; interfacial strength; mechanical properties

1. Introduction

With the urgent concerns of global warming and depletion of petroleum raw mate-
rials, the development of environmentally friendly construction materials has received
widespread attention. Wood-polymer composites (WPC) are economic and environmental-
friendly materials that have been widely utilized in industry and production (such as
the building and automotive industries) due to the recyclability, low costs, dimensional
stability, and other advantages of these materials [1,2]. However, plastic and wood fibers
are incompatible in WPCs due to their polarity difference, which reduces the strengths
and toughness of WPCs [3,4]. For this reason, compatibilizers such as maleated poly-
olefins [5–7], isocyanates [8], and silanes [9] are commonly added to improve interfacial
compatibility and partially offset the negative effect of weak interfacial bonding of the
composites. However, even with the addition of these compatibilizers, the performance
of the WPCs with improved interfacial is still insufficient. In particular, its low impact
resistance fails to meet the simultaneous requirements of stiffness and impact resistance for
structural applications. Therefore, new strategies for improving the mechanical properties
of WPCs are needed.

Hybridization of wood flour with artificial fibers (such as carbon, glass, and aramid
fibers) was commonly used to enhance the mechanical strength and impact resistance of
WPCs [10]. The addition of short fibers at an appropriate content can effectively improve
the performance of the resulting composites, and the properties are related to the fiber
types and content [11,12]. Hybrid waste sisal fibers and carbon and glass fiber reinforced
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polypropylene (PP) composites showed great mechanical and tribological performance,
while the properties of composites hybrid with glass fibers were better than carbon fibers
for the same hybrid ratios [13]. Commonly, glass fiber has been extensively adopted to
reinforced WPCs [14,15]. The strength, modulus of elasticity, and especially the hardness
of WPCs increased further by hybridizing small amounts of glass fibers [15,16]. However,
adding glass fiber increases the density of resulting composites and causes severe abrasion
to machines during processing [13]. Compared with glass fibers, high-performance aramid
fiber (AF) possesses a low density and can be used as an ideal reinforcement material in
WPCs composites [17]. Adding a small amount of aramid fiber (2–5 wt%) can significantly
improve the mechanical properties of WPCs when there was a good interface [18]. How-
ever, the surface of aramid fibers is inert and has poor compatibility with most matrix. To
improve interfacial compatibility between aramid fibers and WPCs matrix, the fiber has
been modified by chemical treatment [18,19] and fiber micro fibrillation [17]. However,
even with these modification strategies, the performance of short fiber reinforced WPCs
composites remains limited that significantly reduces the potential application of short
fiber as reinforcement in WPCs. This problem cannot be addressed by the addition of
higher amounts of fibers, as the properties of the finally fiber reinforced composites start to
decrease due to fiber agglomeration during processing [11]. Thus, there are limitations of
short fiber reinforced composites that remain to be addressed.

Replacing short fibers with continuous fiber into WPCs can solve the problem of fiber
agglomeration. Moreover, continuous fiber can withstand a greater load than short fiber
and is less easily broken. Compared to short fiber, the use of continuous fiber in WPCs
more obviously enhances the mechanical properties [20]. However, due to the complicated
preparation process, there have few literature reports on continuous fiber reinforced WPCs.
Tamrakar et al. bond a reinforcing sheet of glass fiber and polypropylene (PP) onto the
surface of WPC panels using a double-belt pressing method, and observed significantly
improved mechanical performance [21]. However, hot-pressing is a complicated, semi-
continuous processing method, limiting its application [22]. As an alternative, the extrusion
manufacturing process has been applied to fabricate continuous fiber reinforced composites
due to simplicity [23–26]. To do this, a specially designed die is often used to embed
continuous fibers into the extruded WPCs.

The performance of continuous fiber-reinforced WPCs composites is dependent on the
fiber type, fiber amount, and position of fiber in composites. Whether fiber is embedded
into the WPCs or applied to the surface results in different effects on properties of the
final composites [27]. In Zolfaghari’s study, 6 rovings of continuous glass fiber incorpo-
rated into WPCs increased impact, tensile strength, and flexural strength 20-, 5.9-, and
2.3-fold, respectively [25]. Effects of the amount and type of the continuous fibers on tensile,
flexural, and impact strength of WPCs are investigated in our previous work, the impact
strength of carbon fiber reinforced WPCs composites improved by 713.4% [26]. Besides,
it found that glass fiber has the best interfacial bonding among the three different fiber
types (aramid, carbon, and glass fibers). Carbon and aramid continuous fibers would be
pulled-out from composites when it is broken due to the weak adhesion between fiber
and WPCs. In fact, the properties and life expectancy of continuous fiber-reinforced WPCs
are significantly affected by the strength and stability of their interfaces in actual applica-
tion. The poor interfacial strength between continuous fiber and WPCs matrix significantly
reduces the reinforcing effect of continuous fibers. On the contrary, improved properties of
continuous fiber-reinforced WPCs composites were observed with improving interfacial
compatibility between aramid fibers and the WPCs [18], required for the use of WPCs for
construction applications.

Inspired by the mussel, dopamine (DPA) was found can deposit a thin polymer film
on almost any substrate through oxidative and self-polymerization [28]. DPA polymer is
readily constructed on most substrates without any complex chemical method, so also used
as a versatile and effective surface modifier for synthetic fibers (carbon, glass, and aramid
fibers) [29–31]. Additionally, the deposited poly (dopamine) layer contains many –OH
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and –NH groups, which can be used for further functionalization [32,33]. Modification by
DPA has been proved for improving the compatibility and performance of fiber reinforced
composites [29,34,35]. Meta-aramid (MPIA) fiber was first modified by dopamine and
further grafted silane KH560 by Sa and the interfacial strength between modified aramid
fibers with rubber matrix increased by 62.5% [32]. Grafted polydopamine on carbon fiber
can introduce functionalization groups without breaking fiber strength and increased the
interfacial adhesion strength and impact properties of the final composites by 78.57 and
75.12%, respectively [35].

Effects of nondestructive fiber modification on the interfacial strength between contin-
uous aramid fiber (CAF) and WPCs and the properties of the resulting composites were
explored in this study to expand the application of WPCs in the construction materials.
Specifically, the experiment investigated the effect of nondestructive surface modified
CAF with dopamine (DPA) and vinyltriethoxysilane (VTES) on interfacial shear strength
(IFSS) and mechanical properties of continuous aramid fiber reinforced wood and HDPE
composites (CAF-WPCs). X-ray photoelectron spectroscopy (XPS) and scanning electron
microscopy (SEM) was used to investigate the chemical composition and morphology of
the continuous aramid fiber before and after modification. The interfacial shear strength
of CAF with WPCs was characterized by single fiber pull-out tests. Creep behavior of the
resulting CAF-WPCs composites was also investigated.

2. Materials and Methods
2.1. Materials

Continuous aramid fibers (CAF) were provided from Sovetl Textile company, Dong-
guan, China. The average linear density of CAF was 1000D×3 and each 1000D fiber bundle
contains 666 single fibers. Dopamine hydrochloride (DPA) and Vinyl triethoxysilane (VTES)
were purchased from Macklin Biochemical company, Shanghai, China. Tris (hydroxymethyl
aminomethane) was purchased from Zhanyun Chemical company, Shanghai, China. Iron
(III) chloride (FeCl3), analytical reagent grade, was provided from Research Institute of
Tianjin Guangfu Fine Chemical. Other chemicals (ethanol, water, and hydrochloric acid)
were commercially available and used as received.

HDPE (5000S) pellets were provided by Daqing Petrochemical company, China. The
melt index of this material is 0.7 g·10 min−1 (190 ◦C, 2.16 kg) and the density is 0.954 g·cm−3.
Poplar wood veneers were ground into wood particles of 40–80 mesh using a grinder in
the Lab. Maleic anhydride grafted polyethylene (MAPE) with the graft ratio of 0.9–1.2 wt%
was purchased from Nantong Rizhisheng Polymer Materials company. Stearic acid (1801)
and PE wax were commercially available in China.

2.2. Surface Modification of CAF

Before modification, continuous aramid fibers (CAF) were immersed in absolute
ethanol for 48 h to remove the impurities on CAF surface and washed three times with
deionized water and dried at 80 ◦C for use. After modification, the modified CAF was
washed three times with deionized water and dried at 80 ◦C for use.

2.2.1. VTES Treatment

For VTES treatment, 95% ethyl alcohol solution was used as the hydrolysis medium.
VTES and 95% ethyl alcohol solution (1:50, v/v) were mixed for hydrolysis by stirring at
50 ◦C for 2 h. Next, 95% ethyl alcohol solution was added to the hydrolyzed solution until
reaching a mixing ratio of VTES and 95% ethyl alcohol of 1:500 (v/v). CAF was immersed
in the VTES-95% ethyl alcohol solution at room condition for 2 h (at a mass fraction ratio of
VTES and CAF of 1:10).

2.2.2. DPA Treatment

Modification of the aramid fibers with DPA for deposition of poly (dopamine) layers
was carried out by immersion process, as described in the previous study [32]. First,
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dissolve Tris in distilled water to prepare 0.05 mol·L−1 Tris-HCl buffer with adding HCl
to adjust the pH to 8.5. Then dissolve dopamine in the Tris-HCl buffer solution to a
concentration of 2.0 g·L−1. Finally, immersed CAF in the dopamine solution prepared
above and react at room temperature for 24 h.

2.2.3. DPA and VTES Combined Treatment

For DPA and VTES modification, CAF was first modified by DPA treatment, and then
excessive FeCl3 was Dissolved in VTES-95% ethyl alcohol solution to treat the dopamine
modified fiber (CAFD) by immersing the fiber for 2 h (using a mass fraction ratio of VTES
and CAF of 1:10).

In this study, CAF modified with VTES, DPA, and DPA and VTES were named as
CAFV, CAFD, and CAFDV, respectively.

2.3. Preparation of CAF-Reinforced WPCs Composites

The preparation of continuous fiber reinforced WPCs composites was described in our
previous work [26,36]. Briefly, wood flour, HDPE, MAPE, and PE wax were mixed in the
mixer with a certain ratio (Table 1) at ambient temperature. Using a co-rotating twin-screw
extruder, the compounds were extruded and pulverized into pellets. Then, continuous
fibers were drawn to the special die and extruded with the melt pellets together by a single
screw extruder (Figure 1). The CAF reinforced WPCs composites were finally formed to a
4 × 50 mm2 (thickness × width) continuous plate and there were three bundles of aramid
fibers in composites, with a mass fraction of 0.1%.

Table 1. Formulation of the composites for extrusion.

WF HDPE MAPE PE Wax Stearic Acid

Content (wt%) 50 44 4 1 1
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Figure 1. Schematic diagram of the processing and the shape of CAF reinforced WPCs.

2.4. Characterization
2.4.1. Scanning Electron Microscopy (SEM)

Frozen the CAF reinforced composites in liquid nitrogen for 5 min and breaking along
the extrusion direction. Fibers and cryo-fractured surfaces were placed on the sample
stage and sputter-coated with gold. The scanning electron microscopy (SEM, FEI company
Quanta200, Hillsboro, TX, USA) was used to observe under a 15 kV accelerating voltage.

2.4.2. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha, Waltham,
MA, USA) was used to analyze the surface element content of virgin and modified CAF.
The samples were tested at 12 kV and 6 mA, the energy resolution is 0.5 eV.

2.4.3. Mechanical Strength of CAF

The mechanical strength of CAF before and after modification was measured by a
universal mechanical machine (CMT5540, MTS company, Eden Prairie, MN, USA) with the
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100 mm·min−1 stretching speed according to GB/T14337-2008. Each group of samples was
tested 10 times to determine the average values.

2.4.4. CAF and WPCs Matrix Adhesion Measurement

The single fiber pull-out test was used on a universal mechanical machine to measure
the interfacial adhesion of CAF reinforced WPCs composites as illustrated by the schematic
diagrams in Figure 2. The crosshead speed was 100 mm·min−1 and the interface shear
strength (IFSS) τ calculation formula is as follows:

τ =
F

πdl
where F refers to the maximum force, d is the diameter of CAF, and l is the length of test
composites. Each test was repeated 10 times to determine the average values.
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2.4.5. Mechanical Tests

The tensile and impact strength of CAF reinforced WPCs were tested using the univer-
sal testing machine and an impact tester (JC-5, Chengde, China) according to ASTM D638-03
and a Chinese standard of GB/T 1843.1-2008, respectively. In the tensile test, the sample is
dumbbell-shaped with the size of 165 × 20 × 4 mm3 (length × width × thickness), and the
width at the narrow part is 12.7 mm, the tensile speed is 5 mm·min−1. In the impact test,
the sample is rectangular with the size of 80 × 10 × 4 mm3 (length × width × thickness).
Test carried out with unnotched Izod impact tests at a speed of 3.8 m·s−1 while the impact
energy was 2 J. Each group of samples was tested 5 times to determine the average values.

2.4.6. Creep Behavior Analysis

The short-term creep properties of CAF reinforced WPCs composites were tested using
a rotational rheometer (AR2000ex, TA Instruments, New Castle, DE, USA). The samples
were 32 × 10 × 3 mm3 (length × width × thickness). The test was carried out at 60 ◦C
with an application of 2 MPa stress, and 30 min for loading and releasing, respectively.

3. Results and Discussion

The reaction mechanisms of VTES treatment, DPA treatment, and DPA and VTES
treatment on CAF are described in Figure 3. For VTES treatment, the silane VTES is
hydrolyzed to generated silanol, which can react with the carboxyl groups on the CAF
surface through esterification (Figure 3a). For DPA treatment, the polydopamine polymer is
deposited on the CAF surface by monomer oxidative and self-polymerization (Figure 3b).
In this process, dopamine is first oxidized to dopamine-quinone, and then the product
undergoes intramolecular cyclization. After a series of oxidation or rearrangement reactions,
the final monomers can branch react to each other. Finally, a thin layer of PDA forms on
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the aramid fiber through self-assembly polymerization and cross-linking (Figure 4). Lee
et al. performed a single-molecule study on the substrate and adhesive properties of
mussel though the reaction mechanism between the polydopamine polymer and substrate
remains unclear. According to their research, the oxidation of DPA formed high-strength
irreversible covalent bonding on the CAF surface [28]. For DPA and VTES combined
treatment, polydopamine deposited on CAF surface and introduced active -OH groups
that can react with silane coupling agent VTES. Further, Fe3+ with six coordination sites
that can bond with the -NH2 groups on the surface of poly (dopamine) deposited aramid
fiber [37]. The coordinatively unsaturated sites of Fe3+ provide active sites to the poly
(dopamine) deposited fiber and promote additional VTES grafting onto the fiber surface.
(Figure 3c).
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3.1. Surface Morphology of CAF

SEM analysis was performed to determine the detailed micromorphology of the
CAF. The pristine aramid fibers displayed a smooth and uniform surface after extraction
by ethanol solvent (Figure 5a). After dopamine treatment, the surface morphology of
the fibers became rougher due to the poly (dopamine) deposition, caused by dopamine
oxidative self-polymerization (Figure 5b). Similarly, the fiber surface after VTES treatment
appeared rough due to the grafting of the silane coupling agent (Figure 5c). Compared with
individual treatment with either pure DPA or VTES, there was obviously increased chemical
deposition on the surface of fiber increased for DPA and VTES combined treatment, this
result indicated that the presence of dopamine effectively promoted the grafting of VTES
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onto the CAF. Fiber modification resulting in larger surface area and reactivity, which may
increase the interfacial adhesion between CAF and WPCs matrix.
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3.2. Surface Chemical Composition of CAF

The XPS spectra of the surface of pristine and modified CAF were used to verify
the mechanism of surface modification on CAF (Figure 6). The XPS spectroscopy showed
the C1s, N1s, and O1s peaks at 289, 402, 536 eV, respectively, in both pristine CAF and
modified CAF, indicating that C, N, and O elements are present in CAF [18]. Spectroscopy
of the VTES-treated aramid fiber surface showed the characteristic peaks in the region
of 151–155 eV assigned to Si2s and 100–104 eV assigned to Si2p, respectively. This result
indicated that VTES was successfully grafted on the CAF, which is consistent with the
SEM results. Relative atomic percentages of O and N on the CAF increased after DPA
modification (Table 2), and the O and C and N and C ratios of the CAF surface increased
from 21.6 and 2.8 (virgin fiber) to 23.0 and 6.1 due to modification. These increases can
be explained by the introduction of -NH2 and -OH groups on the fiber surface after poly-
dopamine deposition [31]. Fe element also appeared on fiber treated with the combination
of DPA and VTES due to the successful complexation of poly (dopamine) deposited fiber
and VTES (Figure 6d). After complexation on fiber, the coordinatively unsaturated sites of
Fe3+ provided additional active sites on the modified fiber for the grafting of VTES [37].
Therefore, the relative atomic percentages of silicon and O and C ratio of fiber surface
increased from 3.3 and 21.6 to 5.75 and 26.5, respectively. Overall, dopamine promoted the
grafting reaction of fiber and coupling agent in the presence of Fe3+.
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Table 2. Surface elemental composition of CAF.

Sample
Atomic Percent (%) Atomic Ratio

C O N Si Fe O/C N/C

CAF 80.01 17.32 2.67 - - 21.6 2.8
CAFD 77.44 17.80 4.76 - - 23.0 6.1
CAFV 75.72 16.13 4.86 3.3 21.3 6.4

CAFDV 70.99 18.78 2.84 5.75 1.63 26.5 4

3.3. Interfacial Shear Strength of CAF

The interface shear strength (IFSS) between CAF and WPCs was characterized using
a single-fiber pull-out test, and the results are shown in Figure 7. The IFSS value of the
prepared CAFD-WPCs was 0.74 MPa, 4.2% higher than that of the CAF-WPC composite
(0.71 MPa). This increased IFSS can be attributed to the introduction of polar groups on
the polydopamine deposited CAF. The -NH2 and -OH groups confer high affinity to the
hydroxyl groups of matrixes. However, the slight improvement suggests that the number
of hydrogen bonds fiber exposed is limited, so does not sufficiently contribute to interface
bonding in the composites. Treatment with VTES alone increased the IFSS of the resulting
composite from 0.71 to 0.99 MPa, 39% higher than that of the untreated system. The use
of VTES improved the surface polarity of the inert CAF, which helps to improve interface
compatibility in composites. Using both polydopamine and VTES modification on fiber
increased the interfacial strength (IFSS) of the resulting composites significantly. The tested
CAFDV-WPC composite exhibited the highest IFSS value of 1.7 MPa, 139.4% higher than
that of pristine fiber. In the presence of Fe3+, poly (dopamine) promoted the grafting
of more coupling agents onto the fiber surface, resulting in greatly improved interfacial
compatibility between phases. In this system, the polar hydroxyl and amino groups on CAF
can extensively form hydrogen bonds with the wood flour. Additionally, the vinyl groups
of coupling agent VTES can generate free radicals and react with the HDPE backbone
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during the extrusion process [18]. As a result, a good interface can be formed between CAF
and the WPCs in the final composites.
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The tensile strength of virgin continuous fiber was measured as 1.7 N·dtex−1, and the
strength of fiber was basically unchanged after modification (Figure 7), which indicating
this modification has no negative effect on fiber strength. This is because both dopamine
deposition and VTES grafting reaction only occur on the CAF surface, and does not break
the molecular chain structure of continuous aramid fiber.

3.4. Fracture Morphology Analysis of Composites

Structural morphology characteristics of the prepared continuous aramid fiber rein-
forced WPCs were investigated to assess the interfacial bonding between CAF and WPCs.
For virgin CAF reinforced WPCs, the fracture surface appeared smooth with almost no
matrix adhesion, indicating weak interfacial bonding between CAF and WPCs (Figure 8a).
Compared to materials modified by either dopamine or VTES, adherents were observed
on the surface of the fiber, and the wire drawing phenomenon existed in the fracture com-
posites, indicating that the interface was improved. Stronger interface adhesion and more
obvious drawing phenomenon were observed in composites reinforced using DPA and
VTES modified fibers (Figure 8d). The results indicated increased interface compatibility
between the modified CAF and WPCs, increasing interfacial adhesion strength (Figure 7).
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3.5. Mechanical Properties of Composites

Adding CAF significantly improved the mechanical performance of the resulting com-
posites. Compared with pure WPCs, the tensile strength and modulus of CAF-reinforced
WPCs increased by 130% and 68%, respectively (Figure 9). The tensile stress loaded on
the composites can be transferred from the WPCs to CAF through interfacial shear. The
continuous aramid fibers withstand most of the stress, resulting in the enhancement in
strength and modulus. As the load increases, the cracks were generated and propagated in
the WPCs matrix and the interface between CAF and WPCs, which ultimately destroyed
the composites [26]. In this system, when the external force exceeds the interface bonding
strength between CAF and WPCs matrix, the fiber pulls out of the matrix. At this time,
the high-strength and modulus CAF subjected less stress than their own tensile strength.
Therefore, the improved interfacial property is a major contributor to the overall strength
of the composites. After modification, treated fiber improved tensile strength and modulus
to a greater extent than virgin fiber because of the higher stress transfer efficiency between
CAF and WPCs. Dopamine treated CAF introduced -NH2 and -OH groups on the fiber
surface with high affinity for the hydroxyl groups of the matrix. The use of VTES improves
the surface polarity of the inert CAF. However, the number of polar groups on CAFD and
CAFV is limited, therefore insufficient to promote interfacial adhesion in the composite
and resulting in a slight enhancement in tensile strength. For DPA and VTES combined
treatment (CAFDV), polydopamine deposited on CAF surface and introduced active -OH
groups that can react with silane coupling agent VTES. Further, in the presence of Fe3+,
the -NH2 groups on the CAF can be complexed with VTES, thereby promote additional
VTES grafting onto the fiber surface. Strong interfacial combination between CAFDV and
WPC matrix significantly increased tensile strength of the resulting composites. The tensile
strength and modulus of CAFDV-WPCs were 64.2 MPa and 2.3 GPa, which are 29 and 10%
higher than that of untreated fiber (49.6 MPa and 2.1 GPa). Combined with the analysis
of IFSS results, modification resulted in improved interface bonding, allowing CAF to
withstand greater loads through interfacial shear.
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Compared with pure WPCs, the impact strength of CAF reinforced WPCs was in-
creased by 283% maximally, which is difficult to achieve with common reinforcement
(Figure 10). Compared with virgin CAF, DPA and VTES-treated CAF further increased the
impact strength of CAF reinforced WPCs composites from 21.1 kJ·m−2 to 28.0 kJ·m−2, an
increase of 32.7%. This is due to the enhanced interface compatibility. Improved interfacial
bonding allowed the impact loading transferred steadily from the WPCs matrix to the
fibers, which reduced crack generation and propagation at the interface between CAF
and WPCs or in the matrix. This process absorbed most of the impact energy, resulting in
improved impact strength. Besides, the enhancement of CAF on the impact strength of
CAF-reinforced composites is more obvious than tensile strength. This is because unlike
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the tensile stress, the direction of impact stress is perpendicular to the fiber direction in
composites. The CAF restricts the movement of HDPE molecular chains, thus the stress
dissipation in composites is confined [26]. This allowed the composites to withstand greater
loads, finally resulting in improved impact strength.
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Interestingly, the effect of fiber modification on the interfacial shear strength of the
composites is more obvious than that of mechanical properties. These results may be caused
by the use of different test samples in IFSS and mechanical tests. There was a larger fiber
volume fraction in the mechanical test sample (three bundles) than that in the IFSS sample
(one bundle) and this may affect the formation of interface defects in composites. Cracks at
the interface promote the debonding of CAF from the WPCs composites under external
force. Another difference between the samples is that the samples used in the IFSS test
were prepared by hot pressing method. Compared to the extrusion process, this method
included an increased matrix melting time and additional pressure during the composite
preparation process to fully impregnate the continuous fiber into the WPCs matrix.

3.6. Creep Property of Composites

The short-term creep performance of composites was usually used to characterize the
creep resistance and the interface compatibility of the composites [5]. The creep mechanism
at molecular level for unmodified and modified CAF reinforced WPCs is mainly due
to the movement and deformation of the HDPE molecular chain and the deformation
of the material caused by the slippage of the polymer molecular chain at the interface.
The addition of aramid fiber effectively improved the creep resistance of the composite
(Figure 11). CAF reduced the creep deformation of composite materials regardless of
with modification or not. This is due to the high dimensionally stable CAF restricted
the movement of PE molecular chains. Besides, compared to non-modified fiber, treated
fiber-reinforced WF and HDPE composites exhibited smaller creep due to the enhanced
interfacial bonding between CAF and WPCs. The improved interface provided a stronger
interfacial shear effect for restraining the motion of HDPE polymer molecules at the
interface. Composites reinforced with DPA and VTES treated fiber exhibited the highest
creep resistance among all fiber-reinforced WPC composites, indicating better interfacial
compatibility in composites.
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4. Conclusions

This study provided an effective and nondestructive functionalization method for
continuous aramid fiber to develop high-performance continuous fiber-reinforced WPCs.
Dopamine and functional silane VTES were successfully deposited and grafted on the fiber
surface as evidenced by XPS and SEM analysis. The interfacial adhesion between CAF
and WPCs matrix was improved and the adhesion strength (IFSS) for materials prepared
with modified CAF increased by 143%. Additionally, the tensile strength, tensile modulus,
and impact strength of the modified CAF reinforced WPCs were further enhanced due to
stronger interface shear force in the composites. The results indicate that suitable interfacial
adhesion between components is the prerequisite to fully utilize the reinforcing ability of
CAF, and strong interface bonding is critical for composites with improved properties.
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